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a b s t r a c t

This paper is concerned with the time integration of semi-discretized, multi-dimensional
PDEs of advection-diffusion-reaction type. To cope with the stiffness of these ODEs, an
implicit method has been selected, viz., the two-stage, third-order Radau IIA method. The
main topic of this paper is the efficient solution of the resulting implicit relations. First, a
modified Newton process has been transformed into an iteration process in which the 2
stages are decoupled and, moreover, can exploit the same LU-factorization of the iteration
matrix. Next, we apply a so-called Approximate Matrix Factorization (AMF) technique to
solve the linear systems in each Newton iteration. This AMF approach is very efficient since
it reduces the ‘multi-dimensional’ system to a series of ‘one-dimensional’ systems. The total
amount of linear algebra work involved is reduced enormously by this approach. The idea
of applying AMF to two-dimensional problems is quite old and goes back to Peaceman and
Rachford in the early fifties. The situation in three space dimensions is less favourable and
will be analyzed here in more detail, both theoretically and experimentally. Furthermore,
we analyze a variant in which the AMF-technique has been used to really solve (‘until
convergence’) the underlying Radau IIAmethod so thatwe can rely on its excellent stability
and accuracy characteristics. Finally, the method has been tested on several examples.
Also, a comparison has been made with the existing codes VODPK and IMEXRKC, and the
efficiency (CPU time versus accuracy) is shown to be at least competitivewith the efficiency
of these solvers.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

We are concernedwith the numerical time integration of initial-value problems (IVP) for systems of ordinary differential
equations (ODEs) of the form

y′(t) = f (t, y(t)), y(t0) = y0, t0 ≤ t ≤ tend, (1.1)

where y, f ∈ Rm. Throughout the paper, these systems are assumed to be the result of applying a spatial discretization to a
time-dependent partial differential equation (PDE). Hence, we follow the Method of Lines (MoL) approach.
The literature on the time integration of the resulting system of ODEs is overwhelming, which is caused by the widely

varying nature of the underlying PDEs. Numerical processes that behave efficiently for one particular class of PDEs are not
necessarily a good choice for other classes. For example, methods suitable for hyperbolic problems are often of a completely
different concept compared with methods for parabolic problems. Moreover, many ‘industrial problems’ are so specific that
they justify an ad hoc approach and are best solved by a method that is tuned to their idiosyncrasies. Nevertheless, one can
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try to design algorithms for problem classes as wide as possible. The major aim of this paper is to come up with such an
algorithm.
In designing such a time integration method one has to identify certain common characteristics of the underlying PDE

classes that the numerical method is capable to cope with. For example, a typical property of systems (1.1) is that they
possess stiffness; that is, the eigenvalues of the Jacobian matrix ∂ f /∂y differ largely in magnitude. The stiffness can be
substantial if the PDE has to be semi-discretized on a spatial grid with high (local) resolution to meet certain accuracy
conditions. Another aspect, related to the concept of stiffness, is that – apart from advection and diffusion operators – often
stiff reaction terms are involved. Such a situation is e.g. exemplified in chemical reactions which typically have widely
varying time scales.
Another complicating factor for dealing with stiffness is that the eigenvalues of ∂ f /∂y can be situated anywhere in the

negative half plane. For example, diffusion-reaction terms often give rise to negative real eigenvalues, but the discretization
of advection terms usually leads to eigenvalues possessing a substantial imaginary part. The above considerations lead us to
aim for a numerical time integrator that is capable to treat ODEs independent of the position of the eigenvalues in the left
half plane. In other words, we will require the method to be A-stable [1]. As a consequence of this choice we shall exclude
all explicit methods. Confining ourselves to the class of implicit methods, there is still a considerable choice: a well-known
class of methods is given by the BDF methods; indeed the popular and widely used codes VODE [2] and VODPK1 [4,5] are
based on this class. However, since the pioneering work of Dahlquist [6] we know that the order of A-stable methods of this
type is necessarily limited to 2. On the other hand, the amount of implicitness of these methods is minimal which explains
their popularity.
An alternative, to circumvent the order-2 barrierwith respect to A-stability, is offered by the class of implicit Runge–Kutta

(IRK) methods. For example, the code RADAU5 in [1] is based on this concept and is a robust and accurate stiff ODE solver.
The amount of implicitness, however, is larger than for VODE, due to the IRK-nature. Based on the above considerations,
we have decided to select a member from the IRK-family as our starting point to build a robust solver. To be more specific,
we have chosen the 2-stage Radau IIA scheme. This method combines excellent stability properties (i.e., even the stronger
concept of L-stability, see [1]) with order of accuracy equal to 3, which we think is an appropriate choice in a PDE context.
No matter which implicit method has been selected, we are always faced with solving implicit relations to obtain the

numerical approximation in the new step point. In fact, solving these systems is the determining factor for the success of
a PDE-solver. This is particularly true in case of multi-dimensional PDEs where a straightforward approach of the linear
algebra involved may easily lead to excessive costs. To further elaborate this, let us consider the 2-stage Radau IIA method.
Applying this method, we encounter 2 main difficulties:
(i) apart from computing a new step point approximation, the scheme requires to solve for a (coupled) intermediate

approximation; this requirement doubles the dimension of the algebraic systems to be solved in each step, and
(ii) the sparsity patterns in the matrices involved in the Newton process require – especially for three-dimensional PDEs

– a special treatment since standard LU-decompositions are not feasible in such cases.
To copewith the first difficulty, Butcher proposed already in 1976 [7] a similarity transformation to reduce the dimension

of the implicit system to solve. The idea of only solving systems of dimensionm has been exploited in many papers [8–11].
Techniques to ‘decouple’ the stages are based on properties of the A-matrix in the RK scheme; also the code RADAU5 is based
on this principle. The approach to be discussed in the present paper follows the same idea: the classical Newton iteration for
the full implicit relation is replaced by a much simpler iteration in which the stages are decoupled and hence only systems
of dimension m have to be solved. The definition of this iteration, as well as an analysis of its convergence behaviour will
be described in Section 2. In passing we remark that also SDIRK methods efficiently reduce the implicitness to a dimension
equal to that of theODE system. In this context, however,we have tomention a phenomenon called ‘order reduction’. Almost
all A-stable Runge–Kutta methods, when applied to arbitrary stiff ODEs, might show an actual order of convergence that is
smaller than the classicial order. This order reduction is largely determined by the so-called stage order. Typically, SDIRK
methods have stage order equal to one, resulting in an actual order equal to one or two, see e.g.[12, Th. 3.3] and [13, Th.
3.4] for conditions and further details. For semi-linear problems it has been shown that the actual order of convergence of
s-stage Radau IIA methods is given by min{2s− 1, s+ 1}. For the 2-stage Radau IIA method that will be used in this paper,
this yields third-order convergence. A clarifying discussion on order reduction suffered by Runge–Kutta methods applied in
a PDE context can be found in [14, Ch.II.2].
For the second difficulty, i.e., the structure of the Jacobian matrices originating from a multi-dimensional PDE, we use a

so-called Approximate Matrix Factorization (AMF) approach. Also this idea is already quite old. In fact, the celebrated paper
of Peaceman and Rachford from the early fifties was one of the first based on this principle. However, so far a successful
application of AMF was usually restricted to two-dimensional problems. In Section 3 we will discuss an extension suitable
for three spatial dimensions. This idea originates from the overview paper [15], but in that paper it was only suggested as a
possible treatment. As far aswe know this idea has not yet been tested in real life three-dimensional applications. Hence, the
above techniques are not novel; what is new – and that is the main contribution of this paper – is the combination of both
ingredients into one overall approach to tackle multi-dimensional PDEs by keeping the costs to deal with the implicitness
to a manageable level.

1 VODPK is based on VODE, extended with the Krylov solver GMRES [3] allowing for a user-supplied preconditioner to accelerate convergence of the
iteration process to solve the systems.
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Next, the performance of the resulting algorithm is demonstrated on several test problems. We start with a linear model
problem in Section 4 to study the basic properties of the combined method. Then, in Section 5, the method is applied to
a realistic, nonlinear problem and will be compared with existing solvers, such as VODPK and IMEX RKC. Finally, some
conclusions will be formulated in Section 6.

