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a b s t r a c t

In this paper, based on homotopy perturbation method (HPM) and reproducing kernel
method (RKM), a new method is presented for solving nonlinear systems of second order
boundary value problems (BVPs). HPM is based on the use of traditional perturbation
method and homotopy technique. The HPM can reduce a nonlinear problem to a sequence
of linear problems and generate a rapid convergent series solution in most cases. RKM
is also an analytical technique, which can solve powerfully linear BVPs. Homotopy
perturbation–reproducing kernel method (HP–RKM) combines advantages of these two
methods and therefore can be used to solve efficiently systems of nonlinear BVPs. Three
numerical examples are presented to illustrate the strength of the method.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider the following nonlinear system of second order boundary value problems in the reproducing
kernel spaceu′′

+ a1(x)u′
+ a2(x)u + N1(u, v) = f (x), 0 ≤ x ≤ 1,

v′′
+ b1(x)v′

+ b2(x)v + +N2(u, v) = g(x), 0 ≤ x ≤ 1,
u(0) = u(1) = 0, v(0) = v(1) = 0,

(1.1)

where N1,N2 are nonlinear functions of u and v, aj(x), bj(x) are continuous, j = 1, 2, 3. Here we only consider u(0) = 0,
u(1) = 0, v(0) = 0, v(1) = 0 since the boundary conditions u(0) = α, u(1) = β, v(0) = γ , v(1) = δ can be reduced to
u(0) = 0, u(1) = 0, v(0) = 0, v(1) = 0.

Ordinary differential systems are important tools in solving real-world problems. A wide variety of natural phenomena
are modelled by second order ordinary differential systems. Ordinary differential systems have been applied to many
problems, in physics, engineering, biology and so on. For example, the so-called Emden–Fowler equations arise in the
study of gas dynamics, fluid mechanics, relativistic mechanics, nuclear physics and also in the study of chemically reacting
systems. However, many classical numerical methods used with second order initial value problems cannot be applied to
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second order boundary value problems. We all know that the finite difference method can be used to solve linear second
order boundary value problems, but it can be difficult to solve nonlinear second order boundary value problems using this
method. For nonlinear second order boundary value problems, there are few valid methods to obtain numerical solutions.
In [1], the authors discussed the existence of solutions to second order systems, including the approximation of solutions via
finite difference equations. Recently, Geng and Cui [2] presented an iterative RKM for solving nonlinear systems of second
order BVPs. Dehghan [3–5] developed homotopy perturbation method, sinc-collocation and cubic B-spline scaling function
methods. Lu [6] provided variational iteration method. Caglar [7] proposed B-spline method for solving linear systems of
second order BVPs.

In thiswork,wewill present a newmethod for obtaining the analytical approximation to the solution of nonlinear system
(1.1) by combining HPM and RKM.

The HPM was proposed originally in [7–12]. This method is based on the use of traditional perturbation method and
homotopy technique. Using this method, a rapid convergent series solution can be obtained in most cases. Usually, a
few terms of the series solution can be used for numerical purposes with a high degree of accuracy. Furthermore, the
HPM does not require the discretization of the problem. Thus it is suitable for finding the approximation of the solution
without discretization of the problem. Themethodwas successfully applied to boundary value problems, partial differential
equations and other fields [7–19].

Reproducing kernel theory has important application in numerical analysis, differential equation, probability and
statistics and so on [2,20–29]. Recently, using the RKM, Cui, Geng, Lin and Chen discussed singular linear two-point
boundary value problem, singular nonlinear two-point periodic boundary value problem, nonlinear system of boundary
value problems and nonlinear partial differential equations.

The rest of the paper is organized as follows. In the next section, the HPM is introduced. The HP–RKM is proposed
for solving (1.1) in Section 3. The numerical examples are presented in Section 4. Section 5 ends this paper with a brief
conclusion.

2. Analysis of HPM

To illustrate the basic ideas of this method, we consider the following nonlinear differential equation:
A(u)− f (r) = 0, r ∈ Ω, (2.1)

with the boundary conditions of
B(u, ∂u/∂n) = 0, r ∈ Γ , (2.2)

where A is a general differential operator, B is a boundary operator, f (r) is a known analytical function andΓ is the boundary
of the domainΩ .

