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Abstract

Checkerboard pressure is one of the most significant problems arising

from the use of collocated grids for fluid dynamic simulations using the

finite-volume method. The original Rhie-Chow momentum interpolation

technique, termed Original Momentum Interpolation Method (OMIM) was

proposed to eliminate the non-physical saw-tooth pressure oscillations. How-

ever, it was soon proved that the steady-state solutions obtained with this

technique were under-relaxation factor dependent. Nevertheless, standard

OMIM is still commonly used in several CFD codes like OpenFOAM R©, the

software used for this work. In this paper the OMIM and a possible cor-

rection for under-relaxation dependency, which has been implemented in

OpenFOAM R©, are discussed in detail. The proposed methodology is com-

pared and contrasted with OMIM in terms of accuracy of the solution and

speed of convergence for several classical pressure-velocity segregated algo-

rithms for steady state solvers; namely SIMPLE, SIMPLE-C, SIMPLE-R
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and PISO. A classical laminar 2D cavity is used as the base test-case. The

study is then extended to a more complex 2D airfoil profile (NACA0012).

In the cases considered mesh uniformity and orthogonality are progressively

reduced and turbulence starts playing an important role, limiting therefore

the convergence of the cases and the performance of the correction.

Keywords: Rhie-Chow, Momentum interpolation, SIMPLE algorithm,

pressure-velocity coupling, OpenFOAM

1. Introduction

The use of co-located grid arrangement for finite-volume simulations of

incompressible flows has gained high popularity in the recent years in both

general-purpose and commercial flow solvers. While an improved stability

and robustness can be obtained with a staggered grid, the co-located grid

arrangement can significantly reduce memory storage and calculation time,

and simultaneously simplify the implementation of solvers; these are in fact

the main reasons explaining its extended use.

One of the main problems arising from the use of co-located grid arrange-

ment is the checkerboard pressure field. Due to the nature of the Navier

Stokes equations, pressure appears in the momentum equations inside a gra-

dient term. Application of central-difference spatial discretization to this

term in a co-located grid produces a decoupling of pressure and velocity cell

values, leading to saw-tooth pressure oscillations. In 1983, Rhie and Chow [1]

proposed a technique for momentum-based interpolation of mass fluxes on

cell faces, imitating the staggered-grid discretization. This interpolation is

based on formulating a discretized momentum equation for the face, so that
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the computation of the driving pressure force involves the pressure value at

the nodes adjacent to the face in question and, therefore at the node it-

self. This technique removes the checkerboarding problem for the most part,

which is the reason of its wide acceptance and intensive use in unstructured

grid solvers. This Momentum Interpolation Method underwent extensive de-

velopment for complex geometries [2], unsteady flows [3, 4, 5, 6] or flows with

large body forces [7].

Velocity under-relaxation is usually required to achieve convergence. When

this is the case, the Original Momentum Interpolation by Rhie-Chow presents

some additional problems. Majumdar [8] and Miller et al. [9], independently

reported that solutions obtained with the original Rhie-Chow interpolation

method are dependent on the velocity under-relaxation factor. Furthermore,

the use of very small under-relaxation factors could make the checkerboard

pressure reappear. The corrected version of momentum interpolation pro-

posed in [8] termed as the Majumdar Momentum Interpolation Method

(MMIM) completely eliminates this dependency. The main objective of this

paper is to conduct a systematic study of the MMIM on the solution accu-

racy and convergence speed applied to four well-known segregated pressure-

velocity coupling algorithms, namely, SIMPLE (Semi-Implicit Method for

Pressure Linked Equations) [10], SIMPLER (SIMPLE-Revised) [11], SIM-

PLEC (SIMPLE-Consistent) [12] and PISO (Pressure Implicit with Splitting

of Operators) [13].

The open-source finite-volume CFD code OpenFOAM R© [14] is used in

the present study. The authors have conducted extensive development of

this computational tool for LES simulations [15, 16, 17, 18, 19, 20, 21, 22].
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This development is extended to include the implementation of MMIM and

alternative pressure-velocity coupling algorithms not present in the stan-

dard version at time the work has been performed; namely SIMPLE-C and

SIMPLE-R.

