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a b s t r a c t

Numerical dispersion of two-dimensional finite elements was studied. The outcome of the
dispersion study was verified by the numerical and analytical solutions to the longitudinal
impact of two long cylindrical bars. In accordancewith the results of the dispersion analysis
it was demonstrated that the quadratic elements showed better accuracy than the linear
ones.
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1. Introduction

The finite element method simulations of stress waves arising due to contact–impact boundary conditions must
cope with the presence of high-frequency components in the loading spectrum. As a consequence severe dispersion of
propagating waves is induced on the numerical solution. Despite many papers published on the subject, little attention
has been paid so far to higher-order elements. Belytschko and Mullen [1] were the first to extend the dispersion analysis
to quadratic one-dimensional finite elements. It was shown that a spurious optical branch in the spectrum existed. The
existence of this branch caused the presence of noise associatedwith the propagation of discontinuities. Later, the dispersion
study of the three-dimensional second-order Helmholtz equation was carried out in [2]. The analysis was conducted for
trilinear rectangular eight-node elements, for triquadratic rectangular twenty-seven-node elements and for the serendipity
rectangular twenty-node elements using various mass approximations. In Refs. [3–5] the recent results accomplished by
the authors are summarized, in particular the extension of dispersion analysis to the eight-node serendipity finite elements.
Based on the comparison of dispersion curves it was argued that the quadratic finite elements exhibited significantly smaller
dispersion than the linear ones.
In this work, the outcome of the theoretical study [3–5] was verified by the finite element and analytical solutions to the

longitudinal impact of two long elastic cylinders. The analytical solution of this symmetric contact–impact problem derived
in [6] is quite complicated, expressing the distribution of displacements and stresses in the formof infinite series of improper
integrals. The model problem was treated as an axisymmetric one, each cylinder discretized by four-node linear elements
and eight-node serendipity elements, respectively.
In Section 2 the governing equations of linear elastodynamics are summarized including wave solutions. In Section 3 the

proposed numerical–analytical approach for the investigation of dispersion behaviour of higher-order elements, which is
fully documented in Ref. [5], is outlined. Furthermore, the dispersion diagrams of the bilinear and serendipity plane elements
are presented. The formulas for the element size and limit excitation frequency controlled by the dispersion error are derived
in Section 4. Finally, the results of the problem of impact of two elastic cylinders are discussed in Section 5.
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2. Plane elastic waves

The equation of motion pertinent to linear elastodynamics can be written in the index notation

(Λ+ G)uj,ji + Gui,jj = ρüi (1)

where Λ and G are Lamé’s constants, ρ is the mass density, ui and üi is the ith component of the displacement and the
acceleration vector, respectively. The Lamé constantsΛ, Gmay be related to engineering constants E, ν as

Λ =
νE

(1+ ν) (1− 2ν)
, G =

E
2 (1+ ν)

(2)

where E and ν are Young’s modulus and Poisson’s ratio.
In an unbounded isotropic continuum, two types of planarwaves exist: the longitudinal wave and two transversal waves,

featuring mutually orthogonal polarisation. The longitudinal wave propagates with the speed

cl =

√
Λ+ 2G
ρ

. (3)

The speed of the two transversal waves is

ct =

√
G
ρ
. (4)

The standard continuum is said to be non-dispersive. This is, by d’Alembert’s solution, because thewave profile (wavelength)
does not affect the velocity of propagation.
As a special case, one may consider a plane harmonic solution to Eq. (1) as

ui = Ui(x) exp(ik(p · x± ct)) (5)

or in its equivalent form

ui = Ui(x) exp(i(k · x± ωt)) (6)

where i =
√
−1 is the imaginary unit; x is the position vector; t is time; k is the wave number; p is the unit normal to the

wave front; k is the wave vector, k = kp; c is the phase velocity; ω is the angular velocity; and Ui is the ith component of
the amplitude vector at the point defined by the position vector x. For a given wavelength λ, the wave number k may be
computed from

k =
2π
λ
. (7)

The phase velocity c is related to ω and k by

c =
ω

k
. (8)

Finally, the group velocity cg is defined as

cg =
dω
dk
. (9)

In non-dispersive systems, c is a constant and since ω = ck, we get cg = c . Thus, in the absence of dispersion the group
velocity equals the phase velocity. On the other hand, cg 6= c indicates dispersion.

