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a b s t r a c t

We are concerned with the exponential mean-square stability of two-step Maruyama
methods for stochastic differential equations with time delay. We propose a family of
schemes and prove that it canmaintain the exponential mean-square stability of the linear
stochastic delay differential equation for every step size of integral fraction of the delay in
the equation. Numerical results for linear and nonlinear equations show that this family of
two-step Maruyama methods exhibits better stability than previous two-step Maruyama
methods.
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1. Introduction

Stochastic delay differential equations (SDDEs) have been increasingly used to model the effects of noise and time delay
on various types of complex systems, such as delayed visual feedback systems [1], control problems [2,3] and the dynamics
of noisy bi-stable systems with delay [4]. SDDEs are also used in modeling diseases, for example, epidemic diseases [5],
neurological diseases [6], etc., and also in finance SDDEs appear in models of stock markets [7].

Some numerical methods and their convergence and stability properties have been established [8–14] recently, butmost
of them are on one-step methods. Instead of one-step methods we here focus on stochastic multi-step methods for SDDEs,
which have been widely studied for solving stochastic ordinary differential equations (SODEs), i.e. with no time delay.

To extend the multi-step methods for SODEs to those for SDDEs is a nontrivial task and these extensions have not been
investigated until recently. For a review of multi-step methods for SODEs, we refer to [15,16]. Some more recent studies
are as follows. In [17], certain stochastic linear multi-step methods are constructed; and mean-square convergence rates
are obtained; and consistency conditions in the mean-square sense are given for two-step Maruyama methods. Ewald and
Témam [18] studied the convergence of a stochastic Adams–Bashforth schemewith application to geophysical applications.
Adams-type methods for SODEs are also analyzed in [19], where first-order strong convergence conditions are given. For
some special SODEs with additive noise, high order multi-step methods have been discussed in [20].

In this paper, we follow [21] and study two-step Maruyama schemes for the scalar equation

dX(t) = f

t, X(t), X(t − τ)


dt + g


t, X(t), X(t − τ)


dW (t), t ∈ J,

X(t) = ξ(t), t ∈ [−τ , 0],
(1.1)

where τ is a positive fixed delay, J = [0, T ],W (t) is a one-dimensional standard Wiener process and the functions f :

J × R × R → R, g : J × R × R → R. We note that [21] is perhaps the only work onmulti-step methods for SDDEs, wherein

∗ Corresponding author at: Department of Mathematics, Southeast University, Nanjing 210096, PR China. Tel.: +86 13905176912.
E-mail addresses:wrcao@seu.edu.cn, seu_cwr@sina.com (W. Cao), Zhongqiang_zhang@brown.edu (Z. Zhang).

0377-0427/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2012.12.026

http://dx.doi.org/10.1016/j.cam.2012.12.026
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:wrcao@seu.edu.cn
mailto:seu_cwr@sina.com
mailto:Zhongqiang_zhang@brown.edu
http://dx.doi.org/10.1016/j.cam.2012.12.026


W. Cao, Z. Zhang / Journal of Computational and Applied Mathematics 245 (2013) 182–193 183

multi-stepmethods are proposed form-dimensional systems of Itô SDDEswith d drivingWiener processes andmulti-delay,
and their properties are studied concerning consistency, numerical stability and convergence.

Instead of working with the general SDDE (1.1), we study the linear test model (1.2), which can shed some insight on the
general SDDE (1.1),

dX(t) = [aX(t) + bX(t − τ)]dt + [cX(t) + dX(t − τ)]dW (t), t ≥ 0,
X(t) = ξ(t), t ∈ [−τ , 0],

(1.2)

where a, b, c, d ∈ R, τ is a positive fixed delay, W (t) is a one-dimensional standard Wiener process and ξ(t) is a
C([−τ , 0]; R)-valued initial segment. In this work, we aim to derive mean-square stable two-step Maruyama methods for
the SDDE (1.2).

