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Abstract

This paper presents a family of improved secant algorithms via two preconditional curvilinear paths, the preconditional
modi.ed gradient path and preconditional optimal path, for solving general nonlinear optimization problems with non-
linear equality constraints. We employ the stable Bunch–Parlett factorization method of symmetric matrices so that two
preconditional curvilinear paths are very easily formed. The nonmonotone curvilinear search technique, by introducing
a nonsmooth merit function and adopting a dogleg-typed movement, is used to speed up the convergence progress in
the contours of objective function with large curvature. Global convergence of the proposed algorithms is obtained under
some reasonable conditions. Furthermore, the dogleg-typed step overcomes the Maratos e7ect to bring the local superlinear
convergence rate. The results of numerical experiments are reported to show the e7ectiveness of the proposed algorithms.
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1. Introduction

In this paper we consider the nonlinear equality constrained minimization problems

min f(x)

s:t: c(x) = 0; (1.1)

where f(x) : Rn → R1 and c(x) : Rn → Rm; m6n are twice continuously di7erentiable. Among
the most successful methods for solving problem (1.1) we .nd the reduced Hessian methods in
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successive quadratic programming (SQP) (see [4,5,9]), and secant methods (two-step algorithms)
as de.ned in [6]. Compared with the widely reduced Hessian methods in which the orthonormal
basis (Zk ∈ Rn×t , where t = n − m) for the tangent space of the constraints at the current point xk
changes continuously with k, the secant methods have a main advantage which rests in the use of
an orthogonal projection operator which is continuous. However, recent reports indicate that it might
be diIcult to .nd a basis Zk which changes continuously with k (see, for example, [3]).

We now .rst state a family of the improved secant algorithms in which after the moving vectors
sk is determined by using the original secant algorithms (two-step algorithms) a correction step dk

will also be considered to make the performance of the algorithm more satisfactory and to overcome
the Maratos e7ect. Let || · || be the Eudidean norm on Rn. For simplicity, we denote f(xk) by fk ;
�f(xk) by gk ; and �2

xxf(xk) by �2fk , etc.
The general improved form of the algorithms follows, in each iteration

�k = U (xk ; �k−1; Bk); (1.2)

Bkwk =−�xl(xk ; �k) , −�k; (1.3)

hk = P(xk ; Bk)wk; (1.4)

vk =−A(xk)†ck ; (1.5)

yk =�xl(xk + hk ; �k)−�xl(xk ; �k); (1.6)

sk = hk + vk ; (1.7)

dk =−A(xk)†c(xk + sk); (1.8)

Bk+1 = DFP=BFGS(hk ; yk ; Bk); (1.9)

xk+1 = xk + sk + dk: (1.10)

In the above algorithms, l(x; �) is the Lagrangian function de.ned for x ∈ Rn and � ∈ Rm by

l(x; �) = f(x) + �Tc(x): (1.11)

Compared with the above-improved algorithms, the original secant methods proposed in [6], did
not use the correction step dk , i.e., dk ≡ 0: The dogleg-typed improvement dk can not only overcome
the Maratos e7ect, but also yields the one-step q-superlinear convergence (see Section 5). The matrix
Bk can be secant updated formulas de.ned as stated in [6] using an exact or approximate Hessian or
quasi-Newton formula after each iteration. Fontecilla assume that the matrix Bk for all k is positive
de.nite. However, Bk may be inde.nite and even the inverse B−1

k may not exist. We use the general
pseudo-inverse of Bk; B†

k instead of B−1
k in this paper.

The pseudo-inverse of AT
k ; A(xk)†; will be equal to either of the two,

A†
k = Ak(AT

k Ak)−1 (1.12)

or

A†
Bk

= B†
kAk(AT

k B
†
kAk)†; (1.13)
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Table 1
Algorithms

Algorithm U P A†

Alg 1 (1.17) I (1.12)
Alg 2 (1.17) I (1.13)
Alg 3 (1.16) PB (1.12)
Alg 4 (1.16) PB (1.13)
Alg 5 (1.18) P (1.12)
Alg 6 (1.18) P (1.13)

where choice of A(xk) in (1.8) corresponds to that in (1.5). The projection onto N(A(x)T), the null
space A(x)T, in (1.4) can be either the orthogonal projection P(x) given by

P(x) = I − A(x)[A(x)TA(x)]−1A(x)T (1.14)

or the oblique projection onto N(A(x)T) is de.ned by

PB(x) = I − B†A(x)[A(x)TB†A(x)]†A(x)T: (1.15)

The multiplier updates in (1.2) can be chosen from one of the following updates:
(1) Projection update:

�P
k =−(AT

k Ak)−1AT
k gk ; (1.16)

(2) Null-space update:

�S
k =−(AT

k B
†
kAk)†AT

k B
†
kgk ; (1.17)

(3) Newton update:

�N
k = (AT

k B
†
kAk)†(ck − AT

k B
†
kgk): (1.18)

With choices for multiplier updates in (1.2), projection operators in (1.4), vertical steps in (1.5)
and correction step in (1.8) we obtain the following six improved algorithms (see Table 1).

In [6], Fontecilla proved that the proposed algorithms were a local two-step superlinear conver-
gence rate in which did not refer to the global convergence. It was proved that if the initial point
x0 is close enough to the solution of problem (1.1), x∗, and Bk ≈ W∗, then the iterative sequence of
{xk} approaches x∗, where W (x; �) is de.ned as

W (x; �) =�2
xxl(x; �): (1.19)

Furthermore, under the assumption

lim
k→∞

||Pk(Bk −W∗)hk ||
||hk || = 0 (1.20)

and under some other conditions, the convergence is two-step q-superlinear, i.e.,

lim
k→∞

||xk+1 − x∗||
||xk−1 − x∗|| = 0: (1.21)

Two basic approaches, namely the line search and trust region, have been developed in order
to ensure global convergence towards local minima. The classical line search approach for the
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secant methods is a well accepted way for constrained minimization to assure global convergence.
An interesting idea is to form various curves for globalizing results based on the solution of a
system of di7erential equations. Two special curves that are named as the optimal path and modi.ed
gradient path have been suggested in trust region technique (see [2]). The two curvilinear paths
can be expressed by the eigenvalues and eigenvectors of the exact or inexact Hessian matrix of
the quadratic model function of the objective function. However, calculation of the full eigensystem
of a symmetric matrix is usually time consuming, and the optimal path and modi.ed gradient path
algorithms are generally impractical.

The approximate updating of the Hessian matrix of the quadratic model function can be factorized
by employing the stable Bunch–Parlett factorization method of symmetric matrices. In optimization
algorithms it is sometimes helpful to include a scaling matrix for the variables. In this paper, we
introduce the scaling matrix, named after preconditioner in [12], similar to the curvilinear paths in
[2], to generate the preconditional modi.ed gradient path and preconditional optimal path in which
we use the line search instead of the trust region strategy. The preconditional curvilinear paths can
be very easily formulated from the full eigensystem of the factorized diagonal blocks matrix which
is very easy to calculate.