In order to test the influence that MMIM has on the different algorithms

commented before, two test-cases are selected, namely a simple 2D laminar

lid-driven cavity and a NACA0012 airfoil. In the first case, the theory behind

MMIM is analyzed. Several mesh types (orthogonal uniform, orthogonal non-

uniform, triangle, unstructured hex-dominant) and refinement degrees are

evaluated. For the second case a more complex airfoil profile (NACA 0012)

is tested. A 2D structured mesh is used to compute pressure, drag and lift

coefficients for different angles of attack, and compare the results obtained

with different velocity under-relaxation factors when OMIM or MMIM are

used. This case is convenient since turbulence might limit the maximum

convergence achieved by the solver and therefore the correction of momentum

interpolation, which ensures under-relaxation factor independency when fully

convergence of the solver is achieved, might not completely cancel the under-

relaxation factor dependency.

2. Rhie-Chow Momentum Interpolation Method

In the following OMIM is described in detail. Dependency of the steady-

state OMIM solutions on the under-relaxation factor is discussed.

The governing equations for an steady laminar incompressible flow, in the

absence of other body or external forces are:

∂

∂xi
(ρui) = 0 (1)
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∂

∂xj
(ρuiuj) = − ∂p

∂xi
+
∂τij
∂xj

(2)

where xi is te cartesian framework, ui is the velocity component in the xi co-

ordinate, p is the pressure and ρ denotes the density. Assuming a Newtonian

fluid, shear stress τij can be determined by:

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ
∂uk
∂xk

δij (3)

where µ is the dynamic dynamic viscosity and δij is the Kronecker delta.

For the sake of simplicity, the OMIM will be described in a two-dimensional

orthogonal grid as the one shown in Fig. 1.

Fig. 1: Two-dimensional orthogonal grid. N, S, E and W correspond to neighbour cells

of cell P ; n, s, e and w denote cell P faces; ∆x and ∆y are cell P dimensions in the x

and y spatial coordinates; δyn, δys, δxe and δxw correspond to cell-center to cell-center

distances from cell P to neighbour cells.

Under this considerations, the conservation equation for a general flow

variable φ in the steady laminar case described above, in the absence of any

source term, can be written as:

∂

∂x
(ρuφ) +

∂

∂y
(ρvφ) =

∂

∂x

(
Γφ
∂φ

∂x

)
+

∂

∂y

(
Γφ
∂φ

∂y

)
(4)
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where u and v are the x and y components of the velocity field and Γφ is

the diffusion coefficient. Integrating Eq. (4) in the computational cell, and

applying Green-Gauss theorem the semi-discretized form of the equation can

be written as follows:

∆y [(ρuφ)e − (ρuφ)w] + ∆x [(ρvφ)n − (ρvφ)s] =

∆x

[
Γn
δyn

(φN − φP )− Γs
δys

(φP − φS)

]
+∆y

[
Γe
δxe

(φE − φP )− Γw
δxw

(φP − φW )

]

(5)

where central differencing scheme has been used for diffusive terms. In

the discretization of divergence terms, many schemes are available in liter-

ature (first-order upwind, second-order upwind, central differencing scheme,

QUICK [23]). Second and higher-order schemes have been widely used in ap-

plications involving orthogonal and uniform meshes. However, the stability

of higher-order schemes for applications involving turbulent flows in complex

geometries is not guaranteed and convergence may be difficult to achieve.

First or second-order methods are best suited for such applications.

Application of first-order upwind discretization scheme to convective terms

of Eq. (5) yields the following final discretized form of Eq. (4).

APφP = AEφE + AWφW + ANφN + ASφS + bP (6)
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where

AE =
Γe∆y

δxe
+ max(−ρue∆y, 0) (7)

AW =
Γw∆y

δxw
+ max(ρuw∆y, 0)

AN =
Γn∆x

δyn
+ max(−ρvn∆x, 0)

AS =
Γs∆x

δys
+ max(ρvs∆x, 0)

bP =−max(ρue∆y, 0)(φe − φP ) + max(−ρue∆y, 0)(φe − φE)

−max(−ρuw∆y, 0)(φw − φP ) + max(ρuw∆y, 0)(φw − φW )

−max(ρvn∆x, 0)(φn − φP ) + max(−ρun∆x, 0)(φn − φN)

−max(−ρvs∆x, 0)(φs − φP ) + max(ρus∆x, 0)(φs − φS)

where deferred-correction procedure [24] is used for the term bP .