The paper is organized in the following way. In Section 2 we provide some necessary notations and preliminaries on
SDDEs, including some properties of analytical solutions to Eq. (1.2). Also, in this section the two-step Maruyama methods
and their convergence properties are introduced. In Section 3 we derive a series of two-step Maruyama methods and
prove that the numerical solution is exponentially stable for the exponentially decaying linear SDDE in mean-square sense.
Section 4 illustrates the mean-square stability of these two-step Maruyama methods with numerical examples for the test
model (1.2) and a nonlinear equation.

2. Notations and preliminaries

Let (Ω, F , P) be a probability space with a filtration (Ft)t≥0, which satisfies the usual conditions (increasing and right-
continuous; each {Ft}, t ≥ 0 contains all P-null sets in F ).

Let W (t), t ≥ 0 in Eq. (1.2) be Ft-adapted and independent of F0. Assume ξ(t), t ∈ [−τ , 0] to be F0-measurable and
right continuous, and E∥ξ∥

2 < ∞. Here ∥ξ∥ is defined by ∥ξ∥ = sup−τ≤t≤0 |ξ(t)| and | · | is the Euclidean norm in R.
Throughout the paper, Eqs. (1.1) and (1.2) are interpreted in the Itô sense. Under these usual conditions, Eq. (1.2) has a
unique strong solution X(t) : [−τ , +∞) → R, which satisfies Eq. (1.2) and X(t) is a measurable, sample-continuous and
Ft-adapted process; see [22,23].

Definition 1 ([24]). The trivial solution of Eq. (1.1) is said to be exponentially mean-square stable, if there exists a pair of
constants λ > 0 and C > 0, such that, whenever E∥ξ∥

2 < ∞,

E|X(t, ξ)|2 ≤ CE∥ξ∥
2e−λt , t ≥ 0. (2.1)

The inequality (2.1) implies that E|X(t)|2 goes to 0 exponentially in t as we assume E∥ξ∥
2 < ∞.

Lemma 2 ([25]). If the condition

a < −|b| − (|c| + |d|)2 (2.2)

holds, then the trivial solution of Eq. (1.2) is exponentially mean-square stable.

Applying the two-step Maruyama methods to Eq. (1.1) leads to the following

1
j=−1

αjXi−j = h
1

j=−1

βjf (ti−j, Xi−j, Xi−m−j) +

1
j=0

γjg(ti−j, Xi−j, Xi−m−j)1Wi−j, i = 2, 3, . . . ,N, (2.3)

where αj, βj, γj, (j ∈ {−1, 0, 1}) are parameters; h > 0 is the stepsize in time which satisfies τ = mh for a positive integer
m, and tn = nh,N = T/h. The increments 1Wi := W (ti+1)−W (ti), are independent N (0, h)-distributed Gaussian random
variables. Suppose that Xi is Fti-measurable at the mesh-point ti. Then Xi is an approximation to X(ti), where for i ≤ 0, Xi
are given by the initial function.

Definition 3. The function u : R+
×R×R → R is said to be uniform Lipschitz continuous if there exists a positive constant

Lu, such that the function u satisfies

|u(t, x1, x2) − u(t, y1, y2)| ≤ Lu(|x1 − y1| + |x2 − y2|) (2.4)

for every x1, x2, y1, y2 ∈ R and t ≥ 0,
When there exists a positive constant K , such that

|u(t, x, y)| ≤ K(1 + x2 + y2)
1
2 (2.5)

for x, y ∈ R and t ≥ 0, we say that u satisfies a linear growth condition.
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The characteristic polynomial of (2.3) is given by

ρ(λ) = α−1λ
2
+ α0λ + α1.

Definition 4. The method (2.3) is said to fulfill Dahlquist’s root condition if (i) the roots of ρ(λ) lie on or within the unit
circle; (ii) the roots on the unit circle are simple.

Here are the consistency and convergence properties of numerical methods (2.3).

