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Abstract: This paper proposes a novel method for polynomial approximation of rational Bézier curves with 

constraints. Different from the previous techniques, for a given rational Bézier curve ( )tr , a polynomial curve ( )sq  

with a parameter transformation ( )s t , such that ( ( ))tq  is the closet point to the point ( )tr ,  is considered to 

approximate it. To minimize the distance between these two curves in the L2 norm produces a similar effect as that 

of the Hausdorff distance. We use a rational function ( )s t  of a Möbius parameter transformation to approximate the 

function ( )t . The method can preserve parametric continuity or geometric continuity of any , ( , 0)u v u v   orders at 

two endpoints, respectively. And applying the least squares method, we deduce a matrix-based representation of the 

control points of the approximation curve. Finally, numerical examples show that the reparameterization-based 

method is feasible and effective, and has a smaller approximation error under the Hausdorff distance than the 

previous methods.  

Keywords: rational Bézier curves, polynomial approximation, Möbius parameter transformation, reparameterization, 

the least squares method  

 

1. Introduction 

Rational Bézier curves have been widely used for geometric modeling in computer aided geometric 

design (CAGD). It realizes the uniform representation of conic sections and polynomial parametric curves. 

Rational Bézier curves not only enjoy all the properties that their nonrational counterparts possess, but 

also can be modified their shapes by changing their weights used as shape parameters [1]. However, as 

applications grow in size, people often meet with some inconvenience in directly processing rational 

Bézier curves. First of all, with the rapid expansion and development of digital technology, data exchange 

and transmission between different modeling systems are getting more and more frequently. Then 

conversion between rational curves and polynomial curves is absolutely necessary. Secondly, differential 

and integral operations of rational curves are very complicated, even cannot be calculated. And it is not 

easy to obtain geometric information of rational curves, for example, curvature, torsion, volume, and so 

on. Therefore, approximation of rational curves by polynomial curves is an important and fundamental 

task in CAD/CAM.  

In 1991, Sederberg and Kakimoto [2] first proposed the famous hybrid approximation algorithm for 

polynomial approximation of rational curves, and its convergence condition [3], bound estimation on the 

moving control point [4] and the convergence condition for hybrid polynomial approximation to higher 

derivatives of rational curves [5,6] were studied. Then in the past twenty years, many techniques for  
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approximating rational curves by polynomial curves have been developed [7-9,12,13]. Floater [7] 

constructed polynomial curves to interpolate rational curves in a Hermite sense with high order 

approximation. Huang et al [8] presented a very simple method for approximating a rational Bézier curve 

by Bézier curves with control points obtained by successive degree elevation. Lu [9] presented an 

iteration method for polynomial approximation of rational Bézier curves based on the weighted 

progressive iteration approximation (abbr. WPIA) property [10]. Recently, Lewanowicz and Woźny 

applied the dual constrained Bernstein basis polynomials [11] to derive a polynomial curve approximating 

a rational Bézier curve with endpoints constraints in the L2 norm [12]. The same approximation curve is 

also obtained by Cai and Wang using the least squares method [13]. The approximation methods 

proposed in [12] and [13] are mathematically equivalent. However, it should be pointed out that they are 

based on completely different ideas, and the numerical algorithms implementing them differ substantially. 

From the point of view of the computational cost of the algorithm, the method in [12] is more efficient 

than that in [13]. 

In all of the abovementioned methods, the distance metric between two parametric curves is the 

Euclidean distance (L2 metric), the Manhattan distance (L1 metric), or the Chebyshev distance (L∞ metric). 