AP coefficients can be determined by

AP = AE + AW + AN + AS + Ab (8)

whereAb is the mass residual. TheAb term is usually dropped since divergence-

free conditions are required for the velocity field:

Ab = ρue∆y − ρuw∆y + ρvn∆x− ρvs∆x (9)

Eq. (8) is true as long as conservative discretization schemes are used [24].

It should also be noticed that a diagonally dominant matrix (AP ≥
∑

NB |ANB|
where NB refers to the neighbour cells of cell P ) is a sufficient condition for

convergence of iterative methods and the inequality must be satisfied at least

at one node [24].
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In order to reach convergence under-relaxation factors are typically ap-

plied to dependent variables to limit the change in consecutive iterations.

From Eq. (6) we can write the final value of φP as:

φP =
αφ
AP

(AEφE + AWφW + ANφN + ASφS + bP ) + (1− αφ)φ0
P (10)

where superscript 0 is used for the quantities calculated at the previous

iteration and αφ is the under-relaxation factor for variable φ. Based on the

above discussion, Eq. (6) can be written as:

A′PφP = AEφE + AWφW + ANφN + ASφS + b′P (11)

where A′P = AP/αφ and b′P = bp +
(1−αφ)

αφ
APφ

0
P .

Let us now consider the equation for x-component of the velocity field,

u. Before under-relaxation uP would follow an equation similar to Eq. (6).

If the pressure term is separated from the source we can write:

uP =

∑
NB ANBuNB + bP

AP
− ∆y(pe − pw)

AP
(12)

which can also be expressed in general form:

uP = HP −DP (∇p)P (13)

where HP =
∑
NB ANBuNB+bP

AP
, DP = ∆x∆y

AP
and (∇p)P is the x component

of the pressure gradient in cell P . Therefore, for the two contiguous cells E

and P we could write the following equations:

uP =
(
∑

NB ANBuNB + bP )P
(AP )P

− ∆y(pe − pw)P
(AP )P

(14)

uE =
(
∑

NB ANBuNB + bP )E
(AP )E

− ∆y(pe − pw)E
(AP )E

(15)
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Mimicking formulation followed for uE and uP , Rhie-Chow proposed a

pseudo-equation for the face velocity ue:

ue =
(
∑

NB ANBuNB + bP )
e

(AP )e
− ∆y(pE − pP )

(AP )e
(16)

which can also be expressed as:

ue = He −De(∇p)e (17)

where He is the first term in the RHS of Eq. (17), De = δxe∆y
(AP )e

and (∇p)e is the

x component of pressure gradient in face e. In the OMIM of Rhie and Chow,

unknown terms of RHS of Eq. (16) are obtained by linear interpolation as

follows:

(∑
NB ANBuNB + bP

AP

)

e

= f+
e

(∑
NB ANBuNB + bP

AP

)

E

+(1−f+
e )

(∑
NB ANBuNB + bP

AP

)

P
(18)

1

(AP )e
= f+

e

1

(AP )E
+ (1− f+

e )
1

(AP )P
(19)

where f+
e is a weighting factor that for the mesh shown in Fig. 1 can be

determined as f+
e = ∆xP

2δxe
. Therefore, Eq. (17) becomes:

ue = He −
(

1

Ae

)
∆y(pE − pP ) (20)

where the over-bar denotes linear interpolation.

A similar procedure can be applied for other face velocities of cell P . For

the sake of simplicity and brevity, this procedure is shown only for face e.

Substituting Eq. (18) into Eq. (16), considering Eqs. (14) and (15), and
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re-ordering terms we obtain:

ue =
[
f+
e uE + (1− f+

e )uP
]

− ∆y(pE − pP )

(AP )e

+

(
f+
e

∆y(pe − pw)E
(AP )E

+ (1− f+
e )

∆y(pe − pw)P
(AP )P

)
(21)

The first term in the RHS of Eq. (21) corresponds to the linear interpolation

of cell values, while the last two terms can be regarded as a correction term

that smooths the pressure field, and removes the undesired checkerboard

behavior. Assuming De ≈ De and (D∇p)e ≈ De ∇pe, and considering Eqs.