Lemma 5 ([21]). Assume that

• the coefficients f and g of the SDDE (1.1) are Lipschitz continuous in the sense of (2.4) and have first-order continuous partial
derivatives with respect to the first variable and second-order continuous partial derivatives with respect to the second and
third variables;

• these partial derivatives satisfy the linear growth condition (2.5);
• the coefficients of the stochastic linear two-step Maruyama scheme (2.3) satisfy Dahlquist’s root condition,
• and the consistency conditions

1
j=−1

α j = 0, 2α−1 + α 0 =

1
j=−1

βj, α−1 = γ0, α−1 + α 0 = γ1. (2.6)

Then the global error of the scheme (2.3) applied to (1.1) satisfies

max
i=2,...,N

E|X(ti) − Xi|
2

= O(h1/2).

3. Mean-square-stability of the two-step Maruyama methods

In this section, we will derive the schemes in the class of two-step Maruyama methods for Eq. (1.2) and determine a
series of two-step Maruyama schemes, which are exponentially mean-square stable, see Theorem 7.

Based on the results in [8,26,27], we give the following definition.

Definition 6. Anumericalmethod is said to be exponentiallymean-square stable, if there exist a constant C > 0 andλh > 0,
such that, whenever E∥ξ∥

2 < ∞, the numerical solution Xn of Eq. (1.2), which has an exponentially mean-square stable
trivial solution, at the mesh tn = nh, n ≥ 0, satisfies

E(Xn)
2

≤ CE∥ξ∥
2e−λhtn , as n → ∞,

for fixed step size h under the constraint h = τ/m, wherem is a positive integer.

Applying the two-step Maruyama methods (2.3) to Eq. (1.2) gives

1
j=−1

αjXi−j = h
1

j=−1

βj[aXi−j + bXi−m−j] +

1
j=0

γj[cXi−j + dXi−m−j]1Wi−j, i = 2, 3, . . . ; (3.1)

for i ≤ 0, we have Xi = ξ(ti). For better accuracy, we compute X1 using the Milstein method with small step size, which has
convergence rate O(h) in mean-square sense (see [10]). We also suppose that X1 is Ft1-measurable at the mesh-point t1.

By choosing the parameters of the two-step Maruyama method to satisfy the consistency condition (2.6) and

α−1 = 1, −1 ≤ α0 < 0, β0 = β1 = 0, (3.2)

then we get

α1 = −1 − α0, β−1 = 2 + α0, γ0 = 1, γ1 = 1 + α0. (3.3)

Thus, we obtain a family of two-step Maruyama schemes from (3.1):

Xi+1 + α0Xi + (−1 − α0)Xi−1 = h(2 + α0)(aXi+1 + bXi−m+1) + (cXi + dXi−m)1Wi

+ (1 + α0)(cXi−1 + dXi−m−1)1Wi−1, (3.4)

where a parameter −1 ≤ α0 < 0.
Next we determine the conditions on the parameters for mean square stability. It can be checked that the schemes (3.4)

satisfy Dahlquist’s root condition and all assumptions in Lemma 5. Thus, we have the following conclusion on mean-square
exponential stability.

Theorem 7. Assume that the condition (2.2) holds. If the parameters of the two-stepMaruyamamethod (3.1) satisfy the restricted
conditions (3.2) and (3.3), then the method is exponentially mean-square stable.
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The proof of this theorem needs the following lemma.

Lemma 8. Under condition (2.2), the numerical solutions {Xi, i ≥ 2} produced by the two-step Maruyama method (3.4) satisfy

E(XiXi−11Wi−1) < |c|hE(X2
i−1) + |d|hE(|Xi−1Xi−m−1|), (3.5a)

E(XiXi−m−11Wi−1) < |c|hE(|Xi−1Xi−m−1|) + |d|hE(X2
i−m−1). (3.5b)

Proof. Note that E(1Wk) = 0, E

(1Wk)

2


= h and Xj is Fti-measurable and independent of 1Wi if j ≤ i. Hence from
properties of conditional expectation we can get

E(XiXj1Wk) = 0, i, j ≤ k, (3.6)

E(XiXj1Wk1Wk−1) = 0, i, j ≤ k, (3.7)

E(XiXj1W 2
k ) = hE(XiXj), i, j ≤ k. (3.8)

Now we prove the inequality (3.5a). From the scheme (3.4) we have

Xi+1 =
1

(1 − (2 + α0)ah)


(2 + α0)bhXi−m+1 + (1 + α0)Xi−1 − α0Xi

+ (cXi + dXi−m)1Wi + (1 + α0)(cXi−1 + dXi−m−1)1Wi−1


and then

Xi =
1

(1 − (2 + α0)ah)


(2 + α0)bhXi−m + (1 + α0)Xi−2 − α0Xi−1

+ (cXi−1 + dXi−m−1)1Wi−1 + (1 + α0)(cXi−2 + dXi−m−2)1Wi−2


.