The most successful implementations of these techniques are invariably based on the enforcement
of a monotonic decrease of the objective function values. However, computational experience ob-
servation are that enforcing monotonicity may have dangerous e7ects in the minimization of highly
nonlinear functions with the presence of steep-sided valleys, since the search for lower function
values may cause any minimization algorithm to be trapped in the bottom of a valley. Nonmono-
tonic line search technique which was proposed by Grippo, Lampariello and Lucidi (see [7]) for
unconstrained optimization, does not require objective values to decrease after every iteration so that
the e7ects can be avoided. The nonmonotonic idea motivates in connection with the preconditional
curvilinear paths approach to globalizing constrained optimization. The resulting algorithms via two
special curvilinear paths shall possess global convergence while introducing the nondi7erentiable
penalty function as merit function and adding a correction step to overcome the Maratos e7ect and
to ensure to a superlinear convergence rate.

The paper is organized as follows. In Section 2, we propose the characterizations and properties
of the preconditional curvilinear paths. In Section 3, we describe the nonmonotonic improved secant
algorithms via the preconditional curvilinear paths. In Section 4, the global convergence of the
proposed algorithms is established while the superlinear convergence rate is discussed in Section 5.
Finally, the results of numerical experiments of the proposed algorithms are reported in Section 6.

2. Preconditional curvilinear paths

We .rst give a brief description of preconditional curvilinear paths. The modi.ed gradient path
and optimal path emerging at xk of a general continuously di7erentiable function is the solution of
the di7erentiable equation (see [2]). In each iteration of the algorithms, we shall .rst solve system
(1.3). Since solving this system exactly may require too many computations, we choose to solve this
problem approximately for practical consideration. We can use the exact or approximate Hessian to
update Bk , even if Bk will be inde.nite. Let

 k(�k(�)) =�xl(xk ; �k)T�k(�) + 1
2�k(�)TBk�k(�);
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then the solution of
d�k(�)

d�
=−� k(�k(�)) and �k(0) = 0 (2.1)

is a valid approximation of the curvilinear paths for the gradient of l(xk +�k(�); �k) and thus provides
a set of sensible candidates for a successor point xk + �k(�) to xk for the modi.ed gradient path.
The optimal path will be concerned with trust region equations (see [2]). It is sometimes helpful to
include a scaling matrix for the variables which is diagonal and .xed in most cases. We will employ
the stable Bunch–Parlett factorization method of symmetric matrices to factorize the Hessian matrix
of the quadratic model function. The stable Bunch–Parlett factorization method (see [1]) factorizes
the matrix Bk into the form

EkBkET
k = LkDkLT

k ; (2.2)

where Ek is a permutation matrix, Lk a unit lower triangular matrix and Dk a block diagonal matrix
with 1× 1 and 2× 2 diagonal blocks. This factorization has following properties (see [1] or [13]).
Dk and Bk have the same inertia, that is, they have the same number of positive, zero and negative
eigenvalues. Further, the pseudo-inverse of Bk is

B†
k = L−T

k D†
kL

−1
k ;

where D†
k = diag{(’k

i )
†} and

(’k
i )

† =

{
(’k

i )
−1 if ’k

i �= 0;

0 if ’k
i = 0:

There exist positive constants Lc1 and Lc2 such that for all k

||Lk ||6 Lc1; ||L−1
k ||6 Lc2: (2.3)

Since Dk is a block diagonal matrix, its eigenvalues and orthonormal eigenvectors can be easily
calculated (see [13]). In our preconditional curvilinear path type of local quadratic approximation of
f at xk ; the matrix Lk is used to scale the variables

w = LT
k Ekw̃ (2.4)

and the local quadratic approximation function at xk ;

 ̂ k(w̃) ≡ (�̃
k
)Tw̃ + 1

2 (w̃)TDkw̃; (2.5)

where �̃
k

= L−1
k Ek�k . Note that w̃ rather than w = ET

k L
−T
k w̃ is required at local quadratic function

 ̂ k(w̃), which will further improve the eIciency of the calculation of the solution step.
Now, we employ preconditioner to form the two paths as described by Bulteau and Vial (see [2]),

i.e., preconditional optimal path and preconditional modi.ed gradient path, respectively.
When the parameter � varies in the interval [0;+∞), the solution points form the scaled paths and

emanate from the current origin xk . In order to de.ne those arcs in a closed form, we shall use the
eigensystem decomposition of Bk . Since Dk is a block diagonal matrix with 1×1 and 2×2 diagonal
blocks, its eigenvalues ’k

1; ’
k
2; : : : ; ’

k
n are real numbers and these are corresponding orthonormal

eigenvectors u1
k ; u

2
k ; : : : ; u

n
k . Without loss of generality, let ’k

16’k
26 · · ·6’k

n be eigenvalues of Dk

and u1
k ; u

2
k ; : : : ; u

n
k be corresponding orthonormal eigenvectors. We partition the set {1; : : : ; n} into

I+
k ; I

−
k and Nk according to ’k

i ¿ 0; ’k
i ¡ 0 and ’k

i = 0 for i ∈ {1; : : : ; n}, respectively. We now
give two preconditional curvilinear paths.
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2.1. Preconditional optimal path

The null step hk = P(xk ; Bk)wk in the null space N(A(xk)T), where wk = ET
k L

−1
k w̃k , is obtained by

the projection P(xk ; Bk) on the full step w̃k . The preconditional optimal path ((�) for the full step
w̃k of the full space Rn can be expressed as

((�) = (1(t1(�)) + (2(t2(�)); (2.6)

where

(1(t1(�)) =−
[∑
i∈Ik

t1(�)
’k

i t1(�) + 1
�̃

k

i u
i
k + t1(�)

∑
i∈Nk

�̃
k

i u
i
k

]
;

(2(t2(�)) = t2(�)u1
k

and

t1(�) = � and t2(�) = 0; if �¡
1
Tk

;

t1(�) =
1
Tk

and t2(�) = �− 1
Tk

; if �¿
1
Tk

;

Ik = {i |’k
i �= 0; i = 1; : : : ; n}; Nk = {i |’k

i = 0 i = 1; : : : ; n}; �̃
k

i = (�̃
k
)Tui

k ; i = 1; : : : ; n; �̃
k

=∑n
i=1 �̃

k

i u
i
k ; Tk = max{0;−’k

1} and 1=Tk is de.ned as +∞ if Tk = 0. It should be noted that (2(t2(�))
is de.ned only when Dk is inde.nite and g̃k

i = 0 for all i ∈ {1; : : : ; n} with ’k
i = ’k

1 ¡ 0 which is
referred to as hard case for unconstrained optimization and that for other cases, ((�) is de.ned only
for 06�¡ 1=Tk , that is, ((�) = (1(t1(�)).

The preconditional optimal path (v(�) for the range step v in the range space R(A(xk)) of A(xk)
can be expressed as

(v(�) =− �
� + 1

A(xk)†ck : (2.7)

2.2. Preconditional modi4ed gradient path

Similarly, the null step hk = P(xk ; Bk)wk in the null space N(A(xk)T), where wk = ET
k L

−1
k w̃k , is

also obtained by the projection P(xk ; Bk) on the full step w̃k . The preconditional modi.ed gradient
path ((�) for the full step w̃ in the full space Rn can be given in the following closed form which
can be referred to [2]:

((�) = (1(t1(�)) + (2(t2(�)); � ∈ [0;+∞); (2.8)

where if �̃
k

i �= 0 for some i ∈ I−
k ∪Nk , the term (2(t2(�)) is not relevant, that is, if �̃

k

i �= 0 for
some i ∈ I−

k ∪Nk , then (2(t2(�)) = 0. For the path ((�), the de.nitions of (1(t1(�)) and (2(t2(�))
are as follows:

(1(t1(�)) =
∑
i∈Ik

exp{−’k
i t1(�)} − 1
’k

i
�̃

k

i u
i
k − t1(�)

∑
i∈Nk

�̃
k

i u
i
k
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with

(2(t2) =

{
t2u1

k if ’k
1 ¡ 0;

0 if ’k
1¿0;

t1(�) =




�
1− �

if �¡ 1;

+∞ if �¿1

and

t2(�) = max{�− 1; 0}:
The preconditional modi.ed gradient path (v(�) for step v of the range space R(A(xk)) of A(xk)

can be expressed as

(v(t1(�)) = (exp{−t1(�)} − 1)A(xk)†ck ; (2.9)

where t1(�) given same as above.