Generally speaking, the operator A can be divided into two parts which are L and N , where L is linear, but N is nonlinear.
Eq. (2.1) can therefore be rewritten as

L(u)+ N(u)− f (r) = 0, r ∈ Ω. (2.3)
By the homotopy technique, we construct a homotopy V (r, p) : Ω × [0, 1] → Rwhich satisfies:

H(V , p) = (1 − p)[L(V )− L(u0)] + p[A(V )− f (r)] = 0, p ∈ [0, 1], r ∈ Ω, (2.4)
or

H(V , p) = L(V )− L(u0)+ pL(u0)+ p[N(V )− f (r)] = 0, p ∈ [0, 1], r ∈ Ω, (2.5)
where p ∈ [0, 1] is an embedding parameter, u0 is an initial approximation of Eq. (2.1), which satisfies the boundary
conditions. Obviously, from (2.4) or (2.5), one obtains

H(V , 0) = L(V )− L(u0) = 0, (2.6)
H(V , 1) = A(V )− f (r) = 0, (2.7)

the changing process of p from zero to unity is just that of V (r, p) from u0(r) to u(r). In topology, this is called deformation,
and L(V )− L(u0) and A(V )− f (r) are called homotopies.

According to HPM, we can first use the embedding parameter p as a ‘‘small parameter’’, and assume that the solution of
(2.4) or (2.5) can be written as a power series in p:

V = V0 + pV1 + p2V2 + · · · . (2.8)
Setting p = 1 results in the approximate solution of Eq. (2.1):

u = lim
p→1

V = V0 + V1 + V2 + · · · . (2.9)

The combination of perturbation method and homotopy method is called the HPM, which has eliminated the limitations
of traditional perturbation methods. On the other hand, this technique has the full advantage of traditional perturbation
techniques. The series (2.9) is convergent in most cases. However, the convergent rate depends on the nonlinear operator
A(V ) (the following opinions are suggested in [12]).
(1) The second derivative ofN(V )with respect to V must be small because the parametermay be relatively large, i.e., p → 1.
(2) The norm of L−1(∂N/∂V )must be smaller than one so that the series converges.
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3. HP–RKM for solving (1.1)

Put

L1u = u′′
+ a1(x)u′

+ a2(x)u, L2v = v′′
+ b1(x)v′

+ b2(x)v.

For (1.1), according to the HPM, we construct a homotopy as follows:
H1(u, p) = L1u(x)− f (x)+ pN1(u(x), v(x)) = 0
H2(u, p) = L2v(x)− g(x)+ pN2(u(x), v(x)) = 0 (3.1)

where p ∈ [0, 1] is an embedding parameter. In case p = 0, (3.1) becomes a linear system, which is easy to be solved, and
when p = 1, (3.1) turns out to be the original one, (1.1).

In view of the HPM, we use the homotopy parameter p to expand the solution
u = u0 + pu1 + p2u2 + p3u3 · · ·

v = v0 + pv1 + p2v2 + p3v3 · · · .
(3.2)

The approximate solution of (1.1) can be obtained by setting p = 1
u = u0 + u1 + u2 + u3 · · ·

v = v0 + v1 + v2 + v3 · · · .
(3.3)

Substituting (3.2) into (3.1), and equating coefficients of the identical powers of p yields the following equations:

p0 :


L1u0(x) = f (x), u0(0) = 0, u0(1) = 0,
L2v0(x) = g(x), v0(0) = 0, v0(1) = 0 (3.4)

pm :


L1um(x) = fm(x), um(0) = 0, um(1) = 0,
L2vm(x) = gm(x), vm(0) = 0, vm(1) = 0 (3.5)

where m ≥ 1, fm(x) = −
dm−1N1(u,v)
(m−1)!dpm−1


p=0
, gm(x) = −

dm−1N2(u,v)
(m−1)!dpm−1


p=0

.

To solve the above equations, we use the RKM presented in [23]. Take the following equation as an example

Lw(x) = h(x), w(0) = w(1) = 0, (3.6)

where L : W 3
2 [0, 1] → W 1

2 [0, 1] is a bounded linear operator.
To solve (3.6), first, we construct a reproducing kernel spaceW 3

2 [0, 1] in which every function satisfies the homogeneous
boundary conditions of (3.6).

Reproducing kernel Hilbert space W 3
2 [0, 1] is defined as W 3

2 [0, 1] = {u(x) | u′′(x) is an absolutely continuous real value
function, u′′′(x) ∈ L2[0, 1], u(0) = 0, u(1) = 0}. The inner product and norm inW 3

2 [0, 1] are given, respectively, by

(u(y), v(y))W3
2

= u(0)v(0)+ u′(0)v′(0)+ u(1)v(1)+

∫ 1

0
u′′′v′′′dy

and

‖u‖W3
2

=


(u, u)W3

2
, u, v ∈ W 3

2 [0, 1].