Due to the condition (2.2) and −1 ≤ α0 < 0, we get 1 − (2 + α0)ah > 1. Using (3.6)–(3.8), it holds that

E(XiXi−11Wi−1) =
1

(1 − (2 + α0)ah)


(2 + α0)bhE(Xi−mXi−11Wi−1) + (1 + α0)E(Xi−2Xi−11Wi−1)

− α0E(X2
i−11Wi−1) + cE(X2

i−11W 2
i−1) + dE(Xi−m−1Xi−11W 2

i−1)

+ (1 + α0)cE(Xi−21Wi−2Xi−11Wi−1) + (1 + α0)dE(Xi−m−21Wi−2Xi−11Wi−1)


=
1

(1 − (2 + α0)ah)


chE(X2

i−1) + dhE(Xi−m−1Xi−1)


< |c|hE(X2
i−1) + |d|hE(|Xi−m−1Xi−1|).

Inequality (3.5b) can be proved in the same way. This proves the lemma. �

Proof of Theorem 7. The explicit form of the scheme (3.4) is
1 − (2 + α0)ah


Xi+1 = (2 + α0)bhXi−m+1 +


(1 + α0)Xi−1 − α0Xi


+ (cXi + dXi−m)1Wi

+ (1 + α0)(cXi−1 + dXi−m−1)1Wi−1.

We square both sides of the last difference equation to obtain

(1 − (2 + α0)ah)2X2
i+1 = (2 + α0)

2b2h2X2
i−m+1 +


(1 + α0)Xi−1 − α0Xi

2
+ (cXi + dXi−m)21W 2

i

+ (1 + α0)
2(cXi−1 + dXi−m−1)

21W 2
i−1 + 2(2 + α0)bhXi−m+1


(1 + α0)Xi−1 − α0Xi


+ 2(2 + α0)bhXi−m+1(cXi + dXi−m)1Wi + 2(2 + α0)bhXi−m+1(1 + α0)(cXi−1

+ dXi−m−1)1Wi−1 + 2

(1 + α0)Xi−1 − α0Xi


(cXi + dXi−m)1Wi

+ 2

(1 + α0)Xi−1 − α0Xi


(1 + α0)(cXi−1 + dXi−m−1)1Wi−1

+ 2(1 + α0)(cXi + dXi−m)(cXi−1 + dXi−m−1)1Wi1Wi−1.
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Then

(1 − (2 + α0)ah)2X2
i+1 = α2

0X
2
i + c21W 2

i X
2
i + (1 + α0)

2X2
i−1 + (1 + α0)

2c21W 2
i−1X

2
i−1 + (2 + α0)

2h2b2X2
i−m+1

+ d21W 2
i X

2
i−m + (1 + α0)

2d21W 2
i−1X

2
i−m−1 − 2α0(1 + α0)XiXi−1

− 2α0(1 + α0)c1Wi−1XiXi−1 − 2α0(2 + α0)bhXiXi−m+1

− 2α0(1 + α0)d1Wi−1XiXi−m−1 + 2(1 + α0)(2 + α0)bhXi−1Xi−m+1

+ 2cd1W 2
i XiXi−m + 2(1 + α0)

2cd1W 2
i−1Xi−1Xi−m−1 + Oi(1Wi, 1Wi−1), (3.9)

where we define

Oi(1Wi, 1Wi−1) = 2(1 + α0)
2(cXi−1 + dXi−m−1)Xi−11Wi−1 + 2(2 + α0)bhXi−m+1(cXi + dXi−m)1Wi

+ 2(2 + α0)bhXi−m+1(1 + α0)(cXi−1 + dXi−m−1)1Wi−1 + 2

(1 + α0)Xi−1 − α0Xi


× (cXi + dXi−m)1Wi + 2(1 + α0)(cXi + dXi−m)(cXi−1 + dXi−m−1)1Wi1Wi−1.