2.3. Properties of preconditional curvilinear paths

We will discuss the properties in each of the above two preconditional paths in detail and sum-
marize as follows.

Lemma 2.1. Let the full step w̃k(�) be obtained from the preconditional optimal path in the full
space Rn and the null step hk(�) = P(xk ; Bk)wk(�); where wk(�) = ET

k L
−1
k w̃k(�); be obtained by the

projection P(xk ; Bk) in the null space N(A(xk)T). Then we have that the norm function of the
path hk(�) is monotonically increasing for � ∈ (0;+∞). The relation function  ̂ k(�) , (gk)Thk(�)
between gradient gk of the objective function and the step hk(�) satis4es a su7ciently descent
direction and is monotonically discreasing for 0¡�¡ 1=T . Furthermore;

�xl(xk ; �k)T dhk(�)
d�

= gT
k

dhk(�)
d�

=
d ̂ k(�)

d�

→−||P(xk ; Bk)�k ||2 =−||P(xk ; Bk)gk ||2 as �→ 0; (2.10)

and

lim
�→∞(v

k(�) =−A(xk)†ck : (2.11)

If Bk is positive; then

lim
�→∞(k(�) =−D−1

k �̃
k
: (2.12)

Proof. Let the step w̃k(�) be obtained from the preconditional optimal path. Since u1; u2; : : : ; un are
orthonormal eigenvectors and P(xk ; Bk), which simplicity if it cannot be confusion, denoted by Pk ,
is the projection onto the null space N(A(xk)T), it is obvious that ((�) is a continuous path, and

||((�)||2 =

{ ||(1(�)||2 if �¡ 1
T ;

||(1( 1
T )||2 + ||(2(t2(�))||2 if �¿ 1

T :
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Let

 (�) = ||(1(�)||2 =
∑
i∈Ik

(
�

’k
i � + 1

)2

(�̃
k

i )
2 + �2

∑
i∈Nk

(�̃
k

i )
2:

Then using the fact ’k
i � + 1¿ 0 for all i ∈ Ik when 0¡�¡ 1=T , we have

 ′(�) =
∑
i∈Ik

2
�

(’k
i � + 1)3

(�̃
k

i )
2 + 2�

∑
i∈Nk

(�̃
k

i )
2 ¿ 0

which means that ||(1(�)|| is monotonically increasing for 0¡�¡ 1=T . ||(2(t2(�))||2 = (� − 1=T )2

is certainly increasing for �¿1=T . Since ||hk(�)|| = ||P(xk ; Bk)wk(�)|| and wk(�) = ET
k L

−1
k w̃k(�); as

above we have that the norm function of the path is monotonically increasing for � ∈ (0;+∞).
From (2.6) and 0¡�¡ 1=T , we have that, noting Pk�k =Pkgk and (Pkgk)i=(Pk�k)i where (Pkgk)i

is the ith component of the vector Pkgk ,

 ̂ k(�) = (gk)TPkET
k L

−1
k (1(�)

=−(Pkgk)T

[∑
i∈Ik

t1(�)
’k

i � + 1
(Pkgk)iui + �

∑
i∈Nk

(Pkgk)iui

]

=−
∑
i∈Ik

�
’k

i � + 1
(Pkgk)2

i − �
∑
i∈Nk

(Pkgk)2
i : (2.13)

Then we have that

d ̂ k(�)
d�

=−
∑
i∈Ik

1
(’k

i � + 1)2
(Pkgk)2

i −
∑
i∈Nk

(Pkgk)2
i (2.14)

which means that  ̂ k(�) is monotonically decreasing for 0¡�¡ 1=T . Taking �→ 0, (2.10) is true.
Using the fact ||Dk ||+ T¿’k

i + T ¿ 0 for all i ∈ Ik when 0¡�¡ 1=T , we have that

�
’k

i � + 1
¿

1
||Dk ||+ 1=�

:

Therefore,

 ̂ k(�) = (gk)Thk(�)

6− 1
||Dk ||+ 1=�

∑
i∈Ik

(Pkgk)2
i

6− ||Pkgk ||2
||Dk ||+ 1=�

: (2.15)

In hard case, i.e., �¿1=T and ((�) = (1(1=T ) + (2(t2(�)), we have that for all

1
’k

i + T
¿

1
||Dk ||+ T

; i ∈ Ik and
1
T
¿

1
||Dk ||+ T

:
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Therefore, we have that, noting �xl(xk ; �k)Thk(�) = (gk)Thk(�),

 ̂ k(�)6− 1
||Dk ||+ T

∑
i∈Ik

(Pkgk)2
i −

1
T

∑
i∈Nk

(Pkgk)2
i

6− ||Pkgk ||2
||Dk ||+ T

: (2.16)

Eqs. (2.15) and (2.16) mean that hk(�) satis.es a suIciently descent direction.
If Bk is positive, then by the de.ntion of the preconditional optimal path (k(�) which can be

expressed as

(k(�) = −
∑
i∈Ik

t1(�)
’k

i t1(�) + 1
�̃

k

i u
i

→−
∑
i∈Ik

1
’k

i
�̃

k

i u
i as �→∞

= −D−1
k �̃

k

which means that (2.12) holds.
It is clear that (2.12) holds as

lim
�→∞−

�
� + 1

=−1:

Lemma 2.2. Let the full step w̃k(�) be obtained from the preconditional modi4ed gradient path in
the full space Rn and the null step hk(�)=P(xk ; Bk)wk(�); where wk(�)=ET

k L
−1
k w̃k(�); be obtained by

the projection P(xk ; Bk) in the null space N(A(xk)T). Then we have that the norm function of the
path hk(�) is monotonically increasing for � ∈ [0;+∞). The relation function L k(�) , (gk)Thk(�)
between gradient gk of the objective function and the step hk(�) satis4es a su7ciently descent
direction and is monotonically decreasing for 0¡�¡ 1. Furthermore;

�xl(xk ; �k)T dhk(�)
d�

= (gk)T dhk(�)
d�

=
d L k(�)

d�
→−||P(xk ; Bk)�k ||2 =−||P(xk ; Bk)gk ||2; as �→ 0; (2.17)

and

lim
�→∞(v

k(�) =−A(xk)†ck : (2.18)

If Bk is positive; then

lim
�→∞(k(�) =−D−1

k �̃
k
: (2.19)

Proof. From the de.nition of the path and using the orthonormality of vectors ui, we have

||(k(�)||2 =

{ ||(1(�)||2 if �¡ 1;

||(1( 1
T )||2 + ||(2(t2(�))||2 if �¿1:
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Let

 1(�) = ||(1(�)||2 =
∑
i∈Ik

(
exp{−’k

i t1(�)} − 1
’k

i

)2

(�̃
k

i )
2 +

(
�

1− �

)2 ∑
i∈Nk

(�̃
k

i )
2:

Then using the fact �¿ 0 and exp{−’k
i t1(�)}61, we have

 ′
1 (�) =

∑
i∈Ik

2 exp{−’k
i t1(�)}

(1− �)2
(1− exp{−’k

i t1(�)})(�̃
k

i )
2 +

2�
(1− �)2

∑
i∈Nk

(�̃
k

i )
2 ¿ 0:

Thus, ||(1(�)|| is monotonically increasing for 0¡�¡ 1. Since ||(2(t2(�))||2=(�−1)2, ||(2(t2(�))|| is
certainly increasing for �¿1. Since ||hk(�)||=||P(xk ; Bk)wk(�)|| and wk(�)=ET

k L
−1
k w̃k(�); as above we

have that the norm function of the preconditional modi.ed gradient path is monotonically increasing
for � ∈ [0;+∞).

