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a b s t r a c t

As a remedy to the instability of the Galerkin finite element formulation, symmetric
stabilization techniques such as the continuous interior penalty, the subgrid and local
projectionmethodswere proposed and analyzed by Burman andHansbo (2006) [10], Badia
and Codina (2009) [11], Becker and Braack (2001) [12], andNafa andWathen (2009) [13]. In
this work we consider a coupled Stokes–Darcy problem, where in one part of the domain
the fluid motion is described by Stokes equations and for the other part the fluid is in a
porous medium and described by Darcy law and the conservation of mass. Such systems
can be discretized by heterogeneous finite elements in the two parts, such as Taylor-Hood
or MINI elements for the Stokes domain, and mixed elements of Raviart–Thomas elements
type for the Darcy domain. Here, we discretize by standard equal-order finite elements
enriched with bubbles functions and use local projection stabilization technique (LPS) to
stabilize the method and control the fluctuation of the velocity divergence vector on the
Darcy region. We also suggest a way to control the natural H(div) velocity.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The transport of substances between surface water and groundwater has attracted a lot of interest into the coupling of
viscous flows and porous media flows ([1–6]). In this work we consider coupled problems in fluid dynamics where the fluid
in one part of the domain is described by the Stokes equations and in another (porousmedia) part by the Darcy equation and
mass conservation. Velocity and pressure on these two parts are mutually coupled by interface conditions derived in [7–9].
Such systems can be discretized by heterogeneous finite elements in the two parts, e.g. Taylor-Hood or MINI elements for
the Stokes part, andmixed elements of Raviart–Thomas type or Brezzi–Douglas–Marini elements for the Darcy region. Such
an approach is analyzed by Layton et al. in [1]. Inmore recent works, unified approaches becomemore popular. For instance,
discontinuous Galerkinmethods were analyzed by Girault and Riviere [3], mixedmethods by Karper et al. [4], and stabilized
methods by Braack et al. [6]. In this work, we take the same variational formulation of the coupled problem as in [1,4], but
we discretize by standard equal-order finite elements enrichedwith bubbles functions and use local projection stabilization
technique (LPS) together with the grad–div term to control the natural H(div) velocity norm on the Darcy region. We note
that the various types of stabilization cited in references [10–13] can be applied to the Stokes–Darcy using a similar analysis.

2. Coupled systems of equations

LetΩ ⊂ Rd (d = 2 or 3) be a bounded domain split into two subdomainsΩS andΩD withΩS ∩ΩD = ∅. The Stokes part
ΩS and the Darcy partΩD have a common interface ΓI = ΩS ∩ΩD. The regionΩS is filled by a fluid and the Stokes system
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has the velocity and the pressure solutions v and p defined onΩS by

−2ν div (D(v))+ ∇p = f , inΩS (1)
div v = 0, inΩS (2)

with symmetric deformation tensor D(v) =
1
2 (∇v + (∇v)T ), external force f and constant viscosity ν > 0.

In the Darcy regionΩD the velocity v and the pressure p are solutions of the Darcy system

K−1v + ∇p = f inΩD (3)
div v = g, inΩD (4)

where, the permeability K = K(x) is a positive definite symmetric tensor and g denotes an external Darcy force.

2.1. Boundary conditions

On ΓS = ∂ΩS \ ΓI , we prescribe homogeneous Dirichlet conditions for the velocity v.

v = 0 on ΓS . (5)

The boundary ofΩD is split into three parts ∂ΩD = ΓI ∪ ΓD,1 ∪ ΓD,2. We prescribe zero flux on ΓD,1 and a homogeneous
Dirichlet condition for the pressure on ΓD,2.

v · n = 0 on ΓD,1 (6)

p = 0 on ΓD,2. (7)

The boundary condition onΓD,1 involves the Euclidean scalar product of the velocity and the outer normaln on the boundary,
pointing fromΩD intoΩS . This boundary condition ensures a zero mass flux.