By the linearity of expectation and (3.6)–(3.7) in Lemma 8, we get

E (Oi(1Wi, 1Wi−1)) = 0.

Let Yi = E(X2
i ), i = 0, 1, 2, . . . . Taking the expectation over both sides of (3.9), and using the inequality 2ab ≤ a2 + b2 and

(3.5a), (3.5b) and (3.8) in Lemma 8, it follows that

P0Yi+1 ≤ P1Yi + P2Yi−1 + P3Yi−m+1 + P4Yi−m + P5Yi−m−1, i = 2, 3, . . . , (3.10)

where

P0 = (1 − (2 + α0)ah)2,
P1 = α2

0 + c2h − α0(1 + α0) − α0(2 + α0)|b|h + |cd|h,

P2 = (1 + α0)
2c2h + (1 + α0)

2
− α0(1 + α0) − 2α0(1 + α0)c2h

− 2α0(1 + α0)|cd|h + (1 + α0)(2 + α0)|b|h + (1 + α0)
2
|cd|h,

P3 = (2 + α0)
2b2h2

− α0(2 + α0)|b|h + (1 + α0)(2 + α0)|b|h,
P4 = d2h + |cd|h,
P5 = (1 + α0)

2(d2 + |cd|)h − 2α0(1 + α0)d2h − 2α0(1 + α0)|cd|h.

Let P = P(a, b, c, d, α0, h) =

P1 + P2 + P3 + P4 + P5


/P0. It is obvious that

Yi+1 ≤ P max

Yi, Yi−1, Yi−m+1, Yi−m, Yi−m−1


, i = 2, 3, . . . . (3.11)

We now claim that, for any stepsize h = τ/m,

Yi+1 ≤ max

P i+1, P i, . . . , P


i−m−1
m+2


+1


E∥ξ∥
2. (3.12)

Thus, if P < 1, then we can get limi→∞ Yi = 0, as E∥ξ∥
2 < ∞. In fact, we use recurrence method to inequality (3.11) and

get

Yi+1 ≤ P max{Yi, Yi−1, Yi−m+1, Yi−m, Yi−m−1}

≤ P2 max{Yi−1, Yi−2, . . . , Yi−2m−3}

· · ·

≤ P

i−m−1
m+2


+1 max


Y
i−

i−m−1
m+2

, . . . , Y1, E∥ξ∥
2


≤ P

i−m−1
m+2


+2 max


Y
i−

i−m−1
m+2


−1

, . . . , E∥ξ∥
2,

1
P

E∥ξ∥
2


· · ·

≤ P i+1 max


E∥ξ∥

2,
1
P

E∥ξ∥
2, . . . ,

1

P i−

i−m−1
m+2


−1

E∥ξ∥
2



≤ max

P i+1, P i, . . . , P


i−m−1
m+2


+1


E∥ξ∥
2. (3.13)
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Table 1
Parameters for different two-step Maruyama schemes.

Scheme α0 β−1 β0

Two-step method 1 (TS1) −1/2 1/4 5/4
Two-step method 2 (TS2) −3/2 1/2 1
Two-step method 3 (TS3) −1/2 3/2 0
Two-step method 4 (TS4) −1/3 1/3 4/3
Two-step method 5 (TS5) −2/3 4/3 0
Two-step method 6 (TS6) −4/3 0 2/3

The third inequality is obtained because the index of Yi−m−1 in (3.11) keeps reducing by m − 2 after each recurrence
process. The fifth inequality holds since the index of Yi in (3.11) declines by 1 after each recurrence. For the reason that
E∥ξ∥

2 is eliminated from the recurrence process, we divide it by P for each time and eventually we get 1

P
i−[

i−m−1
m+2 ]−1

E∥ξ∥
2.