As we all know, the most appropriate metric for the curves in geometrical terms would be the Hausdorff 

distance [14]. For example, for a parametric curve with different parametric representations, the Lp 

(p=1,2,∞) distance between these curves is nonzero, but the Hausdorff distance is zero. However, it is 

very difficult to accurately calculate the Hausdorff distance for parametric curves. Therefore, similarly to 

[15], we use a polynomial curve after a parameter transformation ( )s t  to approximate the rational 

curve. Here the approximation curve at the parameter 0( )t  is the closest point to the given curve at 0t  

for 0 [0,1]t  . Then a new distance function is defined as the Euclidean distance between the given curve 

and the approximation curve after reparameterization, which produces a similar effect as the Hausdorff 

distance [15]. The function ( )t  may be very complicated and it is almost impossible to calculate the 

minimum of the new distance function. However, it is interesting to note that the control points and the 

shape of a rational Bézier curve after a Möbius parameter transformation remain unchanged, while only 

the weights change. So we want to find a rational function of a Möbius parameter transformation to 

approximate the function ( )t . The main advantage lies in that the method can preserve parametric 

continuity or geometric continuity of high order at two endpoints of the rational curve and the 

approximation curve, respectively. Using the least squares method, the optimal approximation curve with 

constraints under the new distance metric is obtained. The control points of the approximation curve can 

be very quickly computed by multiplying the column vector composed of the control points of the given 

curve by a matrix that is pre-calculated before processing approximation. 

The rest of the paper is laid out as follows. We give a brief introduction to rational Bézier curves and 

define the new distance metric in Section 2. In Section 3, we describe the problem of constrained 

polynomial approximation of rational Bézier curves using reparameterizatrion. Then we propose an 

efficient algorithm for polynomial approximation with constraints recurring to the Möbius parameter 

transformation and the least squares method in Section 4. Numerical examples are presented in Section 5 

to confirm the effectiveness of this algorithm. Finally, we conclude the paper with the description of 

future work in Section 6. 
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2. Preliminary 

Definition 1. A rational Bézier curve of degree n  is represented by [1] 
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i

i n   are the associated weights. To guarantee every control point is 

valid [1], we provide that all the weights are positive.  

For the rational Bézier curve ( )tr of degree n  expressed as (1), do a Möbius parameter 
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Here the control points and the shape of the rational curve (1) remain unchanged, while the weights 

become , ( 0,..., )i

i i
i n    .  

In most previous methods [7-9,11,13], a polynomial Bézier curve ( )tq  with the parameter t  is found 

to approximate the rational curve ( )tr . And the distance function between the two curves in the L2 norm 

is often defined by  

1 2

0
( , ) ( ) ( ) dd t t t r q r q . 

In this paper, we discuss the same new distance function in the L2 norm as in [15] 

1 2

0
( , ) ( ) ( ( )) d ,d t t t  r q r q  
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where ( ): [0,1] [0,1]t   is a strictly increasing continuous function such that 
0

( ( ))tq is the closest 

point to the point 
0

( )tr  for 
0

[0,1]t  . To minimize ( , )d r q  produces a similar effect as that of the 

Hausdorff distance. Chen et al used a piecewise linear function to approximate the function ( )t [15]. 

Considering that the shape and control points of the rational curve ( )tr  keep unchanged and only the 

weights changed after the Möbius parameter transformation (2), we use the inverse function of ( )t s  to 

approximate ( )t . And the new distance function is estimated by 

1 2

0
( , ) ( ) ( ( )) d ,d t s t t  r q r q                                                    (4) 

where the parameter transformation  
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is the inverse function of ( )t s (2). Obviously, ( ): [0,1] [0,1]s t   is again a Möbius parameter 

transformation. It is a strictly increasing continuous function and satisfies (0) 0, (1) 1s s  . When the 

parameter equals to 1, i.e., 1  , the new distance function (4) returns to the conventional 
2

L -distance 

function. 

Definition 2. We call two curves ( )tr  and ( )sq  have geometric continuity of , ( , 0)u v u v   orders at two 

endpoints respectively, if there exists a parameter transformation 
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( ), ( ) 0
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And we call ( )tr  and ( )sq  preserve parametric continuity of , ( , 0)u v u v   orders at two endpoints, if 

( )s f t  is an identical transformation, i.e., ( )f t t . 