2. Single-Newton iteration

Applying a fully implicit s-stage RK method to the ODE system (1.1) leads to

Yn = e⊗ yn + τ(A⊗ Im)F(etn + cτ , Yn),

yn+1 = yn + τ(bT ⊗ Im)F(etn + cτ , Yn),
(2.1)

where the RK method is characterized by the matrix A and the vector b (both of dimension s), Yn is the so-called stage
vector, containing the s approximations Yn,i ≈ y(tn + ciτ), i = 1, . . . , s with τ being the step size and ci are the elements
of the collocation vector c = Ae. Furthermore, F(etn + cτ , Yn) contains the f -evaluations at the collocation points, i.e.,
F(etn+ cτ , Yn) = (f (tn+ c1τ , Yn,1)T, . . . , f (tn+ csτ , Yn,s)T)T, Im is them-dimensional identity matrix, e is the s-dimensional
vector with unit entries, and⊗ denotes the Kronecker product. The quantity yn+1 is an approximation to the solution y(t)
at t = tn+1 = tn + τ .
The usual approach in a stiff context is to solve the stage vector Yn from (2.1) by means of a modified Newton iteration

[Ims − τA⊗ J]∆k = Dk−1,

Y kn = Y
k−1
n +∆k, k = 1, 2, . . . ,

(2.2)

where the residual Dk−1 is defined by

Dk−1 = e⊗ yn − Y k−1n + τ(A⊗ Im)F(etn + cτ , Y k−1n ), (2.3)

and J is an approximation to the Jacobian ∂ f
∂y (tn, yn). The iteration is started with Y

0
n , provided by some predictor formula.

To simplify the presentation, here and henceforth we omit the dependence on n of any residual Dk−1.
In each iteration of (2.2) a linear system of dimension s · m has to be solved. As proposed by Butcher [7], a similarity

transformation can be used to reduce the dimension. Unfortunately, for the s-stage implicit Runge–Kutta Radau IIAmethods
(s ≥ 2), which we take as starting point, the A-matrix has pairs of conjugate complex eigenvalues. As a consequence, the
Butcher-approach leads to solving (block) systems of dimension 2m, or – alternatively – change to complex arithmetic.
Another approach, which has been considered in several papers [8–11], is to replace the matrix A in the left-hand side

of (2.2) by a ‘more convenient’ matrix T . By ‘more convenient’ we mean that the matrix T has a structure by which the
stages are decoupled (so that only systems of dimension m have to be solved, independent of the number of stages s) and,
moreover, T has a one-point spectrum, so that only one LU-decomposition of anm×mmatrix is required.
In the papers mentioned above, the matrix T is determined on the basis of a linear analysis. Here, we follow a similar

approach, that is we apply the iteration scheme (2.2) with A (in the left-hand side) replaced by T to the scalar linear equation
y′ = λy, with Re λ ≤ 0, and find that the iteration error εk := Y kn − Yn satisfies the recursion

εk = M(z)εk−1, M(z) = z(Is − zT )−1(A− T ), z = τλ. (2.4)

Clearly, for convergence we need that the spectral radius ρ of the iteration matrix satisfies ρ(M(z)) < 1. If this iteration
process converges, then it converges to the solution of the underlying Radau IIA method and we can take full profit of the
accurate and stable behaviour of this corrector.
To determine a suitable T -matrix, we follow an approach as suggested in [10]. In that paper, requirements on a suitable

rate of convergence are combined with adequate linear stability properties, both for |z| → ∞, i.e. the focus is on extremely
stiff components. These two conditions respectively lead to

ρ(M(∞)) = ρ(Is − T−1A) = 0 (2.5)

and

bTA−2(A− T ) = 0T. (2.6)

Here, we remark that (2.6) implies that Rk(∞) = R(∞) for all k ≥ 1, where Rk(z) is the stability function for the
advancing solution of the method obtained after k iterations, namely ykn+1, starting with the predictor Y

0
n = e⊗ yn, and R(z)

is the stability function of the underlying IRK method, henceforth called the corrector. Since we will use an L-stable Radau
IIA method as corrector, which is stiffly accurate (ykn+1 = Y

k
n,s), we have – after an arbitrary number of k ≥ 1 iterations –

that the resulting stability function satisfies Rk(∞) = 0. Another result, which we will use in the numerical Sections 4 and
5, concerns the order of accuracy of the overall method. It is well-known that the order of accuracy is increased by one in
each Single-Newton iteration until the order of the underlying corrector has been reached. It must be noted that this fact is
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independent of the approximation J taken in the iterative scheme to replace ∂ f /∂y(tn, yn) as long as J−∂ f /∂y(tn, yn) = O(1).
Hence after, say q iterations, the order p∗ of the advancing solution yqn+1 equals

p∗ = min(`+ q, p), (2.7)

where p is the order of the corrector and ` is the order of the prediction Y 0n , i.e., Y
0
n −Yn = O(τ `+1). For additional properties

of this iteration process we refer to [10].
We will now derive the matrix T . Recalling that we require T to have a one-point spectrum, this matrix can be written as

T = γ S(Is − L)−1S−1 (2.8)

where L is a strictly lower triangular matrix, S is nonsingular, and γ is the multiple eigenvalue, which needs to be positive.
Replacing the matrix A in (2.2) by T and using its decomposition (2.8), we arrive at what we will call the single-Newton
iteration process [10],

[Ims − γ τ(Is ⊗ J)]Ek = ((Is − L)S−1 ⊗ Im)Dk−1 + (L⊗ Im)Ek,

Y kn = Y
k−1
n + (S ⊗ Im)Ek, k = 1, 2, . . . .

(2.9)

Since L is strictly lower triangular, the s components Ek1, . . . , E
k
s can be solved one after another and hence, only systems

of dimension m are involved. We remark that (2.9) can be considered as a special case of the class of iteration methods
considered in [9].

2.1. Determining the matrix T for the 2-stage Radau IIA corrector

As motivated in the introduction, an appropriate choice, in a PDE context, for the corrector is the third-order, 2-stage
Radau IIA method, defined by

A =


5
12
−
1
12

3
4

1
4

 , bT =
(
3
4
,
1
4

)
.

Since this method is stiffly-accurate, i.e., bTA−1 = (0, 1), we have that yn+1 equals the second stage vector component
Yn,2. To determine a matrix T that satisfies the conditions (2.5) and (2.6), we define the matrix P by

P = I2 − A−1T .

Clearly, condition (2.5) is equivalent to the requirement that both eigenvalues of P vanish. Furthermore, condition (2.6) now
reads bTA−1P = 0T, which, for this corrector, leads to the requirement that the second row of P is the zero vector. Hence, P
is of the form

P =
(
0 b
0 0

)
.

The matrix T has a double eigenvalue γ iff

det T = γ 2 and trace T = 2γ .

Since T = A(I2 − P)we have det T = det A and then γ is determined by

γ =
√
det A =

1
6

√
6, (2.10)

which is positive indeed, as required. Using trace T = 2γ = 8−9b
12 , we have uniquely determined the matrices P and T as

P =

0 8− 4
√
6

9
0 0

 , T =


5
12

5
√
6

27
−
49
108

3
4

√
6
3
−
5
12

 . (2.11)

Given the matrix T , we finally have to determine its decomposition (2.8). Setting R = (I2 − L)−1, the matrices S and R
have the form

S =
(
x1 x2
x3 x4

)
, R =

(
1 0
x 1

)
,

and they have to satisfy the equation TS = γ SR. In solving this systemwe are left with three free parameters {x1, x2 6= 0, x3}.
However, it is not possible to exploit this freedom to obtain better damping properties of the iteration scheme. Therefore, we
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will use the approach used in [10] where the transformation matrix S has been chosen upper triangular with unit diagonal
entries; this facilitates the implementation and reduces the computational costs. This choice leads to

S =

1 5− 2
√
6

9
0 1

 , L = I2 − R−1 =

 0 0
3
√
6
4

0

 .
The matrix (I2 − L)S−1, also needed in the single-Newton process (2.9), is given by

(I2 − L)S−1 =

 1 −
5− 2

√
6

9

−
3
√
6
4

5
√
6

12

 .
We conclude this section by mentioning that one eigenvalue of the iteration matrix M(z) identically vanishes. For the

other eigenvalue an analytical expression can be derived:

ρ(M(z)) = |traceM(z)| =

∣∣∣∣∣2(2−
√
6)z

(
√
6− z)2

∣∣∣∣∣ ,
for which we have the following suprema along the negative real axis and the imaginary axis

max
z≤0
{ρ(M(z))} =

1
2
−

√
6
6
≈ 0.09175, max

y∈R
{ρ(M(iy))} = 1−

2
√
6
6
≈ 0.18350.