In the process of iteration, Yi−m−1 (i ≥ m + 1) will be the first term down to Y0 = E∥ξ∥
2 and it calls for its previous

[
i−m−1
m+2 ] + 1 steps, where [z] means the largest integer no more than a real number z. This proves the claim (3.12).
It is essential to verify that P < 1, i.e. P1 + P2 + P3 + P4 + P5 < P0. Recall that −1 ≤ α0 < 0 and thus 2−α2

0 ≤ 2(2+α0),
then from (3.10), we have

P1 + P2 + P3 + P4 + P5 − P0 = 1 +


2(2 + α0)|b| + (2 − α2

0)(|c| + |d|)2

h + (2 + α0)

2b2h2
− (1 − (2 + α0)ah)2

= (2 + α0)
2(b2 − a2)h2

+ 2


(2 + α0)a + (2 + α0)b +

1
2
(2 − α2

0)(|c| + |d|)2

h

≤ (2 + α0)
2(b2 − a2)h2

+ 2(2 + α0)

a + |b| + (|c| + |d|)2


h. (3.14)

Based on condition (2.2), we obtain that P1 + P2 + P3 + P4 + P5 − P0 < 0 holds for each stepsize h = τ/m.
Due to P < 1, we obtain Yi+1 ≤ P [

i−m−1
m+2 ]+1E∥ξ∥

2 from (3.13) and thus

Yi+1 ≤ P

i−m−1
m+2


+1E∥ξ∥

2
≤


P

1
m+2

i+1
E∥ξ∥

2
= e−λhti+1E∥ξ∥

2,

where λh = −
ln P

(m+2)h > 0. The proof ends. �

4. Numerical examples

In all our numerical examples,

E(X2
n ) =

1
2000

2000
i=1

|Xn(ωi)|
2,

are the sampled average over 2000 trajectories in Matlab.
Table 1 lists a number of two-step Maruyama schemes with different parameters under test here. Note that only the

schemes in bold (TS3 and TS5) satisfy the required conditions in Theorem7 and hence are exponentiallymean-square stable.
However, the other Maruyama schemes TS1, TS2, TS4, TS6 do not satisfy the conditions in Theorem 7 and thus may be only
conditionally stable and even not stable as we show later on.

Example 1. We consider the linear test model

dX(t) = [aX(t) + bX(t − τ)]dt + [cX(t) + dX(t − τ)]dW (t), t ≥ 0,
X(t) = t + τ , t ∈ [−τ , 0]

(4.1)

to illustrate the mean-square stability of the two-step Maruyama schemes in Table 1.

We choose the parameters as a = −4, b = 2, c = 0.5, d = 0.5 and τ = 1, which ensures that the exact solution of
the Eq. (4.1) is mean-square stable by Lemma 2. From Fig. 1, we observe that TS1 is not mean-square stable for both large
stepsize h = 1/4 and small stepsize h = 1/64. From Figs. 2 and 3, we see that TS3 and TS5 are mean-square stable even
for a large stepsize h = 1/4; Fig. 2 illustrates that TS4 is conditionally mean-square stable; TS4 is mean square stable if the
stepsize h is small enough (like h = 1/64 here).

In Fig. 3, we fix the stepsize h = 1/8 and show that to a great extent the mean square stability of the implicit scheme TS3
is better than the explicit two-step scheme TS6. If we test TS6 for a rather long time interval, then the numerical solution
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Fig. 1. Simulations with TS1 and TS3. (a): TS1, h = 1/4; (b): TS3, h = 1/4; (c): TS1, h = 1/64; (d): TS3, h = 1/64.
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Fig. 2. Simulations with TS4 and TS5. (a): TS4, h = 1/4; (b): TS5, h = 1/4; (c): TS4, h = 1/64; (d): TS5, h = 1/64.

will oscillate and will finally diverge. From Figs. 1–3, we observe that the numerical solution from TS6 blows up earlier than
any other unstable implicit methods shown in Figs. 1 and 2. On the other hand, numerical solutions of both TS3 and TS5
converge . to zero very fast.
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In Fig. 4 we choose different parameters for the Eq. (4.1): a = −3, b = 1, c = 0.5, d = 0.5 and τ = 1 when (4.1) is
mean square stable. Here we use a very large stepsize h = 1/2 for TS1, TS2 and TS3. The results show that the scheme TS3
maintains the mean-square stability even with large stepsize h.