On the interface ΓI , the coupling of the two regimes is modeled by the so-called Beaver–Joseph–Saffman conditions.
Since velocity and pressure are not necessarily continuous across ΓI , we use the notations vS := v |ΩS

, vD := v |ΩD
, pS :=

p |ΩS
, pD := p |ΩD

, and [φ] := φD−φS the jump of a scalar quantityφ acrossΓI .With these notation, the boundary conditions
on the interface ΓI read:

[v · n] = 0, (8)
−2ν D(vS)n · n = [p], (9)
(vS − 2α νD(vS)n) · t = 0. (10)

Eq. (8) ensures mass conservation across the interface, (9) represents a balance of pressure forces and viscous forces
acting across the interface. Eq. (10) involving the tangential vector t, is the Beaver–Joseph–Saffman condition ([7–9]) which
gives a relation of the tangential slip velocity vS · t and the normal derivative of the tangential velocity component in the
Stokes region.

3. Variational formulation

As variational formulation we consider the so-called L2-formulation used by Karper et al. [4]. Using standard notations
for function spaces, the variational spaces for velocity and pressure are

V :=

v ∈ L2(Ω)d | vS ∈ H1(ΩS)

d, v = 0 on ΓS, v · n = 0 on ΓD,1


Q :=

p ∈ L2(Ω)d | pD ∈ H1(ΩD), p = 0 on ΓD,2


X := V × Q .

(11)

Due to the positive definiteness of Kwith respect to the L2(ΩD) norm ∥.∥ΩD , there exist positive real numbers k1 and k2
such that

k1∥v∥2
ΩD

≤ (K−1v, v) ≤ k2∥v∥2
ΩD
, ∀ v ∈ V . (12)

For convenience, we define the associated bilinear forms on the parts of the domain by

AS(v, p;w, q) := (2ν D(v),D(w))ΩS − (p, divw)ΩS + (div v, q)ΩS +


ΓI

1
α
(vS · t) (wS · t) ds

AD(v, p;w, q) := (K−1v,w)ΩD + (∇p,w)ΩD − (v,∇q)ΩD .

Hence, the bilinear form for the coupled problem is the sum of AS(v, p;w, q), AD(v, p;w, q), and a term to enforce the
continuity of the normal part of the velocities across the interface.

A(v, p;w, q) := AS(v, p;w, q)+ AD(v, p;w, q)+


ΓI

(pD (wS · n)− (vS · n) qD) ds. (13)
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The variational formulation of the coupled Stokes–Darcy system becomes:

find (v, p) ∈ X solution of

A(v, p;w, q) = (F;w, q), ∀(w, q) ∈ X (14)

with right hand side

(F;w, q) = (f,w)ΩS + (g, q)ΩD . (15)

It can easily be shown that a sufficiently regular solution (v, p) ∈ X of (14), i.e. vS ∈ H2(Ωs)
d, vD ∈ H1(ΩD)

d, p ∈

H1(Ωs∪ΩD) is also a classical solution of (1)–(2) and (3)–(4). An alternative formulation is the so-calledH(div)-formulation
which uses the term −(p; divw)ΩD + (div v, q)ΩD instead of (w,∇p)ΩD − (∇q, v)ΩD ([11]).

We equip the spaces V, Q , and X with the norms

|||v|||V :=


2ν ∥D(v)∥2

ΩS
+
K−1v

2
ΩD

+


ΓI

1
α
(vS · t)2 ds

1/2

,

|||p|||Q :=

∥p∥2

ΩS
+ ∥∇p∥2

ΩD

1/2
,

|||(v, p)|||X :=

|||v|||2V + |||p|||2Q

1/2
.