For the sake of brevity, we denote 
( , )u vG -continuity by geometric continuity of , ( , 0)u v u v   orders 

at two endpoints, and denote 
( , )u vC -continuity by parametric continuity of , ( , 0)u v u v   orders at two 

endpoints. Clearly, since 
1

0 1
( ) 0, ( ) 0

t t
s t s t 

 
     , ( )tr  and ( )sq  satisfy 

( , )u vG -continuity, 

if 
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3. Problem Description 

Given a rational Bézier curve ( )tr  of degree n  expressed as (1), to find a Möbius parameter 

transformation ( )s s t  (5) and a Bézier curve ( )sq  of degree m  expressed as 

0
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such that the similar Hausdorff distance function  ( , )d r q  (4) reaches minimum. Meanwhile, ( )tr  and 

( )sq  have parametric continuity or geometric continuity of , ( , 0, 1)u v u v u v m     orders at two 

endpoints, respectively.  

Obviously, to minimize  ( , )d r q  is very difficult, because the parameter of the approximation curve 

( ( ))s tq  is t  but not s . So the substitution rule for integrals is introduced to address this problem, and an 

alternative distance function 

1 2

0
( , ) ( ( )) ( ) d ( ),d t s s t s  r q r q                                                  (8) 

is used, where ( )t s shown as in (2) is the inverse function of ( )s t . According to (2) and the definition of 

differential expression, we have 
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For the sake of simplicity, we rewrite ( )sq  (7) in matrix form as 
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4. Polynomial approximation of rational curves 

In order to distinguish the constrained and unknown control points, we divide the column vector 
n

R  

composed by the control points of ( )tr  into three parts, i.e., 
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n u
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1
( ,..., , )
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R r r r are the constrained control points, and 

2 T

1 2 1
( , ,..., )

n u u n v   
R r r r  are the unknown ones of the curve ( )tr . And 

m
Q  is handled in a similar 

fashion. To obtain the constrained approximation curve ( )sq  and the Möbius parameter transformation 

( )s t , first we present a necessary and sufficient (or sufficient) condition for the two curves preserving 

parametric continuity (or geometric continuity) of ,u v  orders at two endpoints respectively, and obtain 

the constrained control points of the approximation curve ( )sq ; next, we use the golden section search 

method to find the optimal value of   such that the similar Hausdorff distance function (9) reaches 

minimum and calculate the other unknown control points according to the least squares method. 

4.1. Constrained control points of the approximation curve 

It is very hard to calculate the constrained control points of ( )sq  directly from the geometric 

continuous condition (6). The reason is that the reparameterized approximation curve ( ( ))s tq  is a 

composite function, and the high order derivatives of the composite function are computationally difficult. 

The following lemma is introduced to tackle this issue.  

Lemma 1. Given two curves ( )tr  (1) and ( )sq  (7) with the parameter function ( )s t  (5), the curves 

preserve geometric continuity of ,u v  orders at two endpoints respectively, if the following equations  
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are true. Here ( )t s  is defined by (2). 
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0 0 0 0

d ( ) d ( ( )) d ( ) d ( )
.

d d d d

u u u u u u

u u u u

t s t s

s t t s s t s

s s s s
   

  
r q

                                (15) 

According to the definition of ( )s t  (5), we have 

0

d ( ) !
0.

d

u u

u u

t

s t u

s 


   

Then (15) is revised as 

0 0

d ( ( )) d ( )
.

d d

u u

u u

s s

t s s

s s
 


r q

 

Combining (14) and the abovementioned equation, we obtain 
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Therefore, it is shown that indeed the statement holds for u . Since both the basis and the inductive step 

have been proved, then the statement holds for all u . And Lemma 1 is proved. 

To obtain a reparameterized approximation curve ( ( ))s tq  with endpoints constraints, the necessary 

and sufficient condition for 
( , )u vC -continuity and the sufficient condition for 

( , )u vG -continuity in matrix 

form is given in the following theorem. 