By [16,20], it is easy to obtain its reproducing kernel

k(x, y) =


k1(x, y), y ≤ x,
k1(y, x), y > x,

where k1(x, y) = −
1

120 (x − 1)y(yx4 − 4yx3 + 6yx2 + (y4 − 5y3 − 120y + 120)x + y4).
Put ϕi(x) = k(xi, x) and ψi(x) = L∗ϕi(x) where k(xi, x) is the RK of W 1

2 [0, 1], L∗ is the adjoint operator of L. The
orthonormal system {ψ i(x)}

∞

i=1 ofW
3
2 [0, 1] can be derived from the Gram–Schmidt orthogonalization process of {ψi(x)}∞i=1,

ψ i(x) =

i−
k=1

βikψk(x), (βii > 0, i = 1, 2, . . .).

By the RKM presented in [23], we have the following theorem.

Theorem 3.1. For (3.6), if {xi}∞i=1 is dense on [0, 1], then {ψi(x)}∞i=1 is the complete system of W 3
2 [0, 1] and ψi(x) =

Lskα(x, s)|s=xi .
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Table 1
Exact solution and absolute errors for u(x) for Example 4.1.

x Exact solution Method of [2] Method of [4] Present method (U5, 21) Present method (U5, 51)

0.08 0.0736 5.0 × 10−4 1.4 × 10−4 7.7 × 10−5 2.0 × 10−5

0.24 0.1824 1.4 × 10−3 4.4 × 10−5 2.2 × 10−4 5.7 × 10−5

0.40 0.2400 2.1 × 10−3 6.7 × 10−5 3.3 × 10−4 8.6 × 10−5

0.56 0.2464 2.2 × 10−3 9.3 × 10−5 3.7 × 10−4 9.8 × 10−5

0.72 0.2016 1.8 × 10−3 4.9 × 10−5 3.1 × 10−4 9.4 × 10−5

0.88 0.1056 9.0 × 10−4 8.6 × 10−5 1.5 × 10−4 6.5 × 10−5

0.96 0.0384 3.0 × 10−4 7.1 × 10−5 5.4 × 10−5 1.4 × 10−5

Theorem 3.2. If {xi}∞i=1 is dense on [0, 1] and the solution of (3.6) is unique, then the solution of (3.6) is

w(x) =

∞−
i=1

i−
k=1

βikh(xk)ψ i(x).

Using the above method, we can obtain u0, v0, u1, v1, . . .
u0(x) =

∞−
i=1

i−
k=1

β1ikf (xk)ψ1i(x),

v0(x) =

∞−
i=1

i−
k=1

β2ikg(xk)ψ2i(x)
(3.7)


um(x) =

∞−
i=1

i−
k=1

β1ikfm(xk)ψ1i(x),

vm(x) =

∞−
i=1

i−
k=1

β2ikgm(xk)ψ2i(x).
(3.8)

Therefore, the approximate solution of (1.1) andm-term approximation to solution of (1.1) to this solution are obtained

u =

∞−
k=0

uk, v =

∞−
k=0

vk, Um =

m−1−
k=0

uk, Vm =

m−1−
k=0

vk. (3.9)

Now, the approximate solution Um,n(x), Vm,n(x) can be obtained by the n-term intercept of the uk(x), vk(x), k = 0, 1, 2, . . . ,
and

Um,n(x) =

m−1−
k=0

n−
i=1

A1ikψ1i(x), Vm,n(x) =

m−1−
k=0

n−
i=1

A2ikψ2i(x) (3.10)

where A1ik =
∑i

j=1 β1ijfk(xj), A2ik =
∑i

j=1 β2ijgk(xj).

4. Numerical examples

In this section, we present and discuss the numerical results by employing the HP–RKM for three examples. Results
demonstrate that the present method is remarkably effective.

Example 4.1. Consider the following nonlinear system of BVPs [2,4]:u′′(x)+ xu(x)+ 2xv(x)+ xu2(x) = f (x), 0 < x < 1,
v′(x)+ v(x)+ x2u(x)+ sin xv2(x) = g(x), 0 < x < 1,
u(0) = 0, u(1) = 0, v(0) = 0, v(1) = 0,

where f (x) = −2 + x(x − x2) + x(x − x2)2 + 2x sinπx, g(x) = x3(1 − x) + sin(πx)(1 + sin x sin(πx)) + π cos(πx). It is
easy to see that the exact solution is u(x) = x − x2, v(x) = sinπx.

