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1. Introduction

The general hypergeometric function is defined by
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where
I'(a+k)
I'(w)
is Pochhammer’s symbol and I" is the gamma function. This function has a branch point at x = 1. Under suitable conditions

on the parameters, convergence may be obtained on the unit circle. The Euler integral representation of the ,F; Gauss
hypergeometric function is well known in the literature (cf. [1,2]) and is formulated as follows (cf. [1], p. 65, Theorem 2.2.1).
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Theorem 1.1. If Re(c) > Re(b) > 0, then

I"(0) fl b—1 —b— -
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in the x plane cut along the real axis from 1 to co. Here, it is understood that argt = arg(1 —t) = O and (1 — xt)~“ has its
principle value.
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This integral may be viewed as the analytic continuation of the ,F; hypergeometric series for Re(c) > Re(b) > 0. The
Euler integral representation plays a prominent role in the derivation of transformation identities and the evaluation of
2F1(a, b; c; 1), among other applications and yields the Gauss summation formula given in the following theorem.

Theorem 1.2 (cf. [1], p. 66, Theorem 2.2.2). For Re(c — a — b) > 0, we have
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The case where one of the numerator parameters is a negative integer, thereby making the ,F; a finite sum, is known as
the Chu-Vandermonde identity (cf. [1], p. 67, Corollary 2.2.3)
(c — @n

©n

The values of 41F; functions at 1 with ¢ > 2 include identities due to Dougall, Dixon, Pfaff-Saalschutz, Ramanujan,
Rogers, Whipple and other authors. For further discussion, see [1], Chapters 2 and 3.

The general p;«Fq4«x hypergeometric function has an integral representation (cf. [2], Theorem 38) where the integrand
involves ,F,.In [3], a simple and direct proof of an Euler integral representation for a special class of ¢, 1 F; functions forqg > 2
is given as well as the following results.
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Theorem 1.3 (cf. [3], Theorem 2.1). For Re(c) > Re(b) > 0,
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Theorem 1.4 (cf. [3], Theorem 2.3). If Re(c) > Re(b) > 0 and Re(c — a — b) > O, then
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Generalising Theorem 1.3 yields the following result.

Theorem 1.5 (cf. [3], Theorem 2.5). If Re(c) > Re(b) > O, then
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In this paper, we give generalisations of each of the three theorems given above from [3].

2. Results

Theorem 2.1. For Re(c) > Re(b) > Oandr € R\ {0, —1},

b b+1 cc+1 1 r+ 1\~ —a\ _, b b+1 c c+1
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Proof. Setx = —5 inTheorem 1.3 wherer € R\ {0, —1}, then
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from the binomial theorem. Then we have
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Applying the binomial theorem again,
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Theorem 2.1 is a special case of a transform of Chaundy (cf. [4], Eq. (25)) obtained by using differential operators,
given by

_ > k
(1—2)" gp1Fq (@ b1, ... bgcr,.oicg 25) =Y U Fy (—k. b ..., bgicr, ..., g1 X) (2.1)
k=0

withx =1,z=—r"'andq = 2.
Theorem 2.1 also yields several special cases. Whenr = 1, we obtain Corollary 2.8 from [3]. The case whenr = —2 yields
the following corollary.

Corollary 2.2. For Re(c) > Re(b) > 0,
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We next present an application of Chaundy’s transformation (2.1) to values of the Riemann zeta function ¢ (s). For this
we introduce the alternating zeta function given by

1 n—1
ca<s>—Z( n) = (1-2"7)¢(s), Re(s) >0. (2.2)

n=1
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Corollary 2.3. For integers q > 2,
grF(1, . 152,020 =1) = (1 =219 (q)

> 1-z
=(1-2)) qu+1Fq<—k,1,...,1;2...,2; > (2.3)
k=0

z

In particular, we have

ariF(1, . 152,...,2,=1) = (1=2""9¢(q)
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1
:ZZWqHFq(—k,1,...,1;2...,2; 1). (2.4)
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Proof. From Eq. (2.2) follows the relations for integers k > 2,

Lall) = ka1, .., 152,00, 25 =1) = (1= 2792 ()
=(1-2"0 R, ..., 152...,2;1).
We next apply Eq. (2.1)ata = 1and x = 12;2 and Eqs. (2.3) and (2.4) follow. O
Since for nonnegative integers n, ¢ (2n) = (27)?*(—1)"*'B,,/2(2n)!, where B; are the Bernoulli numbers, Corollary 2.3
provides a hypergeometric summation representation for these special numbers.

This corollary can be extended to include the case of ¢ = 1 given ,F;(1,1;2; —1) = In2 and the expansions
1-2""=In2(s—=1)+0[(s — ?]and ¢(s) = 1/(s— 1) + 0(1) ass — 1.

Theorem 2.4. For Re(c) > Re(b) > 0,
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Proof. We have
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Applying Theorem 1.4 to the right side, we obtain
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We note that Theorem 1.2 could also be applied to the left side of Eq. (2.5), yielding an equivalent form. These two forms
agree according to Legendre’s duplication formula satisfied by the gamma function (cf. [2], p. 23). Theorem 2.4 includes the
well-known very special case ,F; (% 1;2; 1) = 2. We omit the details of the special case of b = c¢ on the left-hand side of
Theorem 2.4.

Theorem 2.5. If Re(c) > Re(b) > 0, then
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Proof. By Theorem 1.5,
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1 s T IR} s T D] )
" q ¢ 4 q q

_ I'(c)
T rrc-»n

— F(C) _b_-l _ B B a
_F(b)l"(c—b)/ [ ( K >(t):|(1 xt9)~dt

__ T© §(c-b-1 k[ ok 0\ —a
_r(b)r(c—b),;( k >( 1)/ (1—xt%)~“dt.

Making a substitution of v = t? in the integral gives
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by Theorem 1.1. Remembering the recursion formula for the gamma function given by I (x + 1) = xI"(x), we have
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We give the proof of a special case of Theorem 2.5 where ¢ = 4 and x = 1. The proof proceeds slightly differently from
that of Theorem 2.5.

Theorem 2.6. For Re(c) > Re(b) > 0,
b b+1b+2 b+3 ¢c c+1 c+2 c+3
sFy o

’ 3 ) ) ’ )

"4 47 47 474 4 4 4
I'(c) X (—a\ I'(b+2r)I'(c —a—b)
=TI (c—b) Fi(a,b+2r;c —a+2r; —1).
F(b)F(c—b);( ) Mc—a+t2n oFi(a,b+2r;c—a+2r;—1)

Proof. Let g = 4and x = 1 in Theorem 1.5. Then
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Corollary 2.7. If Re(1 — a) > 0, then
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where B is the beta function.
Proof. Applying the Gauss summation formula (Theorem 1.2) to the result in Theorem 2.5 with x = 1, we obtain

b b+1 b+q—1 ¢ c+1 c+qg—1
e+1fgla, = 5~ i1

) LERICIL ) 3 ) LRI )
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Using the recursion formula for the gamma function on the first gamma function in the numerator of the summand and

remembering the representation of a beta function in terms of gamma functions given by B(a, 8) = L~ F(‘(”;ig;) our result
emerges. O

We recover the following known result for the beta function (see, for instance, [5]) as a direct consequence of Theorem 2.5.

Corollary 2.8. B(a,b) = Y .2, ;;;,g),f!.

Proof. Letting x = 0 in Theorem 2.5, both hypergeometric functions are equal to 1. Thus,

IR AG) SN (c—b—1Y\ (=DF
_rww@—mkﬁ< k >b+k
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Replacing (¢ — b) with a and using B(b, a) = B(a, b) give the corollary. O
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