If �¿1 then t1(�) = +∞; that is, �̃
k

i = 0 ∀ i ∈ I−
k ∪Nk , the term (2(t2(�)) is relevant. In that

case, by

lim
t→∞

exp{−’k
i t} − 1

’k
i

=− 1
’k

i
; if ’k

i ¿ 0;

we get that, noting �xl(xk ; �k)Thk(�) = (gk)Thk(�) and Pk�k = Pkgk ,

(gk)Thk(�) = (gk)TPkET
k L

−1
k {(1(t1(�)) + (2(t2(�))}

= −
∑
i∈I+

k

1
’k

i
(Pkgk)2

i + (�− 1)(Pkgk)1

= −
∑
i∈I+

k

1
’k

i
(Pkgk)2

i

6−||Pkgk ||2
||Dk || (2.20)

which means that hk(�) satis.es a suIciently descent direction.
If 0¡�¡ 1, then we have that

L k(�) = (gk)TPkET
k L

−1
k (1(t1(�))

=
∑
i∈Ik

exp{−’k
i t1(�)} − 1
’k

i
(Pkgk)2

i − t1(�)
∑
i∈Nk

(Pkgk)2
i : (2.21)

Then we have that

d L k(�)
d�

=−
∑
i∈Ik

1
(1− �)2

exp{−’k
i t1(�)}(Pkgk)2

i −
1

(1− �)2

∑
i∈Nk

(Pkgk)2
i ¡ 0 (2.22)

which means that L k(�) is monotonically discreasing for 0¡�¡ 1. Taking �→ 0, (2.17) is true.
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If Bk is positive, then by the de.ntion of the preconditional modi.ed gradient path ((�) which can
be expressed as

(k(�) =
∑
i∈Ik

exp{−’k
i t1(�)} − 1
’k

i
�̃

k

i u
i

→−
∑
i∈Ik

1
’k

i
�̃

k

i u
i as �→ 1

= −D−1
k �̃

k
;

which means that (2.18) holds.
It is clear that (2.19) holds as t1(�)→ +∞; if �¿1; and hence

lim
�→∞ exp{−t1(�)}= 0:

3. Algorithms

In this section we describe nonmonotone improved secant algorithms via preconditional curvilinear
paths. In order to decide the acceptance of the new point at each iteration, it is necessary to introduce
a merit function. We denote the merit functions #(·; ,) and its directional derivative in the direction
d, by D#(·; ,;d); where , is the penalty parameter. Here we choose the l1 exact penalty function
as the merit function #(·; ,),

#(x; ,) = f(x) +
m∑
i=1

,i|ci(x)|; (3.1)

where ,i is the ith component of the penalty vector , which is updated and given as follows:

,(k+1)i =

{
,ki if ,ki¿|-ki |+ .;

max{,ki ; |-ki |}+ . otherwise;
(3.2)

where .¿ 0 is the given constant, ,ki is the ith component of the vector ,k , and -ki = max{�P
ki ; �

S
ki}

with �P
ki and �S

ki being the ith component of the vectors �P
k and �S

k , respectively.
Since the functions ci(xk + sk(�)); i = 1; 2; : : : ; m; are di7erentiable, we have that

ci(xk + sk(�)) = ci(xk) + ��ci(xk)Ts′k(/�);

where / ∈ (0; 1). If sk(�) is obtained by the preconditional optimal path, then

�ci(xk)Ts′k(�) =− 1
(1 + �)2

�ci(xk)TA(xk)†c(xk) =− 1
(1 + �)2

ci(xk)

and if sk(�) is obtained by the preconditional modi.ed gradient path, then

�ci(xk)Ts′k(�) =−exp{−t1(�)}
(1− �)2

�ci(xk)TA(xk)†ck =−exp{−t1(�)}
(1− �)2

ci(xk):

From above

lim
�→0

|ci(xk + pk(�))| − |ci(xk)|
�

=−|ci(xk)|; i = 1; 2; : : : ; m;
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which implies that its directional |ci(x)| derivative in the direction s′k(0), we have that

D{|ci(xk ; s′k(0))|}=−|ci(xk)|; i = 1; 2; : : : ; m:

Using (1.12), (1.13), (2.11) and (2.18), we obtain

gT
k v

′
k(�) =− L1k(�)gkA(xk)†ck =− L1k(�)�T

k ck ;

where

L1k(�) =




1
(�+1)2 if preconditional optimal path;

exp{−t1(�)}
(�−1)2 if preconditional modi.ed gradient path

(3.3)

and

�k =

{
�P
k A(xk)† given in (1:12);

�S
k A(xk)† given in (1:13):

(3.4)

Hence from (3.1), we obtain that from L1k(0) = 1,

D#k(xk ; ,; s′k(0)) = (gk)Th′k(0)−
m∑
i=1

{,(k+1)i |ci(xk)|+ �kici(xk)}: (3.5)

The diIculty with nondi7erentiable penalty function #(·; ,) by caused by the Maratos e7ect (see
[14]). In order to overcome the Maratos e7ect and to ensure a superlinear convergence rate, the
algorithm is added a correction step denoted in the correction vector dk(�) where the form is given
by solving the following equation:

d(�) =−A(xk)†c(xk + sk(�)); (3.6)

where sk(�) = hk(�) + vk(�). The e7ect of this correction step, which is normal to the constraints, is
to decrease the quantity ||c(x)|| so that it is in the order of ||xk − x∗||3. This means that the merit
function will then be decreased at the point xk + sk(�) +1k(�)dk(�), as we will show below. Set then

xk+1 = xk + sk(�k) + 1k(�k)dk(�k); (3.7)

where 1k(�) is given in (3.12) and �k satis.es the acceptance criterion (3.11).
Now, we describe the improved secant algorithms via nonmonotone preconditional curvilinear

paths.
Initialization step: Choose parameters 2 ∈ (0; 1

2 ); ! ∈ (0; 1); and positive integer M . Let m(0)=0.
Choose a symmetric matrix B0, give a starting point x0 ∈ Rn and a positive penalty weight vector
,0 ∈ Rm. Set k = 0, go to the main step.
Main Step:

1. Calculate fk; gk ; ck , and A(xk)†. Compute the multiplier �k+1 can be chosen from one of the
following updates: (1) projection update (1.16), (2) null-space update (1.17), and (3) Newton
update (1.18).