Theorem 1. The rational Bézier curve ( )tr  (1) and the Bézier curve ( )sq  (7) satisfy (12) if and only if 

the following matrix equations hold: 

1 1

1 0 1 1
( ) ( , ,..., ) ,

m u n
diag      Q N λ R                                          (16) 
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3 3
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 is the binomial coefficient, and 
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 
 
 
 

λ

λ = λ

λ

                                                             (18) 

where 
1 2
, λ λ  and 

3
λ are the diagonal matrices of order 1, 1u n u v     and 1v  , respectively. 

Proof. The curve ( ( ))t sr  in (12) is defined by (3), and it has the same shape and control points as those 

of ( )tr , only has different weights  ( 0,1, , )k

k k
k n     from ( )tr . Then according to (3) and (12), 

we can directly obtain (16) and (17) by Theorem 2.3 in [13]. The theorem is proved.  

Remark 1. The curves ( )tr  and ( )sq  satisfy 
( , )u vG -continuity if (16) and (17) hold, i.e., it is a sufficient 

condition. The curves ( )tr  and ( )sq  satisfy 
( , )u vC -continuity if and only if (16) and (17) hold when we 

set 1  . That is, the parameter transformation is ( )s t t . It is a necessary and sufficient condition for 

( , )u vC -continuity. 

4.2. Unknown control points of the approximation curve 

Note that for the sake of clarity, we also divide m
B  into three parts as 

1 2 3( , , )
m m m m
B B B B , where 
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1 2 3

0 1 1 2 1 1
( ( ), ( ),..., ( )), ( ( ), ( ),..., ( )), ( ( ),..., ( ), ( )).m m m m m m m m m

m u m u u m v m m v m m
B s B s B s B s B s B s B s B s B s

     
  B B B  

Then an alternative function of the distance function (9) is expressed in matrix form as   

2

1 1 2 2 3 3

1
2

20

1

( , ) d .
( (1 ))

n n m m m m m m

n
d s

s s
 



  


 

B λWR B Q B Q B Q
B λω

r q  

To minimize the object function 
2 ( , )d r q , the derivatives of 

2 ( , )d r q with respect to the elements of 

2

m
Q  are zero. That is 

   
T T

2 2 12
1 1

1

2 2 20 0

( ( , ))
2 d 2 d

( ) ( (1 )) ( (1 ))

m n m m

n m

m n

d
s s

s s s s

  
 


  

     
B B B Br q

λWR Q
Q B λω

 

   
T T

2 2 2 3
1 1

2 3

2 20 0
2 d 2 d .

( (1 )) ( (1 ))

m m m m

m m
s s

s s s s
 

 
 

    
B B B B

Q Q 0  

The abovementioned equation can be rewritten in matrix form as 

1 2 3

2 1 2 3
,

n m m m
   N λWR M Q M Q M Q 0                                              (19) 

where 

2
: ( 2, 3,..., ;1,2,..., 1),u u m v n   N = N  

1

( 1) ( 1) 20

( ) ( )
( ) , d ,

( (1 ))

m n

i j

ij m n ij

n

B s B s
n n s

s s
  


 N =

B λω
                                            (20) 

1
: ( 2, 3,..., ;1,2,..., 1),u u m v u   M = M  

2
: ( 2, 3,..., ; 2, 3,..., ),u u m v u u m v     M = M  

3
: ( 2, 3,..., ; 1,..., , 1),u u m v m v m m     M = M  

1

( 1) ( 1) 20

( ) ( )
( ) , d , 0 , 

( (1 ))

m m

i j

ij m m ij

B s B s
m m s i j m

s s
  

  
 M =                                (21) 

The notation ( ; )M  denotes the submatrix of the matrix M  obtained by extracting the specific rows 

and columns, and ( ; )N  is treated analogously. Obviously, for any nonzero ( 1)m u v   -

dimensional column vector α , we have 
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2
2

1
T

2
0

d 0.
(1 )

m s
s s

 
  

  


α
α α

B
M  

It is clear from the definition that the matrix 2M  is a positive definite matrix, see [17]. So it is invertible. 