3. Approximate matrix factorization

The single-Newton iteration process (2.9) requires, in each iteration, the solution of the two m-dimensional linear
systems{

(Im − γ τ J)Ek1 = D̃
k−1
1

(Im − γ τ J)Ek2 = D̃
k−1
2 + L21E

k
1

(3.1)

where we have put

Ek =

(
Ek1
Ek2

)
, D̃k−1 =

(
D̃k−11
D̃k−12

)
:= ((I2 − L)S−1 ⊗ Im)Dk−1. (3.2)

Notice that the coupling in the two systems in (3.1) is one-sided, which implies that first Ek1 can be computed and
subsequently Ek2 , using E

k
1 in the right-hand side. In the current application ofmulti-dimensional PDEs, the direct solution of

these linear systems is time consuming, due to the structure of the Jacobian. A possible remedy to reduce the computational
costs is to use a so-called Approximate Matrix Factorization (AMF) technique. To that end, the Jacobian matrix J is written
as J =

∑d
i=1 Ji. Then the matrices Im − γ τ J = Im − γ τ(J1 + · · · + Jd) in (3.1) are replaced by the factored matrixΠ , defined

as

Π :=

d∏
i=1

(Im − γ τ Ji). (3.3)

In this paper, dwill be chosen equal to the number of spatial dimensions of the underlying PDE, and Ji corresponds to the
discretization of the differential operators in the i-th spatial direction. Solving the resulting linear systems is much cheaper
because the factoredmatrixΠ results in the successive solution of d systemswith a banded coefficient matrix. Typically, the
matrices have a band width in the range 3–5, depending on the discretization stencils that have been used (e.g., symmetric
second-order for diffusion terms, third-order upwind biased for advection terms, etc.). Solving such systems is cheap since
the complexity involved is only linear in the dimension. Now, we can proceed in two different directions.

3.1. Factorized iteration to solve the linear systems

The first approach is to use the AMF-techniques in an iterativeway to solve the linear systems in (3.1) until ‘convergence’.
This is in the spirit of the analysis of the single-Newton iteration. Indeed, the use of the expression (Is−zT )−1 in the derivation
of the iteration matrix M(z) (cf. (2.4)) assumes that the linear system is exactly solved. The convergence behaviour of this
AMF-iteration has been analyzed in [15]; see also [16] with a similar analysis in a slightly different context. As it turns out,
a successful application of the AMF approach critically depends on the number of spatial dimensions involved.
Writing each of the linear systems in (3.1) in the form (Im − γ τ J)x = b, the convergence of the AMF-iteration process

Π(xj − xj−1) = b− (Im − γ τ J)xj−1, j = 1, 2, . . . , (3.4)



54 S. Perez-Rodriguez et al. / Journal of Computational and Applied Mathematics 231 (2009) 49–66

corresponding to the linear model problem y′ = Jy = (J1 + · · · + Jd)y is governed by the iteration matrix Z given by

Z = Im −Π−1(Im − γ τ J). (3.5)

Assuming that all the Jacobian matrices Ji (i = 1, . . . , d) have the same set of eigenvectors, then the eigenvalues of Z are
given by

λ(Z) = 1− (1− γ z)
d∏
i=1

(1− γ zi)−1, (3.6)

where zi runs through the eigenvalues of τ Ji and z =
∑d
i=1 zi.

The process (3.4) is called A(α)-convergent [15] if λ(Z) is within the unit circle for all zi ∈ W(α)with

W(α) := {w ∈ C : w = 0 or | arg(−w)| < α}.

Now, we have the following

Theorem 1 ([16,15]). For the convergence of the AMF-iteration process (3.4) we have for d ≥ 2

|λ(Z)| < 1 for all zi ∈ W(α)⇐⇒ α ≤
1
d− 1

·
π

2
. �

For PDEs in two spatial dimensions this result is excellent, since d = 2 yields A(π/2)-convergence, hence unconditional
convergence as long as the eigenvalues of J1 and J2 are in the left half-plane. On the other hand, we encounter a
serious limitation for PDEs in three dimensions, since then we only have A(π/4)-convergence. This implies that for
advection dominated 3D PDEs, we will encounter convergence problems. In passing we remark that, if J has only real
negative eigenvalues (corresponding to diffusion-reaction type PDEs without advection terms), the process will converge,
independent of the number of dimensions d.
In [15] a remedy has been suggested to circumvent this restrictive condition on α in case of 3D PDEs. The basic idea is to

replace the factorization
∏3
i=1(Im − γ τ Ji) by two successive factorizations in each of which only two matrices are involved.

Writing

J = J1 + J∗, with J∗ = J2 + J3, (3.7)

and recursively applying the d = 2-application of the AMF-iteration with these matrices, we arrive at

(Im − γ τ J1)∆̃j = b− (Im − γ τ J)xj−1,

(Im − γ τ J∗)∆j = ∆̃j, xj = xj−1 +∆j, j = 1, 2, . . . .
(3.8)

The matrix J1 has a simple band structure, but J∗ has not. Therefore, the system involving J∗ is iteratively solved by a
(nested) AMF-iteration. Since both processes are based on a factorization with d = 2, they will converge unconditionally.
Now, the inner AMF-iteration is obtained by replacing Im − γ τ J∗ by (Im − γ τ J2)(Im − γ τ J3)which results in

(Im − γ τ J2)(Im − γ τ J3)(∆j,i −∆j,i−1) = ∆̃j − (Im − γ τ J∗)∆j,i−1 (3.9)

for i = 1, 2, . . . , r , and the vector xj is updated by the last result from this inner iteration, i.e., xj = xj−1 + ∆j,r . We remark
that the inner iteration should be continued until ‘convergence’, hence r should be sufficiently large. A plausible starting
value for the iteration (3.9) is given by ∆j,0 = ∆̃j, as has been suggested in [15]. For the approach described in the next
subsection, however, there is theoretical and numerical evidence that∆j,0 = 0 is a better choice to start the iteration.
In applying the above (nested) AMF-iteration process to really solve the linear systems in (3.1), the overall behaviour of

the combined single-Newton/AMF process is merely governed by the convergence behaviour of the single-Newton process,
which has been analyzed in Section 2.

3.2. Mixed single-Newton and AMF-iteration

Next, wewill discuss an approach inwhich both iteration processes aremixed up. By thiswemean that the linear systems
(3.1) that occur in each single-Newton iteration are only approximately solved by replacing thematrix Im−γ τ J by thematrix
Π defined in (3.3). Then, after successively solving the d bandsystems, we continue with the next single-Newton iteration.
Or, saying it differently, only one AMF-iteration of the form (3.4) is applied. This approach requires, of course, much less
bandsolves than the approach discussed in the preceding subsection. The convergence analysis, however, does not directly
follow from the results given in [15,16] and needs some amendment. Starting from (3.1) and applying the AMF-technique,
this mixed approach reads (see also (2.9))

ΠEk1 = D̃
k−1
1 ,ΠEk2 = D̃

k−1
2 + L21E

k
1,

Y kn = Y
k−1
n + (S ⊗ Im)Ek, k = 1, 2, . . . ,

}
(3.10)
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withΠ and D̃k−1j given by (3.3) and (3.2), respectively. A natural initial guess is given by Y 0n = e⊗ yn, but other choices are
possible, e.g. predictions of higher order (i.e., with ` > 0 in (2.7)).
If the mixed iteration process (3.10) is applied to y′ = Jy = (J1 + · · · + Jd)y, we find that the iteration error

εk := (S−1 ⊗ Im)(Y kn − Yn) (3.11)

satisfies the recursion εk = Z∗εk−1, k = 1, 2, . . ., where

Z∗ = I2m − (I2 ⊗Π−1)
[
I2m + L⊗ (Π−1 − Im)

]
(I2m − τ Ã⊗ J),

Ã := S−1AS,
(3.12)

and we have taken into account that L2 = 0.
Similarly as in Section 3.1, it is assumed that all the Ji have the same set of eigenvectors, that zi runs through the spectrum

of τ Ji and z =
∑d
i=1 zi. Then, the eigenvalues of Z

∗ are those of the 2-dimensional matrixM∗

M∗ = I2 − x−1
[
I2 + (x−1 − 1)L

]
(I2 − zÃ) (3.13)

where x =
∏d
j=1(1− γ zj).

Next, we formulate convergence results for the cases d = 2 and d = 3.

Result 1. The iteration process (3.10) with d = 2 is convergent for z1, z2 ∈ W(α)with α ≈ 87.9◦.
Derivation. A straightforward calculation yields that the eigenvalues µ of the matrixM∗ are determined by

µ2 − a1µ+ a0 = 0,

a0 =
(
6+ 6x2 − 2

√
6z + z2 + 2x(−6+

√
6z)
)
(x−2/6),

a1 =
(
6x2 − (−2+

√
6)z + x(−6+

√
6z)
)
(x−2/3).