Example 2. We test the proposed two-step Maruyama methods for the following nonlinear SDDE (Example 5.2.1, [28]):

dX(t) = −
a

1 + t
X(t) +

b
1 + t

X(t) sin(X(t − τ))dW (t), t ≥ 0,

X(t) = t + τ , t ∈ [−τ , 0].
(4.2)

The solution of Eq. (4.2) is mean square stable if 2a − 1 ≥ b2 and b ≠ 0 [28].
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Fig. 8. Simulations with TS3 and TS4. (a): TS4, h = 1/16; (b): TS3, h = 1/4; (c): TS4, h = 1/64; (d): TS3, h = 1/64.

We take a = 100, b = 10 and τ = 1.
It is shown from Figs. 5 and 6 that the schemes TS3 and TS5 maintain their mean-square stability for nonlinear SDDE

(4.2); TS1 and TS4 are conditionally mean-square stable. In some range of stepsize h, smaller h leads to a greater instability,
comparing to (a), (c) in Fig. 5 and (a), (c) in Fig. 6.
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Fig. 10. Simulations with TS3 and TS5. (a): TS3, h = 1/2; (b): TS5, h = 1/2; (c): TS3, h = 1; (d): TS5, h = 1.

Example 3. We test the proposed two-step Maruyama methods for the following nonlinear stochastic delay differential
2-dimensional system:

dX1(t)
dX2(t)


=


A

X1(t)
X2(t)


+ B


sin(X1(t − τ))
cos(X2(t − τ))


dt + C


X1(t)
X2(t)


dW1(t)
dW2(t)


, (4.3)

where

A =


−28 0
0 −30


, B =


2 −1/2

1/4 1


, C =


1 3/2

5/2 −1/2


.

When t ∈ [−τ , 0], X1(t) = t + τ and X2(t) = et . Based on Corollary 2.2 [24], we know that solutions of system (4.3) are
exponentially mean-square stable.

From Fig. 7, we observe that the solutions obtained by scheme TS2 blow up for h = 1/4 and are exponentially mean-
square stable when h = 1/16 ((a) and (c)) and the solutions obtained from exponentially mean-square stable scheme TS5
are mean-square stable for both h = 1/4 and h = 1/16, see Fig. 7(b) and (d). It is shown from Fig. 8 that TS3 performs
good exponentially mean-square stability. Meanwhile, TS4 is conditionally mean-square stable, and the smaller step size
h = 1/64 is needed (compare to TS2).
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We compare solutions obtained by the schemes TS1, TS4 and TS6 in Fig. 9. Fig. 9(a) shows that neither of them aremean-
square stable for h = 1/4, and the solution from the explicit scheme TS6 blows up faster than that from implicit scheme
TS1 and TS4. On the other hand, the explicit scheme TS6 performs better than the scheme TS1 and TS4 when h = 1/8 as we
can see from Fig. 9(b) that TS6 is mean-square stable for h = 1/8 but TS1 and TS4 are not. Fig. 9 indicates that the explicit
scheme TS6 requires less restricted time step size h for mean-square stability than the implicit scheme TS1 and TS4 do.

In Fig. 10, we test the proposed schemes TS3 and TS5 with very large step size h = 1/2 and h = 1, the schemes
TS3 and TS5 are maintaining their exponential stability in mean-square sense for nonlinear stochastic delay differential
system (4.3).

5. Conclusion

We have proposed a family of exponentially mean-square stable two-step Maruyama schemes. It has been proved that
the proposed schemes can maintain the exponential mean-square stability of the linear SDDE for every step size of integral
fraction of the delay in the equation. Numerical examples show that this family of numerical methods exhibits exponential
mean-square stability for both linear and some particular nonlinear SDDE and 2-dimensional SDDEs. The numerical results
suggest that our proposed scheme can be adopted for general nonlinear SDDEs, but further numerical studies are required.
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