The unknown control points of the approximation curve are obtained by 

2 1 1 1 1 3

2 2 2 1 2 3
.

m n m m

    Q M N λWR M M Q M M Q                                       (22) 

Therefore, the control points 
m

Q  of the approximation curve with endpoints 
( , )u vG -continuity can be 

calculated by (16), (17) and (22). 

Remark 2. For a polynomial approximation with endpoints 
( , )u vC -continuity, the control points 

m
Q  also 

can be calculated by (16), (17) and (22). Here, the parameter   of the matrices 
1
( )N and 

3
( )N  in (16) 

and (17) is equal to 1. 

Remark 3. For a polynomial approximation without endpoints constraints, the matrixes 
1

N  and 
3

N  have 

no meanings. And its control points 
m

Q  are represented by 

1 ,
m n

Q M NWλR  

where the matrixes N  and M  are defined by (20) and (21), respectively. 

 4.3. Minimization of the new distance function 

After expressing all the control points of the approximation curve by the variable  , the new 

distance function (9) can be revised as 

2
1

20

1
( , ) d

( (1 ))

n n

m m

n

d s
s s

 


 
 

B λWR
r q B Q

B λω
 

 T T T

, , , , , ,

1

2 ,
n i n i m i n i m i m i

i






   R WλVλWR Q NλWR Q MQ          (23) 

where  

 

1

( 1) ( 1) 20

( ) ( )
( ) , d ,

( (1 ))

n n

i j

ij n n ij

n

B s B s
v v s

s s
  

 
 

V
B λω

                               (24) 

the matrixes W  and λ  are defined as in (11), and the matrixes N  and M  are shown as in (20) and (21),  

respectively,   is the dimension of the control points ( 0,1,..., )
i

i nr  and ( 0,1,..., )
j

j mq , ,n i
R  
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(i=1,2,…,  ) is the column vector composed by the i-th coordinate of the control points 
0 1
, ,...,

n
r r r  in 

space 
 ,  and similar for 

,m i
Q . 

Remark 4. For a polynomial approximation without endpoints constraints, the distance error is  

 T T 1

, ,

1

( , ) ,
n i n i

i

d


  



 r q R Wλ V N M N λWR  

where the matrixes N  and M  are defined by (20) and (21), respectively, 
,n i

R  and   are defined as 

shown in (23).  

Obviously, ( , )d r q  is a function of one-variable  . So we need to find an optimal value of   such 

that the distance function (23) which is also be denoted by ( )d   reaches its minimum value. Due to the 

complicated representation of the object function ( )d  , it is impossible to obtain an explicit solution for 

the approximation. This function minimization can be accomplished by many numerical methods, e.g., 

one-dimensional search with first derivatives, Brent’s method in one dimension, see Chapter 10 in [18]. 

Since the derivative of the function (23) is hardly calculated, we use the golden section search in one 

dimension to solve it [18]. We should first choose the initial bracketing triplet of abscissas ax, bx, cx (such 

that bx is between ax and cx, and the distance error function ( )d bx  is less than both ( )d ax  and ( )d cx ). 

Readers can refer to [18] for more details of how to choose the initial bracketing triplet.  

In order to calculate the elements of the matrixes N , M  and V , we need to calculate the integral of 

rational polynomials in (20), (21) and (24). As we know, it is very hard to integrate explicitly. So we 

consider using the numerical integration methods for good results. Here we apply the composite 

Simpson’s rule to handle (20), (21) and (24). Suppose that the interval [0,1] is split up in H  subintervals, 

with  H  an even number. Then the composite Simpson’s rule is given by 

2 1 2
1

2 2 1
0

1 1

1
( , )d ( , 0) 2 ( , ) 4 ( , ) ( , 1) ,

3

H H

i i

i i

f t t f f t f t f
H

    




 

 
    

 
   

where i
t ih  for 0,1,..., 1i H  , ( , )f t is an integrand. To balance the speed and the accuracy of the 

numerical integration, we found that 50 100H   works well. 