(3.14)

Since z1 and z2 may vary independently in the wedge W(α), we examine the cases {z1 = ρ1eiα, z2 = ρ2eiα} and
{z1 = ρ1eiα, z2 = ρ2e−iα} and determine numerically the largest α such that ρ(M∗) < 1 for (many values of) ρ1 and
ρ2 ∈ (0,∞). This computation yields α ≈ 87.9◦. We remark that the largest values for the spectral radius in any interval
0 ≤ ρ1, ρ2 ≤ ρ, (ρ > 0)were found when ρ1 = ρ2 ∈ [0, ρ]. �

To obtain a convergence result for the three-dimensional case we followed the same approach using d = 3. That is, all
possible combinations of zi-values lying on the upper and lower boundary of the wedge and at mutually different distances
from the origin have been examined. A numerical search for the largest aperture of thewedge, still resulting in convergence,
leads to the following result.

Result 2. The iteration process (3.10) with d = 3 is convergent for z1, z2, z3 ∈ W(α)with α ≈ 44.7◦.

Remark 1. It is interesting to compare the convergence properties of themixed iteration processwith those of the approach
described in Section 3.1. To this aim, by comparing the Results 1 and 2with Theorem 1, we conclude that the angleα reduces
from 90◦ to 87.9◦ in case d = 2, and from 45◦ to 44.7◦ for d = 3. This marginal reduction of the convergence region is amply
compensated by the enormous gain in computational work.

Remark 2. From (3.14) we obtain for Re zj → −∞ (j = 1, . . . , d), that a0 → 1 and a1 → 2. Then ρ(M∗) is only slightly
smaller than 1, indicating that we may expect slow convergence for extremely stiff components.

So far, we have considered the convergence of the single-Newton process (2.9) combined with AMF. One may wonder
whether better convergence results are obtained if we apply the AMF-technique directly to the modified Newton process
(2.2). Hence,when the iterationmatrix (I2m−τA⊗J) in (2.2) is replaced by

∏d
j=1(I2m−τA⊗Jj). Aswewill show, this approach

leads to a wedge with smaller aperture. This negative result is due to the nonzero imaginary parts in the eigenvalues of the
A-matrix of the 2-stage Radau IIA method. For this method, the eigenvalues are η(A) = (2 ± i

√
2)/6 =

√
6
6 e
±iαR , with

αR = arctan(
√
2/2) ≈ 0.615 (≈ 35.3◦). The new iteration can be written as

d∏
j=1

[I2m − τA⊗ Jj]∆k = Dk−1, Y kn = Y
k−1
n +∆k, k = 1, 2, . . . . (3.15)

For linear problems y′ = Jy, J =
∑d
j=1 Jj, the error of the iterates satisfies

Y kn − Yn = W
∗(Y k−1n − Yn)

W ∗ = I2m −

(
d∏
j=1

[I2m − τA⊗ Jj]

)−1
(I2m − τA⊗ J).

(3.16)
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Again, we assume that the Jj matrices share the same set of eigenvectors. Then, the eigenvalues ofW ∗ are given by

λ(W ∗) = 1−

(
d∏
j=1

(1− zjη(A))−1(1− zη(A))

)
η(A) = (2± i

√
2)/6

(3.17)

where the zj and z have the same meaning as before. Now we can formulate the following theorem.

Theorem 2. For the convergence of the iteration process (3.15) and the two-dimensional case (d = 2) we have

|λ(W ∗)| < 1 for all z1, z2 ∈ W(α) ⇐⇒ α ≤ π/2− αR ' 54.7◦.

Proof. Writing η = η(A), it readily follows from (3.17) with d = 2 that

λ(W ∗) =
η2z1z2

(1− ηz1)(1− ηz2)
=

ηz1
(1− ηz1)

·
ηz2

(1− ηz2)
.

Hence, |λ(W ∗)| < 1, ∀ z1, z2 ∈ W(α) iff |ηζ (1 − ηζ )−1| < 1,∀ ζ ∈ W(α). The latter expression is equivalent to
α = π/2− αR. �

3.3. Stability analysis

As mentioned in Remark 2, the convergence of the mixed iteration process can be rather slow, especially for stiff
eigenvalues close to the boundary of the wedge. Therefore, in computational practice we will not continue the iteration
until the true Radau IIA solution has been reached. Starting with the prediction

Y 0n = e⊗ yn, (3.18)

we see from (2.7) that after q ≥ 3 outer iterations, an advancing solution yn+1 = Y
q
n,2, of order p = 3 is obtained. For this

reason, we will focus on applications with q = 3 or q = 4. In case of a 3D problem we will also employ the inner iteration
process (nested AMF) as described in Section 3.1. Again, we are mainly interested in a small number of inner iterations r . It
should be remarked that with q = 3 outer iterations, third-order accuracy is obtained (independent of the number of inner
iterations), however the principal local error term will differ from the corresponding term of the Radau IIA corrector. With
q = 4, however, the principal local error term coincides with that of the corrector.
Stopping the iteration process before convergence has been reached, implies that we cannot simply rely on the stability

properties of the underlying Radau IIA corrector. Therefore, it is of interest to study the stability properties of the final
approximation yn+1 obtained after a modest number of iterations.

Definition 1. A one-step method yn+1 = φ(tn, yn, τ ) is said to be A(α)-stable for the d-dimensional case, if its stability
function R(z1, . . . , zd) satisfies |R(z1, . . . , zd)| ≤ 1, whenever zj are in the closure ofW(α) for j = 1, 2, . . . , d. In addition, if
α = π/2 the method is said to be A-stable.

Result 3. For the two-dimensional case (d = 2), the method yqn+1 = Y
q
n,2 obtained from the mixed iteration process (3.10)

with q iterations and with predictor (3.18), is A-stable for q = 1, 2, 3, 4.
Derivation. Applying the mixed iteration (3.10) to the test problem

y′ =

(
d∑
j=1

λj

)
y, zj = τλj (j = 1, . . . , d), z =

d∑
j=1

zj, (3.19)

it follows from (3.11) and (3.13) that

Y kn − Yn = SM
∗S−1(Y k−1n − Yn) = S(M∗)kS−1(Y 0n − Yn). (3.20)

From (2.1), the stage vector Yn of the 2-stage Radau IIA method is seen to satisfy

Yn = eyn + zAYn, yn+1 = eT2Yn, eT2 = (0, 1).

Solving for Yn and inserting the result into (3.20) leads to

Y qn =
(
(I2 − zA)−1e+ S(M∗)qS−1(I2 − (I2 − zA)−1)e

)
yn.

Taking into account that the stability function of the advancing solution corresponding to q outer iterations is obtained by
setting yqn+1 = e

T
2Y
q
n ≡ Rq(z1, . . . , zd)yn, it follows that

Rq(z1, . . . , zd) = R(z)+ eT2S(M
∗)qS−1

(
I2 − (I2 − zA)−1

)
e

= R(z)+ eT2S(M
∗)q
(
I2 − (I2 − zÃ)−1

)
S−1e, (3.21)
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Fig. 3.1. Graphs of |R(2t i)| and |Rq(t i, t i)| (vertical axis) for q = 1, 2, 3, 4 and t ≥ 0 (horizontal axis). The left panel shows the situation in the
neighborhood of the origin, whereas the right panel illustrates the behaviour on the larger interval 0 ≤ t ≤ 100. The situation near the origin serves
to distinguish between the curves for the various q-values: the larger q, the closer |R| and |Rq|.

where R(z) = eT2(I− zA)
−1e = (1+ z/3)/(1− 2z/3+ z2/6) is the stability function of the two-stage Radau IIA method. We

have verified numerically that the Rq stability function, based on d = 2, is A-acceptable for q = 1, 2, 3, 4. The maximum
values of |Rq(z1, z2)| are obtained for purely imaginary values of z1 and z2. In particular, in case z1 = z̄2 = t i we have
z = 0 and hence Rq(t i,−t i) = R(0) = 1 for all t . As an illustration we show in Fig. 3.1 the behaviour of |Rq(z1, z2)| with
z1 = z2 = t i, for q = 1, 2, 3, 4 (which seems to be according to the numerical results the most critical situation), along
with the modulus of the stability function of the Radau IIA method. �

We will now proceed with analyzing the stability for the three-dimensional situation. The starting point is again the
systems defined in (3.1) and (3.2) and thematrix J is decomposed as defined in (3.7). The inner-outer iteration is nowdefined
in (3.8) in combination with (3.9). Both for the stability analysis as well as for the actual implementation it is convenient to
explicitly write out the total process. Henceforth, we will refer to this mixed, nested iteration as the (r, q)-iteration, which
reads:
For k = 1, 2, . . . , q: (outer iterations)
First stage:

(Im − γ τ J1)∆k1 = D̃
k−1
1 , (3.22)

Ek,01 = 0,
For j = 1, 2, . . . , r: (inner iterations)

(Im − γ τ J2)(Im − γ τ J3)∆̂
k,j
1 = ∆

k
1 − (Im − γ τ(J2 + J3))E

k,j−1
1 ,

Ek,j1 = E
k,j−1
1 + ∆̂

k,j
1 ,

(3.23)

End (for j)
Ek1 = E

k,r
1 ,

Second stage:

(Im − γ τ J1)∆k2 = D̃
k−1
2 + L21E

k
1, (3.24)

Ek,02 = 0,
For j = 1, 2, . . . , r (inner iterations)

(Im − γ τ J2)(Im − γ τ J3)∆̂
k,j
2 = ∆

k
2 − (Im − γ τ(J2 + J3))E

k,j−1
2 ,

Ek,j2 = E
k,j−1
2 + ∆̂

k,j
2 ,

(3.25)

End (for j)
Ek2 = E

k,r
2 ,

Stage updating:

Y kn,1 = Y
k−1
n,1 + E

k
1 + S12E

k
2,

Y kn,2 = Y
k−1
n,2 + E

k
2,

(3.26)

End (for k). Set yqn+1 = Y
q
n,2.

We remark that the (1, q)-iteration is equivalent to the mixed AMF-iteration described in (3.10) for k = 1, 2, . . . , q.
The stability analysis for the (r, q)-iteration can be carried out along the same lines as given in Result 3. A rather tedious

but straightforward calculation shows that the stability function Rq(z1, z2, z3) is given by (3.21) with M∗ defined in (3.13),
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Fig. 3.2. Graphs of |R(z1 + z2 + z3)| and of |Rq(z1, z2, z3)| (vertical axis) for r = 1, q = 1, 2, 3, 4 and z1 = z2 = z3 = (−1 + i)t, t ≥ 0 (horizontal axis).
The left panel shows the situation in the neighborhood of the origin, whereas the right panel illustrates the behaviour on the interval 0 ≤ t ≤ 50. The
situation near the origin serves to distinguish between the curves for the various q-values: the larger q, the closer |R| and |Rq|.

Fig. 3.3. Graphs of |R(z1 + z2 + z3)| and of |Rq(z1, z2, z3)| (vertical axis) for r = 2, q = 1, 2, 3, 4 and z1 = z2 = z3 = (−1 + i)t, t ≥ 0 (horizontal axis).
The left panel shows the situation in the neighborhood of the origin, whereas the right panel illustrates the behaviour on the interval 0 ≤ t ≤ 50. The
situation near the origin serves to distinguish between the curves for the various q-values: the larger q, the closer |R| and |Rq|.

but with the important difference that now x is computed from

x = (1− ωr)−1(1− ω)(1− γ z1)(1− γ z2)(1− γ z3),

ω =
(
γ z2(1− γ z2)−1

)(
γ z3(1− γ z3)−1

)
.

(3.27)

Result 4. For the three-dimensional case (d = 3) and q = 1, 2, 3, 4 outer iterations, themethod yqn+1 = Y
q
n,2 obtained from:

(a) the (1, q)-iteration is A(π/4)-stable;
(b) the (r, q)-iteration is A(α)-stable (with α = π/4 maximal) independently of the fixed number r of inner iterations

carried out.
Derivation. By using the maximum principle it follows that the maximum of |Rq(z1, z2, z3)| is obtained when all zj are on
the boundary of the wedge W(α). Again, the statements (a) and (b) in Result 4 have been verified numerically. Similar to
the two-dimensional case the maximum was found on the lines z1 = z2 = z3 = −t exp(−iα), t ≥ 0. In the Figs. 3.2 and
3.3 we have plotted the |Rq(z1, z2, z3)|-values for q = 1, 2, 3, 4 and r = 1 and r = 2, respectively. Here the value α = π/4
has been used. As a reference, the Radau stability function |R(z)| is also shown. Moreover, we have verified numerically (for
all combinations of r = 1, 2, . . . , 10 and q = 1, 2, 3, 4) that using an α-value slightly larger than π/4 indeed yields the
existence of a point t > 0 such that |Rq(z1, z2, z3)| > 1. �

We conclude this subsection by providing some quantitative information on the values of |Rq(z1, z2, z3)|, q = 3, 4 for
the most critical situation (i.e., zj = (− cosα + i sinα)t, (j = 1, 2, 3) and α > π/4). This information is presented in the
Tables 3.1–3.3, from which we conclude that:

(i) near the origin (small t-values) the actual stability region (for each of the zj-values) is larger than dictated by thewedge.
In fact, the largest wedge contained in each of these stability regions is determined by the stiff eigenvalues (t →∞);

(ii) To gain stability it helps to increase r , the number of inner iterations;
(iii) The number of outer iterations, q, has less influence;
(iv) As we will see in Section 4, some combinations of the (r, q)-iteration with some values of the step size τ may lead to

an unstable result in case of an advection dominated problem. Although increasing r will help to gain stability in such
situations, it might be that a reduction of the time step is a more efficient approach.
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Table 3.1
First positive t-value (with two decimal significant digits) such that |Rq(z1, z2, z3)| > 1 for the (1, q)-iteration and z1 = z2 = z3 = (− cosα + i sinα)t .

q α = 50◦ α = 60◦ α = 70◦ α = 80◦ α = 90◦

3 28.94 9.18 5.33 2.18 1.65
4 28.93 9.17 5.38 2.36 1.97

Table 3.2
First positive t-value (with two decimal significant digits) such that |Rq(z1, z2, z3)| > 1 for the (2, q)-iteration and z1 = z2 = z3 = (− cosα + i sinα)t .

q α = 50◦ α = 60◦ α = 70◦ α = 80◦ α = 90◦

3 38.47 12.18 7.12 5.08 2.94
4 38.46 12.18 7.21 5.36 2.96

Table 3.3
First positive t-value (with two decimal significant digits) such that |Rq(z1, z2, z3)| > 1 for the (r, q)-iteration and z1 = z2 = z3 = (− cosα + i sinα)t for
the angles α = 50◦ and α = 90◦ .

α = 50◦ q r = 1 r = 2 r = 3 r = 4 r = 5

3 28.94 38.47 48.30 58.26 68.30
4 28.93 38.46 48.29 58.25 68.29

α = 90◦ .
3 1.65 2.94 5.60 7.01 8.42
4 1.97 2.96 6.04 7.30 8.64

4. Numerical results for a linear model problem

We will first apply the numerical procedure as described in the preceding sections to the model problem

ut + a · ∇u = D∆u+ g, (4.1)

defined in 2 (or 3) spatial dimensions on the unit square (or unit cube). Here, as it is customary in PDEs,∇ and∆ denote the
Gradient and Laplacian operators, respectively.
At the boundarieswe imposeDirichlet boundary conditions. In all tests in this section, the analytical solution is prescribed

by

u(t, x1, . . . , xd) = cos(t2)
d∏
i=1

xi(1− xi), with d = 2 or d = 3. (4.2)

The velocity vector a = (ai) is constant, with ai > 0, and the same holds for the diffusion coefficient D. The advection
and diffusion terms are discretized using symmetric, second-order stencils on a uniform grid with N internal points in each
spatial direction, i.e., the mesh width is h = 1/(N + 1). The inhomogeneous term g , as well as the Dirichlet boundary
conditions are determined in such a way that (4.2) is the exact solution indeed. The resulting linear system has the form,

y′ = f (t, y) := Jy+ g(t), y(0) = y0, y, f , g ∈ RN
d
. (4.3)

Here, y0 is determined by the exact solution u(0, x1, . . . , xd) on the grid-points. The case d = 2 yields

J = J1 + J2 with J1 = IN ⊗ J̃1, J2 = J̃2 ⊗ IN ,

whereas for d = 3, we have

J = J1 + J2 + J3

with J1 = IN ⊗ IN ⊗ J̃1, J2 = IN ⊗ J̃2 ⊗ IN , J3 = J̃3 ⊗ IN ⊗ IN ,
(4.4)

with N-dimensional tridiagonal matrices J̃l (l = 1, 2, 3) of the special form

J̃l =



β γl 0 0 0 · · · 0 0 0
αl β γl 0 0 · · · 0 0 0
0 αl β γl 0 · · · 0 0 0
...