3. Numerical dispersion analysis

The mesh is assumed regular and uniform so only the characteristic patches containing 2× 2 plane strain elements are
considered—see Fig. 1. Furthermore, in the bilinear mesh, all the nodes possess the same sub-matrices in the final assembly
and thus only one characteristic set of equations corresponding to, say, node {m, n} has to be assembled. Likewise, one
corner node {m, n} and two mid-side nodes {m + 1, n} and {m, n + 1} must be taken into account when dealing with the
serendipity mesh.
Suppose that the origin of the coordinate system is located at the node {m, n}. Thus, for the bilinear mesh,

xm+r = rHx, yn+s = sHy, for r, s = 0,±1 (10)

and for the serendipity mesh

xm+r = rHx/2, yn+s = sHy/2, for r, s = 0,±1,±2 (11)

where Hx and Hy denote the size of the rectangular element (Fig. 1).
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Fig. 1. Two-dimensional (a) bilinear (b) serendipity regular finite element mesh.
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Fig. 2. Wave speed versus wave length for bilinear (left) and serendipity (right) elements for angle θ = 0◦ .

The system of differential equation derived for the nodes of the considered patch can be written as

Mc üc + Kcuc = 0 (12)

where the local consistent mass matrixMc and the local stiffness matrix Kc are of rectangular form 2 × 18 and 6 × 42 for
the bilinear and serendipity elements, respectively.
Next, the classic Fourier analysis follows (see e.g. Refs. [1,7,8]) when the prescribed nodal harmonic solution—a discrete

counterpart to Eq. (5)—in the form

uij = Uij exp
(
i
2π
λ
(pxxi + pyyj − ct)

)
(13)

vij = Vij exp
(
i
2π
λ
(pxxi + pyyj − ct)

)
is substituted to the differential equilibrium equations (12). In Eq. (13), Uij, Vij are yet unknown amplitudes defining the
shape of the deformation mode. The components of the unit normal to the wave front pmay be expressed as

px = cos θ, py = sin θ (14)

where θ is the direction of the plane wave propagation through the finite element grid. Although thematricesMc andKc are
non-square, the subsequent use of the difference relations (10), (11) leads to appropriate column compression [7], which
gives rise to a symmetric generalized eigenvalue problem (with square matrices). Solving for the eigenvalues the desired
dispersion relationship c = f (λ, θ) is obtained.
Comparison of dispersion properties for bilinear and serendipity elements is shown in Fig. 2, where the normalizedwave

speed c/cl versus the normalized wave length H/λ is drawn for the worst case in terms of dispersion θ = 0. Fig. 2 clearly
shows the advantage of quadratic elements over linear ones. There is virtually no dispersion up to the resolution limit
H/λ = 0.5 for quadratic elements.
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Table 1
Values of C for two element types.

Admissible relative error of Phase velocity (%) Linear element Quadratic element

1 0.075 0.350
2 0.110 0.370
5 0.175 0.385

Furthermore, there are four additional spurious solutions, called the optical modes. They do not really exist in a perfect
continuum and should be solely attributed to FE discretization. Discussion ofω–k diagrams carried out in [5] elucidates that
these fictitious modes are excited only at very high-frequency loadings, well beyond elements resolution limit, hence they
do not really interfere with the acoustic modes. This is indirectly confirmed by the example in Section 5 where the overall
accuracy of numerical solutions demonstrates supremacy of the serendipity elements over bilinear ones.