 

5. Numerical examples 

We compare our method with some well-known methods for polynomial approximation of rational 

Bézier curves. For convenience, we call the method in [8] as the Degree Elevation method, abbreviated as 

the DE method; the method in [9] as the Weighted Progressive Iteration method, abbreviated as the WPI 

method; the method in [13] as the Least Squares method, abbreviated as the LS method.  



13 

 

At first, we compare these methods on scalar functions. We can see that our method and the LS 

method have an approximation curve of arbitrary degree and preserve C
(u,v)

–continuity. And our method 

also preserves G
(u,v)

–continuity. Whereas the DE method cannot obtain an approximation curve of low 

degree (m<n), and the DE and WPI methods only preserve C
(0,0)

–continuity. Next, we present some 

numerical examples to compare the approximation errors under the Hausdorff distance as follows.  

In the reparameterization method, we use the golden section search method to find the optimal value 

of the parameter   to minimize the distance error function. As we all know, after doing a Möbius 

parameter transformation (2) to the rational Bézier curve (1), the weights become , ( 0,..., )i

i i
i n    . 

If the values of the weights 
i

  have almost the same magnitude order, the parameter   should not be too 

big, such as 10  . For example, if 10   and the degree of the rational curve is 6, then the first and 

last new weights are 
6

0 0 6 6
, 10     . The difference in the magnitude order of the value of the 

new weights is too big. Obviously, the Möbius parameter transformation is not good. Experimentally, we 

found that [ax, bx, cx] = [0.2, 1, 5] is a suitable initial bracketing triplet for the golden section search 

method, if the values of the weights 
i

  have almost the same magnitude order. 

In addition, to achieve high accuracy of approximation error, it is desirable that the given tolerance ε 

in golden section search be as small as possible. However, since the computation time increases as the 

given tolerance decreases, we need to seek a balance between the speed and the accuracy. After our 

testing, we found that ε=10
-3

 works well. 

Example 1. The given curve is a rational Bézier curve of degree 4 with control points (0, 0), (2, 2), (3, 0), 

(4, -2), (4, 0) and the associated weights 5, 4, 2, 1, 1. We produce a 3-degree Bézier curve satisfying 

C
(0,0)

–continuity with the given curve. For the approximation curve obtained by our method, the parameter 

λ is 1.480160, the iteration number for golden section search is 16, and the control points are (0, 0), 

(2.4696, 2.9089), (3.6159, -2.1736), (4, 0). The resulting curves are shown in the left-hand side of Fig. 1 

and the corresponding error distance curves are illustrated in the right-hand side of Fig. 1. Also see Table 

1 for comparisons of approximation errors under Hausdorff distance for different degrees. As shown in 

Table 1, the resulting approximation effect using our method is better than those of the other methods. 

Table 1. Hausdorff distance comparisons of different approximation methods with different degrees. 

m 

Our method                        the LS method                the WPI method                    the DE method 

                                                 (the reduction factor is 0.95)   

λ          Iter             error                          error                   Iter               error                             error 

3              1.480160    16     6.037148e-002          2.532691e-001             6         3.337644e-001                      N/A 

4              1.305553    17     1.689231e-002          5.082158e-002           10         7.247904e-002              1.994508e-001 

5              0.893806    15     1.175240e-002          1.377046e-002           10         1.917103e-002              1.205578e-001 

 

Example 2. (Also Example 3 in [12]) The given curve is a rational Bézier curve of degree 9 with the 

control points (17, 12), (32, 34), (-23, 24), (33, 62), (-23, 15), (25, 3), (30, -2), (-5, -8), (-5, 15), (11, 8) 

and the associated weights 1, 2, 3, 6, 4, 5, 3, 4, 2, 1. We find a 10-degree Bézier curve satisfying C
(0,0)

–

continuity with the given curve. The parameter λ in our method is 0.868737, and the iteration number is 

15. The iteration number in WPI method is 6. The approximation errors under the Hausdorff distance 

from our method, LS method, WPI method and DE method are 0.246726, 0.317210, 3.253819, and 
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3.652520, respectively. The resulting curves are shown in the left-hand side of Fig. 2 and the 

corresponding error distance curves are illustrated in the right-hand side of Fig. 2. Clearly, our method 

also has a better approximation. 