The existence and uniqueness of the solution of problem (14) follows from Brezzi’s conditions for saddle point problems,
namely

A(v, p; v, p) = |||v|||2V, ∀v ∈ V (16)

and

inf
q∈L2(ΩS )

sup
v∈H1(ΩS )d

(div v, q)ΩS

∥∇v∥ΩS
∥q∥ΩS

> βS,

inf
q∈H1(ΩD)

sup
v∈L2(ΩD)d

−(v,∇q)ΩD

∥∇v∥ΩD
∥q∥ΩD

> βD. (17)

These conditions lead to the coupled inf–sup condition (17)

inf
q∈Q

sup
v∈V

(div v, q)ΩS − (v,∇q)ΩD
∥∇v∥2

ΩS
+ ∥v∥2

ΩD

1/2
∥q∥Ω

> β, (18)

with a positive constant β > 0. Which ensures the existence and uniqueness of the pressure field p ∈ Q .
The next lemma follows from the continuous inf–sup conditions (17) ([6]).

Lemma 1. For every (v, p) ∈ X there is w ∈ V such that w = 0 on ∂ΩS satisfying

A(v, p;w, 0) ≥
1
2
|||p|||2Q − c1|||v|||2V

with |||w|||V ≤ c2|||p|||Q ,

with positive constants c1 and c2.

4. Finite element discretization

Let Th be a shape-regular partition of triangular or tetrahedral elements ofΩ ([14]). The diameter of element T ∈ Th will
be denoted by hT and the global mesh size is defined by h := max{hT , T ∈ Th}. Let Pr(T ) be the space of all polynomials on
T with maximal degree r ≥ 1. Here we will use the continuous finite element space

Pr(Th) :=

vh ∈ L2(Ω) ∩ C(Ω) : vh |T ∈ Pr(T ), T ∈ Th


. (19)

For the discrete spaces Vh and Qh we use the equal-order finite element spaces of piecewise polynomials of degree r .
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4.1. Stabilization

It is known that the standardGalerkin discretizations of Stokes andDarcy systems are not stable for equal-order elements.
This instability stems from the violation of the discrete analog of the inf–sup condition. One possibility to circumvent this
condition is to work with a modified bilinear form Ah(.; .) by adding a stabilization term Sh(.; .), i.e.,

Ah(vh, ph;w, q) = Ah(vh, ph;w, q)+ Sh(vh, ph;w, q) ; (20)

such that the stabilized discrete problem reads

Ah(vh, ph;w, q) = F (w, q) ∀(w, q) ∈ Vh × Qh. (21)

In this work, we will use the one level local projection stabilization of the pressure gradient and the divergence of the
velocity on the Darcy domain. This leads to a weaker consistent method, but the consistency error decreases, with mesh
size as h → 0, at a faster rate than the optimal order of approximation. In this paper, we will consider the following form of
a symmetric stabilization:

Sh(vh, ph;w, q) = (αh κh∇p, κh∇q)Ω + (τhκh(div vh), κh (divw))Ω , (22)

where, κh is a locally acting fluctuation operator

κh : L2(Ω)d → L2(Ω)d. (23)

αh : Ω → R+ and τh : Ω → R+ are patch-wise constant functions, on each element, that are chosen such that the
consistency error asymptotic rate is greater that the rate of convergence of the method. Hence, they should be carefully
selected so that the method gets enough stability.

4.2. Fluctuation and interpolation operators

The general framework developed in [15] and [16] has opened up the way to consider continuous approximations and
discontinuous projections which are defined on the same mesh Th. Let πh be the Ld2-projection into the space Dh = Dd

h =
Pdisc
r−1(Th)

d, κh = I − πh, with I denoting the identity and Pdisc
r (Th) the space of discontinuous polynomial functions of

maximal degree r ≥ 1 on Th

Pdisc
r (Th) =


v ∈ L2(Ω) : v |T ∈ Pr(T ), ∀T ∈ Th


. (24)

Let bT be a bubble function defined on T ∈ Th. Then, the velocity and pressure approximation spaces Vh and Qh. Here, for
the Stokes systemwe use a generalized MINI element [17,18] and for the Darcy systemwe use a polynomial approximation
of order r supplemented by local bubble functions, i.e.