2. If ||ck ||+ ||Pkgk ||65 (where 5 is a given small constant), stop.
3. Factorize Bk into the form (2.2) using stable Bunch–Parlett factorization method, that is, EkBkET

k =
LkDkLT

k : Calculate the eigenvalues and orthonormal eigenvectors of Dk . From either the pre-
conditional optimal path or preconditional modi.ed gradient path, we obtain (k(�); and (v

k(�),
respectively.
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4. Denote by w̃k ; vk the steps of the preconditional curvilinear paths (k(�); (v
k(�), respectively.

Compute

wk(�) = ET
k L

−T
k w̃(�); (3.8)

hk(�) = P(xkBk)wk(�); (3.9)

sk(�) = hk(�) + vk(�);

then solve (3.6) to obtain dk(�). Update the penalty vector , by using the following formula
given in this section. Set

pk(�) = sk(�) + 1k(�)dk(�): (3.10)

5. Choose

�k =∞; !−n; !−(n−1); : : : ;

until the following inequality is satis.ed:

#(xk + pk(�k); ,k)6#(xl(k); ,l(k)) + 21k(�k)D#(xk ; ,k ; s′k(0)); (3.11)

where #(xl(k); ,l(k)) = max06j6m(k){#(xk−j; ,k−j)} and

1k(�) =

{ �
�+1 ; if preconditional optimal path;

1− exp{−t1(�)} if preconditional modi.ed gradient path:
(3.12)

6. Set

xk+1 = xk + pk(�k): (3.13)

7. Take m(k + 1) = min{m(k) + 1; M}; and update Bk to obtain Bk+1. Then set k ← k + 1 and go
to step 2.

Remark 1. Note that in each iteration if the solution pk(∞) fails to meet the acceptance criterion
(3.11) (take �k =∞), then we turn to curvilinear search, i.e., retreat from xk + pk(�k) until the
criterion is satis.ed.

Remark 2. Generally, {#(xk + pk(�k); ,k)} is nonmonotonically decreasing so that the proposed
algorithm becomes the usual monotone algorithm when M = 0:

Remark 3. As shown below, the preconditional curvilinear paths can be generated by employing
general symmetric matrices which may be inde.nite. Thus the matrix Bk at step 7 can be produced
from evaluating the exact Hessian matrix Bk = �2f(xk), or using an approximate Hessian. The
factorization of matrix may not be required and only compution of eigenvalues of matrix Bk is
necessary at each iteration.
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4. Convergence analysis

In order to discuss the convergence properties of the proposed algorithms, we should make the
following assumptions in this section.

Assumption A1. The sequences {xk}; {xk + sk} and {xk + sk + dk} generated by the algorithms are
contained in a compact convex set 7; �2f(x) and �2ci(x) (i = 1; : : : ; m) are Lipschitz continuous
matrix functions on 7.

Assumption A2. The matrix A(x) has full column rank over 7.

Assumption A3. Norm sequences {||A(xk)†||} is bounded for all k, that is, there is a constant 21 ¿ 0
such that

||A(xk)†||621; ∀k; (4.1)

where A(xk)† is given in (1.12) and (1.13).

Lemma 4.1. Under the Assumption A3; we obtain

dk(�) = O(||sk(�)||2): (4.2)

Proof. Since AT
k hk(�) = 0 and sk(�) = hk(�) + vk(�); it means

AT
k sk(�) = AT

k (hk(�) + vk(�)) = AT
k vk(�) =−ck : (4.3)

Therefore,

||c(xk + sk(�))||= ||ck + AT
k sk(�)||+ O(||sk(�)||2) = O(||sk(�)||2): (4.4)

Using (4.1), (3.6) implies that (4.2) holds.

Under the above assumptions, we can state the following result, whose proof can be found in
[14].

Lemma 4.2. P(xk ; Bk)gk = 0 and c(xk) = 0 if and only if xk is a Kuhn–Tucker point of problem
(1:1).

To establish the convergence properties of the proposed algorithm, we are now ready to employ
one of our main lemma.

Lemma 4.3. Assume that Assumptions A1–A3 holds. Let {xk} ∈ Rn be a sequence generated by
the algorithm using the l1 exact penalty function #(xk ; ,k) as merit function with (3:2) updating
the penalty vector ,k; we have that

D#(xk ; ,; s′k(0))6− !k(�)||P(xk ; Bk)gk ||2 − .
m∑
i=1

|ci(xk)|; (4.5)
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where

!k(�) =




min
i∈Ik

{ 1
(’k

i �+1)2 ; 1} if preconditional optimal path;

1
(1−�)2 min

i∈Ik

{exp{−’k
i t1(�); 1} if preconditional modi4ed gradient path:

Furthermore; there exists .1 ¿ 0 such that 0¡�k ¡ 1=T .

D#(xk ; ,; s′k(0))6− !1
k(�)||hk(�)||2 − .1||vk(�)||; (4.6)

where !1
k(�) = !̂k(�)!k(�) and

!̂k(�) =




mini∈Ik {(’k
i �+1)2 ;1}

�2 if optimal path;

min
i∈Ik

( ’k
i

exp{−’k
i t1(�)}−1 )2; (1−�)2

�2 } if modi4ed gradient path:
(4.7)

Proof. By (2.14) and (2.22), let hk(�) be generated by either the preconditional optimal path or the
preconditional modi.ed gradient path, we have that

(Pkgk)T(hk)′(0)6− !k(�)||P(xk ; Bk)gk ||2:
From (3.2) updating the penalty vector ,k , we have that (4.5) holds.

Let the step (k(�k) be obtained from the preconditional optimal path. Then we have that the norm
function of Pk(k(�) = hk(�) with 0¡�k ¡ 1=T has

||hk(�)|| = ||Pk(1(�)||2

=
∑
i∈Ik

(
�

’k
i � + 1

)2

(Pkgk)2
i + �2

∑
i∈Nk

(Pkgk)2
i

6max
i∈Ik

{(
�

’k
i � + 1

)2

; �2

}
||Pkgk ||2:

Let the step (k(�k) be obtained from the preconditional modi.ed gradient path. Then similar to
the above, we have the norm function of the path

||hk(�)||= ||Pk(1(�)||26max
i∈Ik



(

exp{−’k
i t1(�)} − 1
’k

i

)2

;
(

�
1− �

)2

 ||Pkgk ||2: (4.8)

Since ||ck ||1¿||ck ||; 0¡ L1k(�)61 and ||v′k(�)||621 L1k(�)||ck ||621||ck || where 21 is given in (4.1),
we further conclude that taking .1 = .=21, (4.6) holds.

Lemma 4.4. Assume that Assumptions A1–A3 hold. Let {,k}⊂Rm be a penalty vector sequence
generated by the algorithm using the updating fomular. Then there exists a vector L,¿ 0 such that
for all large k; ,k6 L,; i.e.; the sequence {,k} is uniformly bounded from above.

Proof. Let the penalty vector ,k be a sequence generated by the algorithm using the l1 exact penalty
function #(xk ; ,k) as merit function with (3.1). Referring to Assumptions A1–A3, ||�k || is uniformly



88 D. Zhu / Journal of Computational and Applied Mathematics 136 (2001) 73–97

bounded for all xk . By (3.2) it follows that the sequence {,k} is uniformly bounded from above,
that is, there exists a vector L,¿ 0 such that ,k6 L,.

To establish the convergence properties of the proposed algorithm, we are now ready to state our
main theorem.

Theorem 4.5. Suppose that Assumptions A1–A3 hold. Let {xk}⊂Rn be a sequence generated by
the algorithm. Then

lim inf
k→∞

{||P(xk ; Bk)gk ||+ ||c(xk)||}= 0: (4.9)

Further; no limit of the sequence {xk} is a local maximum of the merit function #(x; ,).