(13) and (17), Eq. (21) can be re-written as:

ue = ue +De

(
∇pe − (∇p)e

)
(22)

which is the classical Rhie-Chow interpolation formula.

However, in general under-relaxation is required for the momentum equa-

tions. When considering under-relaxation, Eq. (14) becomes:

uP =
αu (

∑
NB ANBuNB + bP )

P

(AP )P
+ (1− αu)u0

P −
αu∆y(pe − pw)P

(AP )P

= αu

[
HP −

∆y(pe − pw)P
(AP )P

]
+ (1− αu)u0

P

= hP −
αu∆y(pe − pw)P

(AP )P
(23)

where hP = αuHP + (1− αu)u0
P . Similarly, for cell E we find:

uE = hE −
αu∆y(pe − pw)E

(AP )E
(24)

and hE = αuHE + (1− αu)u0
E.
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If Rhie-Chow momentum interpolation is now introduced, following Eq.

(20) we can write:

ue = he − αu
(

1

Ae

)
∆y(pE − pP )

=
(
f+
e hE + (1− f+

e )hP
)
− αu

(
1

Ae

)
∆y(pE − pP ) (25)

Using definitions of hE and hP in terms of HP and HE, ue can be written as:

ue = αu

[
He −

(
1

Ae

)
∆y(pE − pP )

]

︸ ︷︷ ︸
Momentum interpolation

+(1− αu)
[
f+
e u

0
E + (1− f+

e )u0
P

]
︸ ︷︷ ︸

Linear Interpolation

(26)

The above discussion makes it clear that the direct application of Rhie-Chow

technique to the under-relaxed momentum equations would yield a solution

that will not converge to the desired momentum interpolation (first term),

but will contain a portion of linear interpolation. Therefore, when a small

enough under-relaxation factor is used, the second term in Eq. (26) will

be the main contribution, and pressure oscillations may re-appear, since no

momentum interpolation is used. Besides, Eq. (26) shows that final solution

will depend on the value of the under-relaxation factor. Majumdar [8] and

Miller [9] independently realized this problem and proposed a solution to

eliminate this dependency.

3. Majumdar Momentum Interpolation Method

In [8], convergence of ue is forced to the full momentum interpolation

value by applying explicit relaxation:

ue = αu

[
He −

(
1

Ae

)
∆y(pE − pP )

]
+ (1− αu)u0

e (27)
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In an iterative procedure, ue will converge to the momentum interpolation

value, as described in Eq. (20). Expressing He in terms of HE and HP , and

later in terms of hE and hP , similarly to what has been done in Eqs. (23)

and (24), it follows:

ue =
[
f+
e hE + (1− f+

e )hP
]

+ αu

(
1

Ae

)
∆y(pE − pP )

+ (1− αu)
[
u0
e − f+

e u
0
E − (1− f+

e )u0
P

]
(28)

where last term is commonly known as the Majumdar correction.

As pointed out by B. Yu et al. [4], face velocities are used for three different

computations in the overall solution procedure, namely, (i) to determine the

coefficients in the discretization of the momentum equations, (ii) to derive the

pressure equation and (iii) they are required in the mass residual coefficient

(if it is not dropped). Following the suggestion of [4], ue is calculated using

Eq. (28) for any of the three computations listed above in all simulations

discussed in this paper.

4. Pressure-velocity coupling algorithms

Due to the simplicity of their implementation and the lower peak memory

requirements, segregated pressure-velocity coupling algorithms are commonly

preferred over coupled algorithms. In this section four possible pressure-

velocity coupling algorithms for steady state simulations are described to-

gether with a summary of the iterative procedure followed in each of them.
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4.1. SIMPLE

The SIMPLE algorithm (Semi-Implicit Method for Pressure Linked Equa-

tion) is probably one of the most widely used and it forms the basis for the

derivation of the rest of models that will be explained later. The basic idea of

the SIMPLE algorithm is to update velocity and pressure field in each itera-

tion so that the continuity equation is always satisfied, and velocity equations

approach their solution progressively. To accomplish this goal, a projection

method is used. For simplicity, SIMPLE equations will be shown for the case

of OMIM (Majumdar correction will not be shown in the equations).