...
...

. . .
. . .

. . .
. . .

...
...

0 0 0 0 0 · · · αl β γl
0 0 0 0 0 · · · 0 αl β

 ,
αl = al/(2h)+ D/h

2

γl = −al/(2h)+ D/h2

β = −2D/h2
(4.5)
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Table 4.1
sd-values for problem (4.1), (4.2) in 2 dimensions using iteration (3.10).

N h Pe τ q = 1 q = 2 q = 3 q = 4 → q = 10

32 1/33 303 3/10 1.34 1.75 1.81 1.76 → 1.75
3/20 1.52 2.40 2.67 2.63 → 2.61
3/40 1.72 3.14 3.61 3.51 → 3.50
3/80 1.97 3.71 4.54 4.41 → 4.41

128 1/129 77.5 3/10 1.53 1.93 1.85 1.76 → 1.76
3/20 1.60 2.51 2.73 2.64 → 2.62
3/40 1.75 3.24 3.67 3.53 → 3.51
3/80 2.00 3.83 4.58 4.43 → 4.42

512 1/513 19.5 3/10 1.66 2.10 1.91 1.82 → 1.82
3/20 1.68 2.64 2.78 2.70 → 2.68
3/40 1.82 3.28 3.74 3.59 → 3.57
3/80 2.06 3.88 4.66 4.48 → 4.48

From the above splitting it is clear that all matrices Jl for the cases d = 2 and d = 3 have the same set of eigenvectors,
respectively. For instance for the case d = 3, the eigenvector set is given by

{uijk = v1i ⊗ v2j ⊗ v3k, 1 ≤ i, j, k ≤ N},

where vlj denotes the jth eigenvector of the matrix J̃l.
For this problem, the spatial discretization errors vanish (i.e., the PDE solution at the grid points equals the ODE solution).

Hence, we only concentrate on time integration errors, which is precisely the aim of this section: to study the accuracy and
convergence behaviour of the proposed time integration method. In the results presented below, the accuracy – at the end
point of the integration interval – will be measured by the quantity sd, defined as

sd := − log10 ‖numerical solution – exact solution‖∞.

For the time interval we choose 0 ≤ t ≤ 3. The (r, q)-iteration that we used in the tests has been described in Section 3.3
for the case of dimension d = 3, see formulas (3.22) until (3.26). We remark that for d = 3, the (1, q)-iteration coincides
with the AMF-iteration described in (3.10). This also holds in the case d = 2, by setting J3 = 0 in (3.22)–(3.26).
Computational costs. It should be observed that the majority of the computational work in the (r, q)-iteration consists of
matrix-vector products and solving linear systems with a banded matrix, the band width typically in the range 3–5. This
property is independent of the number of spatial dimensions of the underlying PDE. Hence, the linear algebra work involved
ismuch less than that encountered in fully implicit methodswhere ‘multidimensional’ systems have to be solved.Moreover,
the full right-hand side function f occurring in (1.1) has to be evaluated only q times, i.e., at the start of a new single-Newton
iteration. Such an f -evaluation may be quite expensive, e.g., in case of complicated diffusion terms (see the example in
Section 5) or when a laborious inhomogeneous term is involved (as in the example in Section 4). Since q is usually small,
this property is an advantage comparedwith fully explicit methods, such as stabilized Runge–Kutta methods, where in each
stage the full right-hand side function f has to be re-evaluated. In Section 5 wewill describe a comparison with a BDF-based
code and an Runge–Kutta–Chebyshev code, including the required CPU times of all solvers.

4.1. Advection dominated case

The success of the algorithm largely depends on the position of the eigenvalues of the Jacobian of the discrete system.
These eigenvalues are determined by the resolution of the spatial grid and by the ratio of advection and diffusion. A proper
way to characterize a particular situation is to use the so-called cell Péclet number Pe, which is defined by Pe = |a|h/D (see
e.g. [14]). We will present results where we set the velocities ai = 1 and the diffusion coefficient D = 10−4, i.e., the case
where advection strongly dominates diffusion. This results in Pe = 104h (in each spatial direction), which becomes quite
large for the spatial grids that wewill use. Large Péclet numbers indicate that we are dealing with themost critical situation,
where the eigenvalues are close to the imaginary axis. We present results for d = 2 and d = 3, obtained on spatial grids
with increasing resolution to see the influence on the overall performance and the convergence behaviour in particular.
For both cases we performed experiments with a constant step size τ and with a fixed number q of single-Newton

iterations per step. The tables show sd-values for various combinations of τ and q. First, in Table 4.1, we give results for
the two-dimensional problem.
From the 2D-results presented in Table 4.1 we may conclude:

• Convergence of the iteration process. For all values of the step size τ we observe a fast convergence. The numerical solution
obtained with q = 4 iterations is (almost) the same as the solution of the underlying Radau IIA method (column with
q = 10). This property is seen to be independent of the resolution of the spatial grid. Stopping the iteration after q = 3
iterations yields a solution that is not yet fully converged towards the Radau IIA solution, but it is certainly of sufficient
accuracy to adopt the q = 3 result as the new step point approximation. As a matter of fact, for this problem it even
shows a slightly higher precision than the Radau solution. Here we recall that the principal local error term for q = 3 is
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Table 4.2
sd-values for problem (4.1), (4.2) in 3 dimensions using the (1, q)-iteration.

N h Pe τ q = 1 q = 2 q = 3 q = 4 → q = 10

8 1/9 1111 3/10 1.75 1.98 2.07 2.12 → 1.62
3/20 1.87 2.68 2.98 2.99 → 3.00
3/40 2.12 3.54 3.96 3.90 → 3.90
3/80 2.39 4.25 4.91 4.81 → 4.81

32 1/33 303 3/10 1.67 1.99 1.97 2.00 → −3.49
3/20 1.86 2.59 2.87 2.91 → −12.15
3/40 2.06 3.44 3.89 3.01 → −5.86
3/80 2.32 4.24 4.83 4.73 → 4.73

128 1/129 77.5 3/10 1.90 1.94 1.92 1.96 → 1.71
3/20 1.87 2.57 2.85 2.91 → −2.52
3/40 2.07 3.44 3.57 1.71 → *
3/80 2.33 2.37 −2.90 −7.93 → *
3/160 2.61 −5.11 −16.13 * → *
3/320 2.90 5.65 6.68 6.56 → 6.56

Table 4.3
sd-values for problem (4.1), (4.2) in 3 dimensions using the (2, q)-iteration.

N h Pe τ q = 1 q = 2 q = 3 q = 4 → q = 10

8 1/9 1111 3/10 1.70 2.00 2.12 2.14 → 2.15
3/20 1.87 2.70 3.00 2.99 → 3.00
3/40 2.12 3.55 3.97 3.90 → 3.90
3/80 2.39 4.22 4.92 4.81 → 4.81

32 1/33 303 3/10 1.64 1.99 2.08 2.07 → −3.33
3/20 1.83 2.66 2.94 2.93 → −9.56
3/40 2.05 3.46 3.90 3.83 → 3.82
3/80 2.31 4.15 4.84 4.73 → 4.73

128 1/129 77.5 3/10 1.76 2.01 2.05 2.07 → −0.60
3/20 1.84 2.66 2.92 2.09 → *
3/40 * * * * → *
3/80 * * * * → *

not identical to that of the corrector. Overall, the behaviour is satisfactory and in accordance with the theoretical results
concerning A-stability (see Result 3) and almost A-convergence (see Result 1).
• Order behaviour. Themixed iteration process has been startedwith the prediction (3.18). Using (2.7) we see that the order
p∗ after q iterations is equal to p∗ = min(q, 3). This order behaviour in time is nicely observed from Table 4.1 (notice that
halving the step size should yield an increase in the sd-value equal to 0.3p∗).

Additionally, we repeated the above experiments (not displayed in tables) for the simpler case where D = ai = 1. Hence
the diffusion and advection coefficients have equal weight, resulting in much smaller Péclet numbers. We found a similar
behaviour (again, the q = 4 solution is almost the same as the Radau solution). The only differences with Table 4.1 were:
(i) q = 4 yielded more accurate results than q = 3, and (ii) for each {τ ; q}-pair, the sd-values on the various grids were
identical. In conclusion, the Radau-based mixed iteration process (3.10) is very efficient for 2D problems, independent of
the position of the eigenvalues of the discrete system.
Next, we continue with the three-dimensional version of the model problem (4.1), (4.2), with ai = 1 and D = 10−4.