Proof. Eq. (4.9) holds if and only if the following equation holds:

lim inf
k→∞

{||P(xk ; Bk)gk ||2 + ||c(xk)||1}= 0:

If the conclusion of the theorem is not true, without loss of generality, then assume that there exists
some 5¿ 0 such that

||ck ||+ ||Pkgk ||¿5; k = 1; 2; : : : :

According to the acceptance rule (3.11) in step 5, we have

#(xl(k); ,l(k))− #(xk + pk(�k); ,k)621k(�k)D#(xk ; ,k ; s′k(0)): (4.10)

Taking into account that m(k + 1)6m(k) + 1, and from Lemma 4.4 there exists L,¿ 0 such that
for all large k, ,k ≡ L,; we have that #(xk+1; ,k+1)6#(xl(k); ,l(k)). Similar to the proof of theorem
in [7], we have that the sequence {#(xl(k); ,l(k))} is nonincreasing for all large k, and therefore
{#(xl(k); ,l(k))} is convergent.

By (3.11) and (4.5), for all k ¿M ,

#(xl(k); ,l(k))

=#(xl(k)−1 + pl(k)−1(�l(k)−1); ,l(k)−1)

6 max
06j6m(l(k)−1)

{#(xl(k)−j−1; ,l(k)−j−1)}+ 21l(k)−1(�l(k)−1)D#(xl(k)−1; ,l(k)−1; s′l(k)−1(0))

6 max
06j6m(l(k)−1)

{#(xl(k)−j−1; ,l(k)−j−1)}

−2!l(k)−1(�l(k)−1)1l(k)−1(�l(k)−1){||Pl(k)−1gl(k)−1||2 + .||cl(k)−1||}: (4.11)

As {#(xl(k); ,l(k))} is convergent, and !l(k)−1(�l(k)−1) �= 0 we obtain that from (4.10) and (4.11)

lim
k→∞

1l(k)−1(�l(k)−1)[||Pl(k)−1gl(k)−1||2 + .||cl(k)−1||] = 0: (4.12)

This, by the de.nitions of preconditional curvilinear paths (2.7)–(2.8) and (2.9)–(2.10), as well as
{||ck ||+ ||Pkgk ||}¿5; implies that

lim
k→∞

1l(k)−1(�l(k)−1) = 0: (4.13)
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By de.nition (3.12) of 1l(k)−1(�l(k)−1), (4.13) means that

lim inf
k→∞

�l(k)−1 = 0: (4.14)

From the de.nitions of preconditional curvilinear paths (2.6)–(2.7) and (2.8)–(2.9), this implies
that

lim
k→∞
||pl(k)−1(�l(k)−1)||= 0 (4.15)

and

lim
k→∞

#(xl(k)−j; ,l(k)−j) = lim
k→∞

#(xl(k); ,l(k)) (4.16)

for any positive integer j. Furthermore, as large k¿l(k)¿k −M; from

xl(k) = xk−M−1 + pk−M−1(�k−M−1) + · · ·+ pl(k)−1(�l(k)−1)

and (4.16), it can be derived that

lim
k→∞

#(xl(k); ,l(k)) = lim
k→∞

#(xk ; ,k): (4.17)

By the rule for accepting the step pk(�k), (4.1) and (4.3),

#(xk+1; ,k+1)− #(xl(k); ,l(k))6 21k(�k)D#(xk ; ,k ; s′k(0))

6−2!k(�k)1k(�k){||Pkgk ||2 + .||c(xk)||}: (4.18)

Eqs. (4.17) and (4.18) mean that

lim
k→∞

1k(�k) = 0; and hence lim
k→∞

�k = 0:

Therefore,

lim
k→∞
||pk(�k)||= 0 (4.19)

which establishes

lim
k→∞
||xk+1 − xk ||= 0: (4.20)

From �k → 0; as k → ∞, the acceptance rule (3.11) means that, for large enough k, without loss
of generality, ,k ≡ L,:

#
(
xk + pk

(
�k
!

)
; L,
)
− #(xk ; L,)¿ #

(
xk + pk

(
�k
!

)
; L,
)
− #(xl(k); L,)

¿21k

(
�k
!

)
D#(xk ; L,; s′k(0)): (4.21)

For the composite function #(xk +pk( �
!); L,) about �, we have that noting 1k( �k

! )d′
k(0)=O(�k=!)d′

k(0);

#
(
xk + pk

(
�k
!

)
; L,
)

= #(xk ; L,) +
�k
!

d#(xk + pk(�k); L,)
d�

∣∣∣∣
�=0

+ o
(
�k
!

)

= #(xk ; L,) +
�k
!

D#(xk ; L,;p′
k(0)) + o

(
�k
!

)

= #(xk ; L,) +
�k
!

D#(xk ; L,; s′k(0)) + o
(
�k
!

)
: (4.22)



90 D. Zhu / Journal of Computational and Applied Mathematics 136 (2001) 73–97

From (4.21) and (4.22), we have[
�k
!
− 21k

(
�k
!

)]
D#(xk ; L,; s′k(0)) + o

(
�k
!

)
¿0: (4.23)

Dividing (4.23) by �k=! and noting that 1 − 2¿ 0, 1k(�k=!) ÷ (�k=!) → 1 as �k → 0, and
D#(xk ; L,; s′k(0))60, we obtain

lim
k→∞

D#(xk ; L,; s′k(0)) = 0: (4.24)

From (4.5), (4.24) means that, from �k → 0 as k →∞,

lim
k→∞
{||Pkgk ||2 + ||ck ||}= lim

k→∞
D#(xk ; L,; s′k(0)) = 0 (4.25)

which implies that (4.9) is true.
Assume that there exists a limit point x∗ which is a local maximum of f, let {xk}K, be a

subsequence of {xk} converging to x∗. Then the limit point x∗ is also a local maximum of the merit
function #(x; L,), for large L,.

As k¿l(k)¿k −M; for any k there exists a point xl(k) such that

lim
k→∞
||xl(k) − xk ||= 0; (4.26)

so that we can obtain

lim
k∈K; k→∞

||xl(k) − x∗||6 lim
k∈K; k→∞

||x∗ − xk ||+ lim
k∈K; k→∞

||xl(k) − xk ||= 0: (4.27)

This means that also the subsequence {xk}K converges to x∗.
On the other hand, we have that the sequence {#(xl(k); ,l(k))} is nonincreasing for all large k, and

therefore {#(xl(k); ,l(k))} is convergent, noting c∗ = 0, i.e.,

lim
k→∞
{#(xl(k); ,l(k))}= #(x∗; L,) = f(x∗)

and {#(xl(k); ,l(k))}¿f(x∗) for all large k. Moreover, we can .nd a suIciently large index k such
that

f(x∗)6#(xl(k+M); ,l(k+M))¡#(xl(k); ,l(k)) (4.28)

so that we conclude that, in any neighborhood of x∗; there exists a point xl(k) with k ∈K such that
f(x∗)¡#(xl(k); L,) holds. This contradicts the assumption that x∗ is a local maximum of the merit
function #(x; L,), for large L,. It means that the conclusion of the theorem is true.

5. Local convergence rates

Theorem 4.5 indicates that at least one limit point of {xk} is a stationary point. Next, we show
that the convergence rate is superlinear convergence for the algorithm when Bk is positive de.nite.
It requires the following assumptions.