At the beginning of the m-iteration, known pressure pm−1 is used to

compute a velocity field u∗ by solving the velocity equation in the momentum

predictor step. For instance, the semi-discretized form of x-velocity is:

APu
∗
P =

∑

NB

ANBu
∗
NB + bP −∆y(pm−1

e − pm−1
w ) (29)

where the pressure gradient contribution to the source term has been sepa-

rated from the rest of source terms, represented in bP . Typically velocity-

equation would be under-relaxed, as explained in Section 2:

u∗P =
αu (

∑
NB ANBu

∗
NB + bP )

P

(AP )P
+ (1− αu)um−1

P − αu∆y(pm−1
e − pm−1

w )P
(AP )P

(30)

The term (1 − αu)u
m−1
P can be added to the source term (bP )P . Eq. (30)

becomes:

u∗P =
αu (

∑
NB ANBu

∗
NB +BP )

P

(AP )P
− αu∆y(pm−1

e − pm−1
w )P

(AP )P
(31)
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where (BP )P = (bP )P + (AP )P (1 − αu)u
m−1
P . Using the OMIM, the face

velocities will follow an equation similar to Eq. (25):

u∗e =
αu (

∑
NB ANBu

∗
NB +BP )

e

(AP )e
− αu∆y(pm−1

E − pm−1
P )

(AP )e
(32)

Since u∗ does not satisfy continuity, velocity has to be updated using a

correction u′ so that um = u∗ + u′. Pressure field is updated by adding a

small correction that should vanish as the solution approaches convergence

pm = pm−1+p′. Pressure does not have its natural equation in incompressible

flows, therefore, an equation for p′ is derived so as to guarantee that final

velocity field um is divergence free. At convergence, an equation similar to

Eq. (33) should yield:

ume =
αu (

∑
NB ANBu

m
NB +BP )

e

(AP )e
− αu∆y(pmE − pmP )

(AP )e
(33)

Substracting Eq. (32) from Eq. (33) we obtain:

u′e =
αu (

∑
NB ANBu

′
NB)e

(AP )e
− αu∆y(p′E − p′P )

(AP )e
(34)

In the SIMPLE algorithm the first term in the RHS of Eq. (34) is ne-

glected so that velocity correction becomes:

u′e = −αu∆y(p′E − p′P )

(AP )e
(35)

Neglecting the first term in the above equation can lead to convergence issues

in the use of SIMPLE algorithm in some applications. Using Eq. (35), the

face velocity becomes:

ume = u∗e −
αu∆y(p′E − p′P )

(AP )e
(36)
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Since u∗e is now known, following the same procedure for the other velocity

component v and for the rest of the faces, one may use the continuity equation

to derive an equation for p′. Eq. (1) can be integrated in the cell volume by

using Green-Gauss theorem leading to:

∑

e

ρueSe = 0 (37)

∆y(ρume )−∆y(ρumw ) + ∆x(ρvmn )−∆x(ρvms ) = 0 (38)

When Eq. (36) and similar equations for umw , vmn and vms are introduced

in Eq. (38), an equation for p′ is obtained. Calculation of p′ allows us

to correct pressure and velocity fields. For pressure correction an under-

relaxation factor is usually introduced, so that new pressure becomes pm =

pm−1 +αPp
′. Cell center velocities are computed by an equation derived from

Eq. (36):

umP = u∗P −
αu∆y(p′e − p′w)

(AP )P
(39)

where p′e and p′w are obtained by linear interpolation of cell center values.

A slight variation of the SIMPLE algorithm (hereafter referred to as sim-

plePcorr) can be considered where pressure equation is formulated directly

to solve for p and not for p′ (referred to as simple). In fact, substituting u∗e

from Eq. (32) into Eq. (36):

ume =
αu (

∑
NB ANBu

∗
NB +BP )e

(AP )e
− αu∆y(pmE − pmP )

(AP )e
(40)

where the first term in the RHS is the part of the velocity field without the

pressure term. Introducing Eq. (40) into the continuity equation yields an

equation for pm. Now pressure won’t be directly taken to be the calculated

15



value of pm but it will be relaxed following pm = αpp
m + (1− αp)pm−1. New

cell center velocities would be computed as:

umP =
αu (

∑
NB ANBu

∗
NB +BP )

AP
− αu∆y(pme − pmw )

AP
(41)

For the simulations shown in this paper, pressure under-relaxation factor

αp has been set to 1− αu as recommended by [24].