4. Choice of element size and time step

Numerical dispersion of the finite element method can be partially eliminated by a suitable choice of the parameters of a
numerical model such as the element type, mesh size, integration time step, etc. The influence of time integration schemes,
the central difference method and the Newmark method, was studied in [9]. It was proved that the dispersion behaviour
strongly depended on the choice of the integration step. However, the effect of time integration diminished when the time
step1t defined by the dimensionless Courant number Co did not exceeded

Co =
cl1t
H

< 0.5. (15)

In Ref. [4] the empirical estimate was derived for the element size

H/λ < C (16)

where the constant C was chosen according to the element type and the admissible relative error of the phase velocity as
shown in Table 1. It follows from Table 1 that the relative error of the phase velocity is less than 2% in case the element size
is limited by H < λ/3, i.e. C .

= 0.33 for quadratic mesh and H < λ/10, i.e. C .
= 0.1 for linear mesh, respectively.

Wavelength λ can be estimated from the maximum excitation frequency ωmax, which is bounded by the admissible
dispersion error. Then the relation (16) may be arranged with the aid of (7) and (8) to obtain an estimate on the element
size

H < C
2πct
ωmax

(17)

so that the limit imposed on the maximum excitation frequency ωmax at fixed H reads

ωmax < C
2πct
H

. (18)

Note that the fulfilment of conditions (17) and (18) is required for the transversal wave speed ct so that the error bound
property will pass on to longitudinal wave propagation as ct < cl.

5. Impact of two long elastic cylinders

The longitudinal impact of two elastic cylinders was studied, for which the analytical solution was available [6].
Simultaneously, symmetric properties of the contact algorithm based on the pre-discretization penalty method [10] were
tested.
The cylinders dimensions were: radius a = 2.5 mm, length 6.25 mm. Young’s modulus, Poisson’s ratio and density, re-

spectively, were E = 2.1×105MPa, ν = 0.3, ρ = 7800 kg/m3. The cylinders made contact with initial velocity v0 = 1m/s
prescribed at time t = 0 s. The computation end time, t = 2a/cl, was chosen such that it was less than the time needed for
the fastest wave to travel back and forth so that the solution was influenced by no reflected waves. Effectively, the cylinders
might be considered infinitely long.
The analytical solution [6] utilizing the Laplace transform is rather complex. The distributions of displacements and

stresses are cast in the form of infinite series of improper integrals which are evaluated numerically. For illustration,
theoretical positions of wave fronts for time clt/a = 2 are plotted in Fig. 3. In this figure, r, z denote cylindrical coordinates,
a the radius of the cylinder and t time, respectively; velocities are renamed as c1 = cl and c2 = ct .
The primary wave front propagates with the speed of longitudinal waves cl. Furthermore, the wave fronts of longitudinal

and transversal waves generated by the reflection fromboundaries can be observed. The unloading (rarefaction)wave fronts
of shear waves propagate with the speed ct . The hatched part corresponds to the state of stress encountered in the impact
of two half-spaces.
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Fig. 3. Theoretical position of wave fronts for clt/a = 2 after [6].

Fig. 4. Power spectrum of the cylinder’s excitation.

The problemwas treated as an axisymmetric one, each cylinder discretized by 100× 250 four-node linear elements and
50 × 125 eight-node serendipity elements. The linear mesh was obtained by regular refinement bisecting the quadratic
elements at the mid-side nodes. Thus, the total number of degrees of freedom NDOF is greater for the linear mesh (NDOF =
50 702) than for the quadratic one (NDOF = 38 202). The Newmark integration schemewith the consistentmassmatrix was
employed. In order to suppress the influence of numerical integration, the time step was chosen very small. It was set to
1t = 1.038174× 10−9 s, which corresponds to dimensionless Courant’s number Co = 0.25 for linear elements and 0.125
for quadratic elements.
In Section 4 estimates of the element size and the maximum excitation frequency with dispersion error control were

derived. In the case when the time distribution of loading is known, it may be expanded as a Fourier series and expressed in
terms of its harmonic components. In other words, the frequency spectrum of loading can be determined. In this example,
the loading is realized by the contact boundary condition so that no explicit loading is prescribed. However, it is possible to
formulate the same problem from another view point: a flying cylinder is moving with initial velocity v0 when it hits the
opposite face. At this point, it is sufficient to prescribe its face displacement as u = −v0t . Thus, disregarding sign, kinematic
excitation of the cylinder is defined by a time sampled function