Vh = Pb
r (Th)

d
∩ V,

Qh =


Pr(Th), if T ⊂ ΩS

Pb
r (Th), if T ⊂ ΩD,

with

Pb
r (Th) = {v ∈ C(Ω) : v |T ∈ Pr(T )+ bTPr−1(T ), ∀T ∈ Th}.

The linear projection operator πh:

L2(Ω)

d
→ Dh defined as patch-wise L2-projection πh |T :


L2(T )

d
→ (Pr−1(T ))d ,

T ∈ Th, such that

(πh |T ϕ − ϕ,ψ)T = 0, ∀ψ ∈ Dh |T , ∀ϕ ∈

L2(T )

d
. (25)

A simple local projection scheme of loworder for this class, corresponding to r = 1, is to useMINI element approximation
for the stokes system and continuous piecewise linear approximation for the Darcy system. Then, we enrich the velocity and
pressure spaces of the latter by a cubic bubble function, anduse the space of piecewise constant functions as projection space.
Hence, one of the merits of the proposed method is that it uses essentially the same type of approximation on both parts of
the domain but with slightly different approach.

The following properties hold for the fluctuation operator:

Lemma 2. The local fluctuation operator κT = κh |T is locally L2-stable, i.e.

∥κTq∥0,T ≤ C∥q∥0,T . (26)

In addition, κTq is small for smooth functions q, in the sense that

∥κTq∥0,T ≤ Chk
|q|k,T ; ∀T ∈ Th, q ∈ Hk(T ), k ≤ r. (27)

Here and in the error analysis below C > 0 is a suitable generic constant independent of the mesh parameter h.
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In order to investigate the stability and derive the asymptotic error estimates we use the following interpolation
operator [15]

jh : H1(Ω) → Pb
r (Th) ∩ H1(Ω) (28)

with the orthogonality property

(jhv − v,w) = 0, ∀v ∈ H1(Ω), ∀w ∈ Dh (29)

and the following stability and approximation properties∇jhv

T ≤ cs |∇v|T , ∀v ∈ H1(Ω), T ∈ Th, (30)jhv − v

m,T ≤ cihr+1−m

|v|m,T , ∀v ∈ Hr+1(Ω), m = {1, 2} , T ∈ Th. (31)

The vector-valued version for velocities is denoted by

jh : V ∩

H1(Ω)

d
→ Vh. (32)

4.3. Stabilization parameters

For the analysis of the method the mesh parameters αh and τh are chosen such that

αh |T :=


0, if T ∈ Th and T ⊂ ΩS

k−1
T , if T ∈ Th and T ⊂ ΩD

(33)

with

kT = inf{(K−1v, v)T , v ∈ L2(Ω)d, ∥v∥T = 1}. (34)

Since K−1 is a positive definite, kT > 0. In addition, we choose τh such that

τh |T :=


0, if T ∈ Th and T ⊂ ΩS
1, if T ∈ Th and T ⊂ ΩD.

(35)

Below we prove the discrete stability of the method with respect to the norm

|||(v, p)|||h = (|||(v, p)|||X + Sh(v, p; v, p))
1
2 . (36)

5. Stability

Theorem 3. Let Th be a quasi-regular partition and assume that the mesh parameters αh and τh be as in (33) and (35). Then, the
following discrete inf–sup condition holds for some positive constant β̃ independent of the mesh size h.

inf
(vh,ph)∈Xh\{0}

sup
(wh,qh)∈Xh\{0}

A(vh, ph;wh, qh)
|||(vh, ph)|||Xh |||(wh, qh)|||Xh

≥ β̃. (37)

Proof. First, let (vh, ph) ∈ Xh, then the diagonal testing gives

Ah(vh, ph; vh, ph) = A(vh, ph; vh, ph)+ Sh(vh, ph; vh, ph) = |||v|||2V + Sh(vh, ph; vh, ph). (38)

Second, letw be as in Lemma 2, associated with (vh, ph) ∈ Xh, and set z = jhw − w. Then,

A(vh, ph; jhw, 0) = A(vh, ph;w, 0)+ A(vh, ph; z, 0)

≥
1
2
|||ph|||2Q − c2|||vh|||2V + AS(vh, ph; z, 0)+ AD(vh, ph; z, 0).