4.2. SIMPLE-C

The SIMPLE-C (SIMPLE-Consistent) algorithm tries to reduce the lack

of convergence of the standard SIMPLE algorithm by avoiding the fairly

drastic assumption made from Eq. (34) to Eq. (35). It has shown to acceler-

ate convergence in problems where the pressure-velocity coupling is the main

source of deterrent to obtaining a solution. SIMPLE-C procedure is shown

next.

From Eq. (34) we can derive the following:

(AP )eu
′
e = αu

(∑

NB

ANBu
′
NB

)

e

− αu∆y(p′E − p′P ) (42)

By subtracting
∑

NB ANBu
′
e from both sides of the equation we obtain:

(
(AP )e −

∑

NB

ANB

)
u′e = αu

(∑

NB

ANB (u′NB − u′e)
)

e

− αu∆y(p′E − p′P )

(43)

First term in the RHS of Eq. (43) is now neglected, leading to a new

relation between velocity and pressure corrections:

u′e = − αu∆y(p′E − p′P )

(AP −
∑

NB ANB)e
(44)
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The face velocity becomes:

ume = u∗e −
αu∆y(p′E − p′P )

(AP −
∑

NB ANB)e
(45)

By using this definition of the face velocity in the continuity equation

we can again obtain a pressure equation for p′. New pressure would be

obtained from under-relaxation pm = pm−1 + αpp
′ and cell center velocities

are computed from an equation derived from Eq. (45):

umP = u∗P −
αu∆y(p′e − p′w)

(AP −
∑

NB ANB)
(46)

A slightly different version of the explained SIMPLE-C named (simpleCP-

corr) can be obtained by deriving an equation for pm and not for p′ (simpleC ).

Substituting u∗e from Eq. (32) into Eq. (45):

ume =
αu (

∑
NB ANBu

∗
NB +BP )e

(AP )e
−αu∆y(pm−1

E − pm−1
P )

(AP )e
− αu∆y(p′E − p′P )

(AP −
∑

NB ANB)e
(47)

which can be transformed into:

ume =
αu (

∑
NB ANBu

∗
NB +BP )e

(AP )e
(48)

− αu
(

1

(AP )e
− 1

(AP −
∑

NB ANB)e

)
∆y(pm−1

E − pm−1
P )

− αu∆y(pmE − pmP )

(AP −
∑

NB ANB)e

First two terms depend only on already calculated variables and can be

computed. Inserting ume into the continuity equation yields an equation for

pm. As in the SIMPLE algorithm, pressure is under-relaxed pm = αpp
m +

(1− αp)pm−1. New cell velocities are computed as:
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umP =
αu (

∑
NB ANBu

∗
NB +BP )

AP
(49)

− αu
(

1

AP
− 1

AP −
∑

NB ANB

)
∆y(pm−1

e − pm−1
w )

− αu∆y(pme − pmw )

AP −
∑

NB ANB

4.3. PISO

PISO (Pressure Implicit with Splitting of Operators) is another derivation

of the standard SIMPLE algorithm. Once velocity and pressure have been

corrected with the standard simple procedure u∗∗ = u∗+ u′, p∗∗ = pm−1 + p′,

new corrections (pm = p∗∗ + p′′, um = u∗∗ + u′′) may be considered to avoid

neglecting the first term in RHS of Eq. (34) which becomes:

u′′e =
αu (

∑
NB ANBu

′
NB)e

(AP )e
− αu∆y(p′′E − p′′P )

(AP )e
(50)

Since u′ has already been calculated, first term of the RHS can now be

computed. Following (um = u∗∗ + u′′), the face velocity is now:

ume = u∗∗e +
αu (

∑
NB ANBu

′
NB)e

(AP )e
− αu∆y(p′′E − p′′P )

(AP )e
(51)