Solution: According to (3.7)–(3.10), one can obtain the approximation Um,n(x) and Vm,n(x).
When we takem = 5, n = 21, 51, the numerical results compared with other methods are shown in Tables 1 and 2.
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Table 2
Exact solution and absolute errors for v(x) for Example 4.1.

x Exact solution Method of [2] Method of [4] Present method (V5, 21) Present method (V5, 51)

0.08 0.248690 2.0 × 10−3 2.4 × 10−4 7.1 × 10−4 1.1 × 10−4

0.24 0.684547 5.6 × 10−3 2.3 × 10−3 1.9 × 10−3 3.3 × 10−4

0.40 0.951057 7.9 × 10−3 8.9 × 10−4 2.7 × 10−3 4.6 × 10−4

0.56 0.982287 8.2 × 10−3 1.4 × 10−3 2.8 × 10−3 4.8 × 10−4

0.72 0.770513 6.5 × 10−3 3.1 × 10−3 2.2 × 10−3 3.8 × 10−4

0.88 0.368125 3.1 × 10−3 1.6 × 10−3 1.7 × 10−3 2.9 × 10−4

0.96 0.125333 1.0 × 10−3 9.8 × 10−4 3.6 × 10−4 6.2 × 10−5

Table 3
Exact solution and absolute errors for u(x) for Example 4.2.

x Exact solution Method of [6] (u1) Present method (U5, 21) Present method (U5, 51)

0.00 0.00 0.00 0.00 0.00
0.10 −0.27812 3.0 × 10−4 4.4 × 10−5 7.1 × 10−6

0.30 −0.56631 7.8 × 10−3 1.0 × 10−4 1.6 × 10−5

0.50 −0.50000 2.7 × 10−2 1.2 × 10−4 1.8 × 10−5

0.70 −0.24271 4.6 × 10−2 9.6 × 10−5 1.5 × 10−5

0.90 −0.03092 3.1 × 10−2 3.8 × 10−5 6.0 × 10−6

1.00 0.00 0.00 0.00 0.00

Fig. 1. Figures of absolute errors |v(x)− V5, 21(x)|, |v(x)− V5, 51(x)| for Example 4.2.

Example 4.2. Consider the following nonlinear system of BVPs [6]:u′′(x)+ xu′(x)+ cosπxv′(x) = f (x), 0 < x < 1,
v′′(x)+ xu′(x)+ xu2(x) = g(x), 0 < x < 1,
u(0) = 0, u(1) = 0, v(0) = 0, v(1) = 0,

where f (x) = 2 cos x + (1 − 2x) cosπx − (x − 1) sin x + x((x − 1) cos x + sin x), g(x) = −2 + (1 − 2x)x + (x − 1)2x sin2 x.
It is easy to see that the exact solution is u(x) = (x − 1) sinπx, v(x) = x − x2.

Solution: According to (3.7)–(3.10), one can obtain the approximation Um,n(x) and Vm,n(x).
When we take m = 5, n = 21, 51, the numerical results compared with other methods are shown in Table 3, Fig. 1.
For the variational iterationmethod presented in [6], when the nonlinear terms are complicated, it is difficult to perform

the iteration many times and obtain high accuracy approximations.

Example 4.3. Consider the following nonlinear system of BVPs:u′′(x)+ 20u′(x)+ 4 cos xu(x)+ sin(u(x)v(x)) = f (x), 0 < x < 1,
v′′(x)+ 5exv′(x)+ 6 sinh xv(x)+ cos v(x) = g(x), 0 < x < 1,
u(0) = 1, u(1) = e, v(0) = 0, v(1) = sinh 1,

(4.1)

where f (x) = 21ex + 4ex cos x + sin(ex sinh x), g(x) = cos(sinh x)+ 5ex cosh x + sinh x + 6 sinhx. It is easy to see that the
exact solution is u(x) = ex, v(x) = sinh x.

Put u = u+a0+a1x, v = v+b0+b1x, where a0, a1, b0, b1 are determined by letting u(0) = u(1) = 0, v(0) = v(1) = 0.
Obviously, (4.1) can be reduced to a system for u, v with homogeneous boundary conditions.

Solution: According to (3.7)–(3.10), one can obtain the approximations Um,n(x) and Vm,n(x).
When we take m = 5, n = 21, 51, the numerical results are shown in Figs. 2 and 3.
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Fig. 2. Figures of relative errors
 u(x)−U5, 21(x)

u(x)

 ,  u(x)−U5, 51(x)
u(x)

 for Example 4.3.

Fig. 3. Figures of relative errors
 v(x)−V5, 21(x)

u(x)

 ,  v(x)−V5, 51(x)
v(x)

 for Example 4.3.

5. Conclusion

In this paper, the combination of HPM and RKM was employed successfully for solving nonlinear systems of boundary
value problems. The numerical results show that the present method is an accurate and reliable analytical technique for the
solutions of systems of boundary value problems.
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