Next, we estimate AS(vh, ph; z, 0) and AD(vh, ph; z, 0) as follows:

AS(vh, ph; z, 0) = (2νD(v),D(z))ΩS + (∇ph, z)ΩS +


ΓI

1
α
(vhS · t) (zS · t) ds. (39)
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The first two terms bounded using Cauchy inequality together with the approximation, stability, and inverse inequalities(νD(v),D(z))ΩS

 ≤ ν ∥D(v)∥ΩS
∥D(z)∥ΩS

≤ ν1/2|||v|||V ∥∇z∥ΩS

≤ ν1/2ci|||v|||V ∥∇w∥ΩS

≤ ν1/2c2ci|||v|||V|||ph|||Q
and

(∇ph, z)ΩS ≤

 
T∈Th,T⊂ΩS

h−2
T ∥z∥2

0,T

1/2  
T∈Th,T⊂ΩS

h2
T ∥∇ph∥2

0,T

1/2

≤ cicI ∥∇w∥ΩS
∥ph∥ΩS

≤ cicIc2|||ph|||2Q .

The integral term is bounded using the trace theorem and the H1-stability by
ΓI

1
α
(vhS · t) (zS · t) ds

 ≤ cγα−1/2
|||vh|||V ∥∇z∥ΩS

≤ cγ csα−1/2
|||vh|||V|||ph|||Q .

Hence, by Young’s inequality we obtain

AS(vh, ph; z, 0) ≤ (2ν1/2c2ci + cγ csα−1/2)|||v|||V|||ph|||Q + cicIc2|||ph|||2Q

≤
1
8
|||ph|||2Q + c3|||v|||2V (40)

with c3 = c3(ν, α). For the Darcy bilinear form we have

AD(vh, ph; z, 0) = (K−1vh + ∇ph, z)ΩD

= (K−1vh, z)ΩD + (κh∇ph, z)ΩD

≤
K−1/2vh


ΩD

K−1/2z

ΩD

+ α
−1/2
h Sh(vh, ph; vh, ph)1/2 ∥z∥ΩD

≤


cK
K−1/2vh


ΩD

+ α
−1/2
h Sh(vh, ph; vh, ph)1/2


∥z∥ΩD

≤


cK
K−1/2vh


ΩD

+ α
−1/2
h Sh(vh, ph; vh, ph)1/2


c2ci|||ph|||Q

≤
1
8
|||ph|||2Q + c4|||vh|||2V + c5Sh(vh, ph; vh, ph). (41)

Further, the Cauchy–Schwarz inequality and the L2-stability of jh give

Sh(vh, ph; jhw, 0) ≤ C̃Sh(vh, ph; vh, ph)
∇jhw


ΩD

≤ C̃c2csSh(vh, ph; vh, ph)|||ph|||Q

≤
1
8
|||ph|||2Q + c6Sh(vh, ph; vh, ph). (42)

Combining (40)–(42) we have

Ah(vh, ph; jhw, 0) ≥
1
8
|||ph|||2Q − C1(|||vh|||2V + Sh(vh, ph; vh, ph))

scaling jhwwe obtain

Ah(vh, ph; jhw, 0) ≥ |||ph|||2Q − C1(|||vh|||
2
V + Sh(vh, ph; vh, ph)). (43)

Choosing (wh, qh) = (vh, ph)+
1

1+C (j
hw, 0) ∈ Xh we obtain

Ah(vh, ph;wh, qh) = |||vh|||2V + Sh(vh, ph; vh, ph)−
C1

1 + C1
(|||vh|||2V + Sh(vh, ph; vh, ph))

=
1

1 + C1
(|||vh|||2V + |||ph|||2Q + Sh(vh, ph; vh, ph))