Using again the continuity equation (note that u∗∗e already satisfies conti-

nuity), Eq. (51) yields an equation for p′′. Cell pressure field is then updated

to pm = p∗∗ + p′′ and cell velocities are calculated as:

umP = u∗∗P +
αu (

∑
NB ANBu

′
NB)

AP
− αu∆y(p′′e − p′′w)

AP
(52)

The standard PISO (known hereafter as pisoPcorr) can be modified so

that pressure equation solves directly for pm (piso). After the first corrector
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step, u∗∗ and p∗∗ are linked by an equation similar to Eq. (40):

u∗∗e =
αu (

∑
NB ANBu

∗
NB +BP )e

(AP )e
− αu∆y(p∗∗E − p∗∗P )

(AP )e
(53)

Substitution of u∗∗e in Eq. (51) yields:

ume =
αu (

∑
NB ANB(u∗NB + u′NB) +BP )e

(AP )e
−αu∆y(p∗∗E − p∗∗P )

(AP )e
−αu∆y(p′′e − p′′w)

(AP )P
(54)

which can also be expressed as:

ume =
αu (

∑
NB ANBu

∗∗
NB +BP )e

(AP )e
− αu∆y(pmE − pmP )

(AP )e
(55)

where the first term in the RHS is the part of the velocity field u∗∗ not

containing the pressure term. The continuity equation yields an equation for

pm, which should not be under-relaxed, and cell velocity can be then updated

to:

umP =
αu (

∑
NB ANBu

∗∗
NB +BP )

AP
− αu∆y(pme − pmw )

AP
(56)

4.4. SIMPLE-R

The SIMPLE-R (SIMPLE-Revised) algorithm is another slight variation

of SIMPLE-like methods. For some particular flow problems, neglecting the
∑

NB ANBu
′
NB terms in pressure correction equation produces too large pres-

sure corrections (which then require under-relaxation). It could also occur

that initial guess of pressure field is much worse than initial guess of velocity

field. Using the standard SIMPLE algorithm, a good initial velocity field

can be greatly altered in the momentum predictor step if one were to use

a pressure field far from the final solution. To address these situations it is

convenient to set a separate equation for pressure computation, which will be
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solved at the beginning of the iteration, and later construct a pressure cor-

rection equation that will only be used to correct the velocity field. Following

these steps, a face velocity could be computed using um−1:

ue =
αu
(∑

NB ANBu
m−1
NB +BP

)
e

(AP )e
− αu∆y(pmE − pmP )

(AP )e
(57)

If this face velocity is used in the continuity equation we obtain an equa-

tion for pm. It is clear that no approximation has been made here and no

term has been neglected. Calculated pm is now used to construct and solve

velocity equations:

(AP/αu) u
∗
P =

∑

NB

ANBu
∗
NB +BP −∆y(pme − pmw ) (58)

Once u∗ is known, Eqs. (36) and (38) can be used to derive a pressure

correction equation for p′, following the exact same steps of the SIMPLE

algorithm. However, in this case, pressure is not corrected (p′ is not added

to current estimation of p), but it is only used to correct the velocity field,

following Eq. (39).

For each of the solvers presented here, the introduced names correspond

to the OMIM (such as simpleC ), while they will be referred to as “solver

name” + Majumdar when MMIM is used (such as simpleCMajumdar).

5. Numerical experiments

In order to test the accuracy and convergence speed of each solver with

and without Majumdar correction, two cases are selected. Simple cases are

chosen in order to perform a systematic study of under-relaxation factor,

mesh type and refinement.
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First, a 2D lid driven cavity case with a Reynolds number of Re = 1000

and an orthogonal uniform mesh serves as a base test to check the theory

behind Majumdar correction, since no other effect could have an influence

on the final solution. This is on account of the fact that no turbulence is

present and mesh can be uniform and perfectly orthogonal. The effect of

mesh refinement is then analyzed for this simplified mesh. Different types

of meshes (non-uniform orthogonal, triangles or unstructured hex-dominant)

are used to study the impact of the meshing on the stability, accuracy and

robustness of the methods. Tests are then repeated for a higher Reynolds

number (Re = 5000) where, even though the flow is still laminar, instabili-

ties are more likely to appear in the numerical solvers. For each of the cases,

velocity profiles along cavity center-line are used to test the accuracy of the

solution. The second case-study for testing the solvers involves the RANS

simulation of a NACA 0012 airfoil profile. Given the shape of the airfoil, it

is not possible to obtain a perfectly uniform orthogonal mesh. Furthermore,

convergence of the solver might be limited by the convergence of turbulence

quantities. Classical characteristic coefficients of the profile; namely pres-

sure, lift and drag coefficients on the upper boundary, are used to compare

numerical solution with experimental data.