Assumption A4. x∗ is a K-K-T point of problem (1.1), i.e., there is a vector �∗ ∈ Rm such that

c∗ = 0 and g∗ − A∗�∗ = 0: (5.1)
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Assumption A5. There exists a constant L�¿ 0 such that

pT(ZT
∗W∗Z∗)p¿ L�||p||2; ∀p ∈ Rt (5.2)

i.e., the second-order suIcient condition holds at x∗. Further, there exists a constant L!¿ 0 such
that ||W (x)||6 L! ∀x ∈ 7; where W (x) given in (1.19).

Assumption A6. xk → x∗.

Assumption A7.

lim
k→∞

||Pk(Bk −W∗)hk ||
||hk || = 0: (5.3)

In fact, (5.3) is a suIcient condition of the secant methods for two-step q-superlinear convergence
(see [6,10], for instant).

Lemma 5.1. If Bk is eventually positive de4nite and Assumptions A1–A7 hold; then hk(�) generated
from the two projection curvilinear paths P(xk ; Bk)ET

k L
−1
k (k(�k) satis4es

q̂k(hk(�k)) def=(gk)Thk(�k) + hk(�k)TBkhk(�k)60: (5.4)

Proof. At the kth iteration, let (k(�k) be generated from the preconditional optimal path. When Bk

is positive de.nite, by the de.nition of the preconditional optimal path ((�), it can be expressed as

BkPkET
k L

−1
k (k(�k) = BkPkET

k L
−1
k (1(t1(�k))

=−
n∑

i=1

’k
i u

i
k(u

i
k)

T

[∑
i∈Ik

t1(�k)
’k

i t1(�) + 1
(Pkgk)iui

k

]

=−
∑
i∈Ik

’k
i t1(�k)

’k
i t1(�k) + 1

(Pkgk)iui
k : (5.5)

Hence, we have that

(gk)Thk(�k) + hk(�k)TBkhk(�k)

=−
∑
i∈Ik

�k
’k

i �k + 1
(Pkgk)2

i +
∑
i∈Ik

’k
i �

2
k

(’k
i �k + 1)2

(Pkgk)2
i

= −
∑
i∈Ik

�k
(’k

i �k + 1)2
(Pkgk)2

i

60: (5.6)

Let the step w̃k be obtained from the preconditional modi.ed gradient path. Since Bk is positive
de.nite, it means that I−

k ∪Nk = �. We de.ne the value of

q̃k(hk)
def= (gk)Thk + 1

2h
T
k Bkhk ;
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where noting hk = hk(�k), for simplicity, q̃k along the precoditional modi.ed gradient path is given
by (see, (4.6) in [2]),

q̃k(Pk(1(t1(�))) =
∑
i∈Ik

exp{−2’k
i t1(�)} − 1

2’k
i

(Pkgk)2
i : (5.7)

It is clear to see that

(gk)Thk = (gk)T[PkET
k L

−1
k (1(t1(�))] =

∑
i∈Ik

exp{−’k
i t1(�)} − 1
’k

i
(Pkgk)2

i : (5.8)

We have that from (5.7) and (5.8),

(gk)Thk + hT
k Bkhk

=2[(gk)Thk + 1
2h

T
k Bkhk]− (gk)Thk

=2
∑
i∈Ik

exp{−2’k
i t1(�)} − 1

2’k
i

(Pkgk)2
i −

∑
i∈Ik

exp{−’k
i t1(�)} − 1
’k

i
(Pkgk)2

i

=
∑
i∈Ik

exp{−’k
i t1(�)}exp{−’k

i t1(�)} − 1
’k

i
(Pkgk)2

i

60: (5.9)

From (5.6) and (5.9), we have that the conclusion of the theorem is true.

Lemma 5.2. Let {xk}⊂Rn be a sequence generated by the algorithm using the l1 penalty function
#(xk ; ,k) as merit function. If Bk is eventually positive de4nite and Assumptions H1–H7 hold; then
for su7ciently large k; �k ≡ ∞ in (3:11):

Proof. We denote w̃k(∞) by w̃k , whenever it does not lead to confusion for simplicity. Similarly,
hk(∞) is denoted by hk , and vk(∞) by vk . By the de.nition of dk and ||c(xk + sk)||= O(||sk ||2), we
have that

gT
k dk = �T

k+1c(xk + sk)− /kcT
k (AT

k B
−1
k Ak)−1c(xk + sk)

= �T
k+1c(xk + sk) + o(||ck ||)

=
1
2
sT
k

(
m∑
i=1

�k+1; i�2ci(xk)

)
sk + o(||ck ||) + o(||hk ||2)

=
1
2
hT
k

(
m∑
i=1

�k+1; i�2ci(xk)

)
hk + o(||vk ||) + o(||hk ||2); (5.10)

where /k = 0 or 1 and �k given in (1.16), (1.17) or (1.18).
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Since, ||W (x)||6 L! ∀x ∈ 7 and noting (5.10),

f(xk + sk + dk)

=fk + gT
k (vk + hk + dk) + 1

2 (sk + dk)T(�2fk)(sk + dk) + o(||vk ||) + o(||sk ||2)

=fk + gT
k vk + gT

k hk + 1
2h

T
k (�2fk)hk

+ 1
2h

T
k

(
m∑
i=1

�k+1; i�2ci(xk)

)
hk + o(||vk ||) + o(||sk ||2)

=fk + gT
k hk + gT

k vk + 1
2h

T
kWkhk + o(||vk ||) + o(||hk ||2); (5.11)

c(xk + sk + dk) = c(xk + sk) + A(xk + sk)Tdk + o(||dk ||)
= [A(xk + sk)− Ak]

Tdk + o(||dk ||)
= o(||hk ||2) + o(||ck ||) (5.12)

and

D#(xk ; ,k ; sk) = gT
k vk + gT

k hk − ,k ||ck ||1 (5.13)

we have that, noting (5.4) and Bk being positive de.nite, i.e., (gk)Thk6− hT
k Bkhk60

#(xk + sk + dk; ,k)− #(xk ; ,k)− 2D#(xk ; ,k ; sk)

=( 1
2 − 2)gT

k hk + 1
2h

T
kWkhk + (1− 2)gT

k vk + 1
2g

T
k hk

−(1− 2),k ||ck ||+ o(||ck ||) + o(||hk ||2) + o(||sk ||2)

6− ( 1
2 − 2)hT

k Bkhk − 1
2h

T
k (Bk −Wk)hk + (1− 2)gT

k vk

−(1− 2),k ||ck ||+ o(||ck ||) + o(||hk ||2) + o(||sk ||2)

6− ( 1
2 − 2)hT

k Bkhk + (1− 2)gT
k vk

−(1− 2),k ||ck ||+ o(||ck ||) + o(||hk ||2); (5.14)

the last inequality is reduced by (5.3). Further, we have that

gT
k vk =


 (�P

k )Tck for ALG 1; ALG 3; and ALG 5;

(�S
k )Tck for ALG 2; ALG 4; and ALG 6;

6

{ ||�P
k ||∞ · ||ck ||1 for ALG 1; ALG 3; and ALG 5;

||�S
k ||∞ · ||ck ||1 for ALG 2; ALG 4; and ALG 6;

6 ||-k ||∞ · ||ck ||1: (5.15)