=
1

1 + C1
|||(vh, ph)|||2h
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and

|||(wh, qh)|||h ≤ |||(vh, ph)|||h +
1

1 + C
|||(jhw, 0)|||h

≤ |||(vh, ph)|||h +
∇jhw


Ω

≤ C2|||(vh, ph)|||h,

gives the required result

inf
(vh,ph)∈Xh\{0}

sup
(wh,qh)∈Xh\{0}

Ah(vh, ph;wh, qh)
|||(vh, ph)|||h |||(wh, qh)|||h

≥ β̃ (44)

with β̃ = C−1
2 /(1 + C). �

6. Error analysis

In this section we derive error estimates.

Theorem 4. Assume that the solution (v, p) of the Stokes–Darcy problem (14) is such that (v, p) ∈ V∩Hr+1(Ω)d×Q ∩Hr+1(Ω)
and (vh, ph) be the solution of the stabilized problem (21). Then, the following error estimate holds

|||(v − vh, p − ph)|||h ≤ Chr(|v|r+1,Ω + |p|r+1,Ω), (45)

with a constant C independent of h.

Proof. As usual, we split the error into interpolation error and projection error

(v − vh; p − ph) = (v − jhv; p − jhp)+ (jhv − vh; jhp − ph). (46)

Using the stability estimate of Theorem 3 we know there exists (wh, qh) ∈ Xh,with |||(wh, qh)|||h ≤ C̃ satisfying

|||(jhv − vh, jhp − ph)|||h ≤
1

β̃
sup

(wh,qh)∈Xh
Ah(v − vh, p − ph;wh, qh)

+
1

β̃
sup

(wh,qh)∈Xh
Ah(jhv − v, jhp − p;wh, qh). (47)

By Galerkin orthogonality property we obtain

Ah(v − vh, p − ph;wh, qh) = Sh(v, p;wh, qh). (48)

So, the first term can be bounded as follows:

Ah(v − vh, p − ph;wh, qh)
|||(wh, qh)|||h

=
Sh(v, p;wh, qh)

|||(wh, qh)|||h
.

Since

Sh(v, p;wh, qh) ≤ Sh(v, p; v, p)
1
2 Sh(wh, qh;wh, qh)

1
2

≤ Sh(v, p; v, p)
1
2 |||(wh, qh)|||h.

Then, the approximation properties of κh imply

Ah(v − vh, p − ph;wh, qh)
|||(wh, qh)|||h

≤ C̃(αh ∥ κ∇p∥2
Ω + τh ∥κdiv v∥2

Ω)
1/2

≤ C̃hr(α
1/2
h |p|r+1,Ω + τ

1/2
h |∇v|r,Ω)

i.e. the projection error is of order O(hr).
To estimate the second term above consider separately each individual term

AS(jhv − v, jhp − p;wh, qh) ≤ ν
∇(jhv − v)


ΩS

∥Dwh∥ΩS +
jhp − p


ΩS

∥∇wh∥ΩS

+
jhv − v


ΩS

∥qh∥ΩS
+ Cα

∇(jhv − v)

ΩS
,

and

AD(jhv − v, jhp − p;wh, qh) ≤
K−1/2(jhv − v)


ΩD

K−1/2wh

ΩD

+
∇(jhp − p)


ΩD

∥wh∥ΩD

+ ∥∇qh∥ΩD

 jhv − v

ΩD
.
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Then, the approximation properties and the Poincare inequality for the integral terms give the required result

|||(v − vh, p − ph)|||h ≤ Chr(|v|r+1,Ω + |p|r+1,Ω), (49)

which proves the estimate of the theorem.

Remark 5. Another type of stabilization that enforces the control of the natural H(div) velocity norm on the Darcy region
is to include the term (τhdiv v, divw) in the bilinear form of the variational problem and use

Sh(vh, ph;w, q) = (αh κh∇p, κh∇q)Ω . (50)

Then, using the same tools as above we obtain the same error estimates as in Theorem 4. �
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