u(tn) = v0n1t (19)

where tn = n1t is the time corresponding to the n-th time sample. Using the fast Fourier transform, we obtain the power
spectrum of the cylinder’s excitation S plotted in Fig. 4. It is sufficient to take into account the first 10 terms of this spectrum
for the approximation of the function (19). It corresponds to the maximum excitation frequency ωmax = 6.817× 107 [1/s].
According to expression (18) the admissible maximum frequency ωadmissiblemax = 8.09 × 107 [1/s] for the linear mesh and
ωadmissiblemax = 13.48 × 107 [1/s] for the serendipity mesh might be calculated. In both cases condition (18) was satisfied.
Note, that the relations (17) and (18) hold only for a short time after the impact has occurred when the pressure loading
caused by the primary longitudinal wave still dominates the stress field and is not significantly influenced by reflections
from the cylinder’s boundaries.
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Fig. 5. Axial stress distribution along axial coordinate for clt/a = 2 and r/a = 0.05: bilinear (left) and serendipity (right) elements.

Comparison of accuracy for both discretization patterns follows fromFig. 5,where the normalized axial stress distribution
σ ∗z = σzcl/λv0 along the cylinder axis z/a is drawn. The results are plotted for time clt/a = 2 at a short distance from the
axis r/a = 0.05 (see Fig. 3). In addition, the analytical solution is plotted in Fig. 5 by the bold line.
It is interesting to note the way the response is influenced by wave fronts of unloading waves (points A and B in Fig. 3).

In the region between points A and C the value of axial stress should be identical to the constant value σ ∗z = −2.333
corresponding to a half-space impact problem. At point C the stress should undergo a step drop from σ ∗z = −2.333 to zero.
It should be pointed out that the accuracy of analytical solution is strongly influenced by the number of terms included in
the series of improper integrals [6]. The analytical solution plotted in this paper was derived from the summation of the first
150 terms of this series. However, the value of axial stress significantly oscillates in the region of the ‘‘should have been’’
constant stress. This effect will reduce provided a greater number of terms have been used.
It is obvious that the quadratic elements exhibit better accuracy than the linear ones using even less number of degrees of

freedom. In addition, the linear solution shows more ‘‘ragged’’ distribution. This is especially apparent behind the primary
wave front corresponding to the state of zero stress. In this pre-front zone, the decay of undesired oscillation is slower
than for the quadratic mesh. This example nicely demonstrates capabilities of the two element types and evokes similar
conclusions as those drawn from the dispersion distributions compared in Fig. 2.

6. Conclusions

Numerical dispersion properties of two-dimensional finite elements in elastodynamics were investigated. We followed
a theoretical study [3–5], where the dispersion behaviour of the quadratic eight-node elements with the serendipity type
shape functions was analysed. We focused on the verification of this dispersion study by means of comparison of the
numerical and analytical solutions to the longitudinal impact of two infinitely long cylindrical bars.
The numerical analysis was treated as an axisymmetric one, each cylinder discretized by four-node linear elements

and eight-node serendipity elements, respectively. The Newmark integration scheme with the consistent mass matrix was
employed. In order to check out the influence of numerical integration, the time stepwas chosen very small. For comparison,
the analytical solution of this problemexpressed in the formof an infinite series of improper integralswas recalled. Excellent
agreement between the analytical and finite element solutions utilizing quadratic elements was observed. In accord with
the claims of paper [5] it was demonstrated that the quadratic elements showedmuch better accuracy than linear elements
using even less number of degrees of freedom.
Most of the present discussion carries over to three-dimensional problems. This is chiefly due to the fact that the

dispersion error reaches its maximum for θ = 0 when a wave propagates parallel to the finite element mesh. If desired, full
three-dimensional dispersion analysis may be accomplished in the same fashion.
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