Here, we will employ the iteration process (3.22)–(3.26) and some results for various (r, q)-combinations are given. The
Tables 4.2–4.4 show sd-values for r = 1, 2, and 5, respectively. Especially for h = 1/33 and h = 1/129 a bad convergence
behaviour is observed in some cases. Initially, for small q-values (say q ≤ 3) often useful results are obtained; however,
continuing the iteration results in divergence/instability. In the tables, an asterisk denotes an sd-value< −20. For h = 1/33,
it helps to continue the inner iteration process (r = 5); unfortunately, on the finest mesh (h = 1/129) several (r, q)-
combinations resulted in poor performance. However, a reduction of the time step (τ = 3/320 in Table 4.2) yielded
satisfactory results again for those combinations. We have also added results for a coarse mesh with h = 1/9. Here the
convergence is usually satisfactory in all cases, due to the fact that the convergence and stability regions in the neighborhood
of the origin are substantially larger than indicated by the wedge (see the Tables 3.1–3.3 and the accompanying discussion).
Nevertheless, the conclusion must be that the (r, q)-iteration for 3D problems with a dominating advection term must be
usedwith some caution. For this situation the construction of a robust code needs the implementation of a variable step size
strategy. This topic is subject of actual research and it is outside of the scope of the present paper. Again, these experiments
seem to confirm the theory in Results 2 and 4, respectively.
For problems with substantial diffusion (compared with advection) the situation is much more favorable, in the sense

that less reduction on the time step sizes is required in order to get stable and accurate solutions. For instance by applying
the (1, 3)-iteration (or equivalently, the AMF-iteration (3.10)) to the model problem with D = ai = 1, good convergence
results were found as is shown in Table 4.5.
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Table 4.4
sd-values for problem (4.1), (4.2) in 3 dimensions using the (5, q)-iteration.

N h Pe τ q = 1 q = 2 q = 3 q = 4 → q = 10

8 1/9 1111 3/10 1.71 2.01 2.11 2.14 → 2.15
3/20 1.87 2.71 3.00 2.99 → 3.00
3/40 2.12 3.56 3.97 3.90 → 3.90
3/80 2.39 4.22 4.92 4.81 → 4.81

32 1/33 303 3/10 1.64 1.98 2.08 2.07 → 2.08
3/20 1.83 2.67 2.94 2.93 → 2.93
3/40 2.05 3.46 3.90 3.83 → 3.82
3/80 2.31 4.15 4.84 4.73 → 4.73

128 1/129 77.5 3/10 1.74 2.07 2.09 2.07 → −2.70
3/20 1.85 2.68 2.94 1.68 → *
3/40 −15.93 −11.61 −9.36 −6.93 → −2.79
3/80 2.32 4.18 4.85 4.74 → *

Table 4.5
sd-values for problem (4.1), (4.2) in 3 dimensions using the (1, q)-iteration. Here, we used D = ai = 1.

N h Pe τ q = 1 q = 2 q = 3 q = 4 → q = 10

128 1/129 0.008 3/10 1.94 2.07 2.23 2.41 → 3.10
3/20 2.20 2.67 3.06 3.39 → 4.01
3/40 2.78 3.47 4.03 4.47 → 4.87
3/80 3.29 4.20 4.98 5.53 → 5.73

Table 4.6
sd-values for problem (4.1), (4.6) in 2 dimensions using the (1, q)-iteration. D = 10−4, a1 = a2 = 0.2.

N h Pe τ q = 3 q = 5 q = 10

128 1/129 15.5 1/10 1.31 1.28 1.28
1/20 2.11 2.04 2.04
1/40 3.01 2.91 2.91
1/80 3.92 3.80 3.80

512 1/513 3.9 1/10 1.26 1.23 1.23
1/20 2.05 1.98 1.98
1/40 2.95 2.84 2.85
1/80 3.86 3.74 3.74

Non-smooth solutions. So far, we have shown the (convergence) behaviour of the AMF-approach on the basis of a smooth
solution in space (cf. (4.2)). The question arises what will happen when a non-smooth solution is involved. Hundsdorfer
& Verwer write in [14, p. 406]: ‘...the convergence of modified Newton AMF-iteration can be rather slow, especially for
solutions rich in high frequencies’. To investigate that situation, we have performed an additional test for themodel problem
(4.1), without the inhomogeneous term g(t), again on the unit square in space and t running from 0 to 1. Furthermore,
D = 10−4 and the velocities ai are set to 0.2. Hence, this is almost a pure advection problem transporting the initial profile
with constant velocity. The reason for reducing the velocities from 1 to 0.2 is that we want to keep the (steep) solution
profile inside the unit square at t = 1. Again, we use second-order symmetric differences, both for the diffusion and the
advection term. The main difference with the previous situation, however, is that we now start with the non-smooth initial
field (see also [14, pp. 52–62] where a similar test for an advection model is described)

u(t = 0, x, y) = [sin(πx)]100 [sin(πy)]50. (4.6)

For this problemwe do not have an analytical solution, so we first calculated a reference solution of the ODE on 2 spatial
grids, i.e. h = 1/129 and h = 1/513. We restrict our considerations to 2D since the qualitative convergence behaviour
caused by a potential slow damping of high-frequency modes is similar in 2D and 3D (see also Remark 2 in Section 3.2). We
have tested the (1, q)-iteration for several q-values, to see its influence on the convergence and found the results as given
in Table 4.6.
From this table we draw the following conclusions: (i) the third-order behaviour in time is nicely shown; (ii) the

resolution of the spatial grid has hardly influence; (iii) the convergence is quite satisfactory: already for q = 3 the iteration
seems to be converged.

4.2. Solving the corrector iteratively

We conclude this section by giving some results for the approach described in Section 3.1, to treat a 3D advection
dominated problem. This approach consists in three nested iterations: the outer iteration is the single-Newton iteration
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Table 4.7
sd-values for problem (4.1), (4.2) in 3 dimensions using the nested iteration, with q outer iterations, lmiddle iterations and fixed r = 10 inner iterations.
Here, we used D = 10−4, ai = 1.

q = 1 q = 2 q = 3
N h Pe τ l = 1 l = 2 l = 3 l = 1 l = 2 l = 3 l = 1 l = 2 l = 3

64 1/65 153.8 3/10 1.67 1.51 1.51 2.02 1.91 1.91 2.08 2.05 2.05
3/20 1.83 1.76 1.76 2.67 2.59 2.61 2.93 2.93 2.93
3/40 2.05 2.02 2.02 3.48 3.42 3.42 3.91 3.91 3.91
3/80 2.31 2.30 2.30 4.19 4.18 4.18 4.85 4.87 4.87

(2.9) to solve for the stage values in Yn; the middle iteration process is of AMF-type and is used to solve the linear systems
in (3.1); finally, the inner iteration (3.9) is used to solve the linear systems where the matrix J∗ is involved.
The main idea of this nested iteration algorithm is to continue each iteration until ‘convergence’ to really find the Radau

solution. Therefore, this approach is best implemented using an adaptive strategywhere residuals have to satisfy prescribed
tolerances. Such an implementation is beyond the scope of the present paper and subject of future research. To give an
impression of the performance and robustness of this approach in a 3D setting, we have solved the advection dominated case
with D = 10−4 and ai = 1. The nested iteration has been tested for many combinations of q, l and r , denoting, respectively,
the number of outer, middle and inner iterations. It turns out that q = 3 outer iterations are sufficient to obtain convergence
for realistic step sizes. Concerning themiddle iteration processwe canmake the same observation. To be on the safe side, the
innermost iteration process has been applied using the fixed number of r = 10 iterations, although in many cases smaller
r-values could have been used to obtain the same accuracies. The results have been summarized in Table 4.7. This table
shows that we end up with accuracies close to those of the Radau corrector itself. By comparing the results with those in
the Table 4.2 until 4.4 it is evident that this approach is much more robust in the sense that it can be used for 3D problems
in combination with large Pe-numbers. Therefore, we expect that this algorithm can be upgraded to an efficient and robust
solver by including appropriate control mechanisms.