From (5.2) and (5.3), we have for large k
L�
2
||hk ||26hT

k Bkhk :
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Table 2
Experimental Results of the algorithm ALG 2

Problem name M = 0 M = 4 M = 8

NF NG NF NG NO NF NG NO

POPP
HS006 14 10 14 10 0 14 10 0
HS026 16 16 14 14 1 14 14 1
HS027 38 21 34 16 1 34 16 1
HS028 58 31 58 31 0 58 31 0
HS060 8 7 8 7 0 8 7 0
SC220 153 115 129 98 3 139 103 4
SC252 54 48 65 46 2 68 46 2
SC235 31 16 29 15 1 29 15 1
SC219 69 56 57 49 3 54 48 4
SC216 79 68 76 59 1 76 55 1

PMGP
HS006 14 10 14 10 0 14 10 0
HS026 16 16 14 14 1 14 14 1
HS027 39 22 35 17 1 35 17 1
HS028 61 32 61 32 0 61 32 0
HS060 8 7 8 7 0 8 7 0
SC220 142 102 132 107 4 112 98 5
SC252 57 50 68 54 2 68 54 2
SC235 31 16 29 15 1 29 15 1
SC219 62 49 55 44 2 46 35 3
SC216 77 58 71 51 1 71 51 1

Therefore, we obtain that, for k large enough and by (3.2) and (5.14)

#(xk + sk + dk; ,k)− #(xk ; ,k)− 2D#(xk ; ,k ; sk)

6− ( 1
2 − 2

) L�
2
||hk ||2 + (1− 2)(-k − ,k)||ck ||1 + o(||ck ||) + o(||hk ||2)

6− ( 1
2 − 2

) L�
2
||hk ||2 − (1− 2).||ck ||1 + o(||ck ||) + o(||hk ||2)

60 (5.16)

and hence

#(xk + sk + dk; ,k)− #(xl(k); ,l(k))6 #(xk + sk + dk; ,k)− #(xk ; ,k)

6 2D#(xk ; ,k ; sk) (5.17)

then the step length �k ≡ ∞, for suIciently large k. This means that the theorem is true.

Theorem 5.3. Under Assumptions A1–A7; the sequence {xk} of points generated by the improved
secant algorithms with the nonmonotone acceptance criterion (3:11) is two-step q-superlinear
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Table 3
Experimental results of the algorithm ALG 3

Problem name M = 0 M = 4 M = 8

NF NG NF NG NO NF NG NO

POPP
HS006 14 10 14 10 0 14 10 0
HS026 16 16 14 14 1 14 14 1
HS027 36 20 32 15 1 34 16 1
HS028 57 31 57 31 0 57 31 0
HS060 8 7 8 7 0 8 7 0
SC220 146 115 132 98 3 121 93 4
SC252 56 49 66 48 2 69 52 2
SC235 31 16 29 15 1 29 15 1
SC219 63 51 56 47 3 51 42 4
SC216 76 57 71 51 1 71 51 1

PMGP
HS006 14 10 14 10 0 14 10 0
HS026 16 16 14 14 1 14 14 1
HS027 38 22 35 17 1 35 17 1
HS028 61 32 61 32 0 61 32 0
HS060 8 7 8 7 0 8 7 0
SC220 144 112 134 95 4 91 76 7
SC252 57 50 68 54 2 68 54 2
SC235 31 16 29 15 1 29 15 1
SC219 62 49 57 49 2 46 35 3
SC216 77 58 71 51 1 71 51 1

convergence; i.e.;

lim
k→∞

||xk+1 − x∗||
||xk−1 − x∗|| = 0: (5.18)

Furthermore; the sequence {xk + sk} of points generated by the improved secant algorithms is
q-superlinear convergence; i.e.;

lim
k→∞

||xk + sk − x∗||
||xk−1 + sk−1 − x∗|| = 0: (5.19)

Proof. From Theorem 5:2, we get that �k ≡ ∞ for all large enough k; then

xk+1 = xk + sk + dk

where sk , and dk are given by (3.9) and (3.6), that is, it means that hk ; vk ; sk , and dk are generated
by (1.4), (1.5), (1.7) and (1.8), respectively. From Fontecilla [6], we have that (5.18) is true.
Furthermore, similar to the proof of Theorem 4:11 in [14], we can prove that (5.19) is also true.
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Table 4
Experimental results of the algorithm ALG 6

Problem name M = 0 M = 4 M = 8

NF NG NF NG NO NF NG NO

POPP
HS006 14 10 14 10 0 14 10 0
HS026 16 16 14 14 1 14 14 1
HS027 38 21 34 16 1 35 17 1
HS028 58 31 58 31 0 58 31 0
HS060 8 7 8 7 0 8 7 0
SC220 142 103 128 91 3 119 91 4
SC252 54 48 65 46 2 68 46 2
SC235 31 16 29 15 1 29 15 1
SC219 63 51 56 47 3 51 42 4
SC216 76 57 71 51 1 71 51 1

PMGP
HS006 14 10 14 10 0 14 10 0
HS026 16 16 14 14 1 14 14 1
HS027 58 47 51 40 1 51 40 1
HS028 65 42 65 42 0 65 42 0
HS060 8 7 8 7 0 8 7 0
SC220 145 113 136 93 4 91 77 7
SC252 59 52 69 56 2 69 56 2
SC235 31 16 29 15 1 29 15 1
SC219 62 49 57 49 2 46 35 3
SC216 79 64 72 52 1 72 52 1

6. Numerical experiments

Numerical experiments on the improved secant algorithms ALG 2, ALG 3 and ALG 6 with
the nonmonotonic preconditional optimal path (POPP) and preconditional modi.ed gradient path
(PMGP), respectively, have been performed on an IBM 586 personal computer. We compare with
di7erent nonmonotonic parameters M = 0; 4 and 8, respectively, for the proposed algorithms. The
monotonic algorithms are realized by taking M = 0. In order to check the e7ectiveness of the
nonmonotonic technique, the selected parameter values are: 2 = 0:1; ! = 0:2; . = 0:5; ,0 = 10: The
computation terminates when one of the following stopping criterions is satis.ed ||P(xk ; Bk)gk || +
||ck ||610−6 and |#(xk ; ,k)− #(xk+1; ,k+1)|610−6|#(xk ; ,k)|:

Our preconditional curvilinear method is very easy to be resolved, since the full eigensystem of
the matrix D is very easy to calculate. Indeed, the formulation of curvilinear paths (k depend on the
value of �k , we only need to set the point back along the same curvilinear path until (3.11) is satis.ed.
The experiments are carried out on 10 standard test problems which are quoted from [8,11] (HS:
the problems from Hock and Schittkowski [8], and SC: from Schittkowski [11]). The computational
results for Bk = Hk , the real Hessian, are presented in Tables 2–4. POPP and PMGP with ALG
2, 3, 6 denote, respectively, the secant algorithms ALG 2, 3, 6 via the preconditional optimal path
algorithm and the preconditional modi.ed gradient path algorithm proposed with l1 penalty function.
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NF and NG stand for the numbers of function evaluations and gradient evaluations, respectively.
NO stands for the number of iterations in which nonmonotonic decreasing situation occurs, that is,
the number of times #(xk ; ,k)¡#(xk+1; ,k+1): The number of iterations is not presented in Table 4
because it always equals NG.

The last three parts of the table, under the headings of M = 0; 4 and 8, respectively, show that
for most test problems the nonmonotonic technique does bring in some noticeable improvement.
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