 

(b)                                                            

(a)                                                            

Fig. 1. (a) The rational Bézier curve of degree 4 and the resulting C(0,0) approximation curves 

of degree 3 obtained by different methods. (b) The corresponding error distance curves. 
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Fig. 2. (a) The rational Bézier curve of degree 9 and the resulting  C(0,0) approximation curves 

of degree 10 obtained by different methods. (b) The corresponding error distance curves. 

(b)  

(a)  
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A 10-degree Bézier approximation curve satisfying G
(1,1)

–continuity or C
(1,1)

–continuity with the 

given curve is also discussed. For the case of G
(1,1)

–continuity, the parameter λ in our method is 0.884231, 

the iteration number is 15, and the approximation errors under the Hausdorff distance is 0.402770. For the 

case of C
(1,1)

–continuity, the parameter λ in our method is 0.980849, the iteration number is 15, and the 

approximation error under the Hausdorff distance is 0.691012. 

Example 3. The given curve is a rational Bézier curve of degree 8 with the control points (0, 0), (0, 2), (2, 

10), (4, 6), (6, 6), (11, 16), (8, 1), (9, 1), (10, 0) and the associated weights 1, 2, 3, 9, 12, 20, 30, 4, 1. We 

find a 5-degree Bézier curve with different continuity to approximate the given curve, see Fig. 3 for 

illustration. The approximation curves preserve C
(-1,-1)

-continuity, C
(0,0)

-continuity, and C
(1,1)

-continuity at 

the endpoints, respectively. The parameter λ are 0.905420, 1.046971, and 0.713693, respectively. The 

interation numbers are 15, 16 and 15, and the corresponding Hausdorff distance errors are 0.583830, 

0.245371, and 0.560612, respectively. 

 

Example 4. The given curve is a rational Bézier curve of degree 7 with control points (0, 0), (0.5, 2), (1.5, 

2), (2.5, -2), (3.5, -2), (4.5, 2), (5.5, 2), (6, 0) and the associated weights 4, 10, 18, 8, 9, 40, 12, 20. We 

produce a 5-degree Bézier curve satisfying C
(0,0)

–continuity with the given curve. The parameter λ is 

0.681401, and the iteration number is 15 in the reparameterization method. The iteration number in WPI 

method is 8. The Hausdorff distance errors provided by our method, LS method, and WPI method are 

0.074820, 0.101251, and 0.094650, respectively. 

 

6. Conclusions 

In this paper, we have proposed a reparameterization-based method for polynomial approximating 

rational Bézier curves with constraints. We use a new distance function 

Fig. 3. The rational Bézier curve of degree 8, while the black dotted, blue dash, magenta dash-dotted curves are the 

approximation curves of degree 5 with C(-1,-1)-continuity, C(0,0)-continuity, and C(1,1)-continuity, respectively. 
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1 2

0
( , ) ( ) ( ( )) d ,d t s t t  r q r q  

to obtain a better approximation effect under the Hausdorff distance. Using the least squares method and 

the golden section search method in one dimension, we get the best approximation curve under the new 

distance. Also the approximation curve and the given curve can satisfy parametric continuity or geometric 

continuity of any , ( , 0)u v u v   orders at two endpoints, respectively. Numerical examples show that our 

method has a better approximation effect than the previous methods under the Hausdorff distance. 

To further improve the approximation results, we will consider doing a piecewise Möbius parameter 

transformation to the rational Bézier curve in future. However, it is not easy to determine how many 

pieces we need within given tolerance and the values of the subdivision points and the Möbius parameters. 

In addition, this paper only considers the case of rational curves. As for future work, the 

reparameterization method can also be applied to the cases of rational tensor-product Bézier surfaces and 

rational triangular Bézier surfaces.  
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