5. Numerical results for a nonlinear problem

Next, we continue our tests by applying the (r, q)-iteration (3.22)–(3.26) to a strongly nonlinear example, i.e. a radiation-
diffusion problem from [17]. The following description and the used spatial discretization were borrowed from Ch.V of [14].
Also in [18] this problem has been used as a test example and results for an IMEX RKC scheme as well as for VODPK [5] are
given in that paper. Here wewill present a comparison between the results obtainedwith the (r, q)-iteration and the results
given in [18].
The problem consists of two strongly nonlinear diffusion equations with a highly stiff reaction term (an idealization of

non-equilibrium radiation diffusion in amaterial). The dependent variables E and T represent radiation energy andmaterial
temperature, respectively. Problems like this are for instance found in laser fusion applications. The equations are defined
on the unit square for t > 0,

Et = ∇ · (D1∇E)+ σ(T 4 − E)

Tt = ∇ · (D2∇T )− σ(T 4 − E)
(5.1)

where σ = Z3/T 3, D1 = 1/(3σ + |∇E|/E) and D2 = kT 5/2 with k = 0.005. Here, |∇E| denotes the Euclidean norm of ∇E
and Z = Z(x, y) represents the atomic mass number whichmay vary in the spatial domain to reflect inhomogeneities in the
material. We have Z(x, y) = Z0 if |x− 1/2| ≤ 1/6 and |y− 1/2| ≤ 1/6 with Z0 ≥ 1 a constant and Z(x, y) = 1 otherwise.
In our tests we have used Z0 = 10 [17].
The initial values are constant, E(x, y, 0) = 10−5 and T (x, y, 0) = E(x, y, 0)1/4 ≈ 5.62 10−2. As boundary conditions we

have homogeneous Neumann conditions for T at all boundaries and for E at y = 0, 1. Further, at the left and right boundary
mixed boundary conditions for E are prescribed by 14E −

1
6σ Ex = 1 at x = 0 and

1
4E +

1
6σ Ex = 0 at x = 1.

The solution consists of a steep (temperature) front moving to the right. For Z0 > 1 the movement is hampered at the
interior region with larger atomic mass number (and corresponding smaller diffusion). E is for the most part almost equal
to T 4, except near the front where it is slightly larger with a steeper profile. Fig. 5.1 shows a 3D plot and contour levels of a
time-accurate reference solution of T at t = 3 for Z0 = 10, computed on a 200× 200 spatial grid.
The spatial discretization is on a uniform cell centered gridwith grid size h bymeans of second-order central conservative

differencing. This gives a semi-discrete system y′(t) = fdiff (y(t)) + freaction(y(t)) of dimension 2/h2. At each grid point we
have the nonlinear reaction system

freaction(E, T ) =
(
Z3T−3(T 4 − E)
−Z3T−3(T 4 − E)

)
, Jreaction(E, T ) =

(
−α β
α −β

)
(5.2)

with α = Z3/T 3, β = Z3(1+ 3E/T 4) and eigenvalues 0 and−(α + β).
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Fig. 5.1. 3D plot and contour levels of the material temperature T at time t = 3 for Z0 = 10. Contour levels: 0.1, 0.2, . . . , 1.2.

5.1. Numerical results

5.1.1. The three solvers
We present numerical results for three different solvers:

Iterated Radau method: Here we use our (1, 3)-iteration as defined in (3.22)–(3.26). Although (5.1) is a 2D problem, we
have solved this problem by using a splitting of the Jacobian into three parts: J1 is associated with the reaction system (5.2),
hence J1 = Jreaction, whereas J2 and J3 represent the Jacobian matrices in x- and y-direction, respectively, of the diffusion part
in the problem. As a consequence, the systems (3.22) and (3.24) involving only J1 can be solved grid point wise. Hence, on
an N × N-grid, we have N2 uncoupled systems, each of dimension 2.
The Jacobian matrices J2 and J3, needed in (3.23) and (3.25), have the block-triangular form

J2 =

∂F
x

∂E
∂F x

∂T
©

∂Gx

∂T

 and J3 =

∂F
y

∂E
∂F y

∂T
©

∂Gy

∂T

 . (5.3)

Here, we used F and G to denote the discretized diffusion term in the first and second PDE in (5.1), respectively and the
superscripts x and y refer to the spatial directions. As a simplification, we approximate D1 by 1/(3σ), hence neglecting the
∇E-contribution. This reduces the bandwidth and leads to a block-structure in which only tridiagonal systems have to be
solved. Using this approach, the systems in (3.23) and (3.25) will first solve for the T -component and subsequently for the
E-component. We have also tested the method by implementing a further simplification: neglecting ∂F x/∂T and ∂F y/∂T in
(5.3) leads to a reduction of the linear algebrawork involved. However, in terms of efficiency, we found that the first strategy
is to be preferred. Therefore, we will only present results based on matrices J2 and J3 of the form as specified in (5.3).
IMEX RKC: This solver is based on an implicit-explicit (IMEX) Runge–Kutta–Chebyshev (RKC) method, where the diffusion
part is integrated by the explicit, stabilized RKC method and the stiff reaction terms (cf. (5.2)) are treated implicitly. This
solver is fully described in [18] and the corresponding software is discussed in [19].2

VODPK: The stiff solver VODE [4,5] provided with the Krylov solver GMRES [3] with user-supplied preconditioner for
solving the linear systems arising in the modified Newton iteration.3 For this radiation-diffusion problem preconditioning
is essential. Without preconditioning VODPK either fails or is very inefficient, depending on the tolerance and the grid size.
We have implemented a 2 × 2 block-diagonal left preconditioner P which approximates the 2 × 2 block-diagonal of the
Newton matrix. P is derived from the grid point formula

E ′ij = −
4
h2
D1,ij Eij + σij (T 4ij − Eij), T ′ij = −

4
h2
D2,ij Tij − σij (T 4ij − Eij),

where, similar as in our Radau-based method, D1 is approximated by 1/(3σ). So the Pij-block for grid point (xi, yj) reads

Pij =
(
1 0
0 1

)
+ b0τ

4
h2


1
3σij

T 2ij Eij
Z3ij

0
7
2
k T 5/2ij

− b0τ
−σij Z3ij (1+ 3

Eij
T 4ij
)

+σij −Z3ij (1+ 3
Eij
T 4ij
)

 ,
where b0 is a VODPK coefficient. Note that there is no grid connectivity used in this preconditioner.

2 http://www.netlib.org/ode/irkc.f90.
3 http://www.netlib.org/ode/vodpk.f.

http://www.netlib.org/ode/irkc.f90
http://www.netlib.org/ode/vodpk.f


S. Perez-Rodriguez et al. / Journal of Computational and Applied Mathematics 231 (2009) 49–66 65

Fig. 5.2. Temporal accuracies (vertical axis), measured as− log10(L2-errors) versus CPU time (horizontal axis), measured in seconds, for h = 1/50 (left),
h = 1/100 (middle) and h = 1/200 (right). The lines marked with ‘+’ refer to the Radau-based (1, 3)-iteration, lines with ‘o’ to IMEX RKC, and lines with
‘*’ to VODPK.

5.1.2. Results
For the numerical simulations we have chosen three grid sizes, viz. h = 1/50, 1/100, 1/200. On each of these grids, a

time-accurate reference solution has been calculated to be able to measure temporal errors. In Fig. 5.2 we show the results
of the three solvers on the various grids. Here, we have plotted temporal accuracy (measured in the L2-norm) versus CPU
time, as to illustrate the efficiency of themethods.We remark that IMEX RKC and VODPK are variable step size codes, i.e., the
integration process is controlled by a specified tolerance parameter. On the other hand, our Radau-based method is still in
its research phase and integrates with constant step sizes. From these results we conclude that the iterated Radau method
outperforms the other two solvers on the finest grid. On the grid with h = 1/100 the situation is similar, although less
pronounced. On the coarsest mesh all three solvers show approximately equal efficiency, with slight preference for VODPK.
We anticipate that the efficiency of the iterated Radau method can be improved by adding an adequate error control

strategy. Finally, we remark that VODPK did not behave very robust for this problem. We encountered many convergence
failures during the integration process. Furthermore, the code only worked for rather stringent values of the tolerance
parameter (see also [18] for more detailed information about the performance of VODPK).

6. Concluding remarks

We have analyzed and tested a method that is suitable to solve multi-dimensional advection-diffusion-reaction PDEs.
Based on an implicit RK method of Radau IIA-type we have concentrated on a special iteration technique to solve the
implicit relations that we encounter in each integration step. We have derived convergence and stability results. In a two-
dimensional situation we found A(α)-convergence, with α ≈ 87.9◦ and A-stability. For three-dimensional problems the
situation is less favourable; we obtained A(α)-convergence with α ≈ 44.7◦ and A(45◦)-stability. Numerical tests with a
linear problem revealed that the algorithm is still useful for advection dominated 3D problems by applying it with some
care. Finally, we applied the method to a strongly non-linear, real-life problem in 2D and compared its efficiency (in terms
of CPU time versus accuracies) with two existing codes, i.e., with VODPK and IMEXRKC. It turns out that the performance of
the new method is at least competitive with that of the existing solvers.
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