For each of the cases analyzed here, convergence of the solvers is checked

by calculating residuals for the continuity and all components of the veloc-

ity equations. Convergence is assumed to be achieved when all normalized

residuals go below a given threshold. In OpenFOAM R© normalized residual

for a given variable φ following Eq. (6) are calculated as follows:
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resφ =

∑N
i=1 | [APφP −

∑
NB ANBφNB − bP ]i |

normFactorφ
(59)

where the first summation is performed in all the cells and normalization

factor is calculated as:

normFactorφ =
N∑

i=1

∣∣∣∣∣

[
APφP −

∑

NB

ANBφNB

]

i

−
[
AP −

∑

NB

ANB

]

i

φ

∣∣∣∣∣+

(60)

+
N∑

i=1

∣∣∣∣∣[bP ]i −
[
AP −

∑

NB

ANB

]

i

φ

∣∣∣∣∣ (61)

where φ is a reference value for the field, calculated as mean value over

the total number of cells (φ =
∑

i [φP ]i /N). At convergence normalization

factor becomes normFactorφ = 2
∑N

i=1 |[bP ]i|.
The continuity error is computed as a volume weighted average of the

mass residual Ab calculated as explained in Eq. (9).

Simple linear matrix solvers have been used for all cases. Pressure and

pressure correction equations are solved with a Preconditioned Conjugate

Gradient solver (PCG), using diagonal incomplete-Cholesky preconditioner

(DIC), while velocity and turbulence quantities are solved using Precondi-

tioned Bi-conjugate Gradient solver (PBiCG) and Diagonal Incomplete LU

preconditioner (DILU). Each outer iteration matrices are solved until an ab-

solute residual of 10−12 or a relative residual (compared to initial residual in

present iteration) of 10−3 is achieved.
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5.1. Lid-driven cavity

Dimensionless laminar lid-driven cavity case (as shown in Fig. 2) has

been studied for Re = 1000 and Re = 5000.

Fig. 2: Dimensionless cavity geometry

Different mesh types are shown in Fig. 3. Number of cells and non-

orthogonality of each of them is shown in Table 1.

Fig. 3: Mesh types tested for cavity case; from left to right: uniform orthogonal, non-

uniform orthogonal, triangles and unstructured hex-dominant

Fig. 4 compares the vertical velocity profile V/Ulid along the horizontal

centerline for both OMIM and MMIM for different mesh refinements using

the SIMPLE algorithm. Mesh refinement from 20 × 20 to 80 × 80 with
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Mesh Number of cells Maximum

non-orthogonality

Uniform orthogonal 2500 0

Non-uniform orthogonal 6400 0

Triangles 4862 37.6

Hex-dominant 48825 47.6

Table 1: Mesh characteristics for cavity case

a uniform mesh are considered. Fig. 4(a) shows that if a 20 × 20 mesh

is used, there is a 4% difference in peak velocity between αu = 0.2 and

0.8. Dependency of the solution quickly reduces with mesh refinement, while

Majumdar correction completely eliminates the dependency. As shown in

Fig. 4, for a resolution higher than 40 × 40 the difference in the solution is

insignificant.
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Fig. 4: Vertical velocity profiles along horizontal center-line for OMIM (thin lines) and

Majumdar correction (thick lines) for several under-relaxation factors: αu = 0.2 (− · −);

αu = 0.5 (—); αu = 0.8 (· · · ). Results are compared to benchmark solution (◦ ◦ ◦). Mesh

refinement increases from left to right: 20× 20, 40× 40, 80× 80.
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If the error in the determination of vertical velocity at point (0.1548, 0.5)

(peak velocity location in the centerline for reference data) is represented

with respect to the number of cells for the uniform mesh case (Fig. 5), it

becomes clear that αu dependency of OMIM is almost negligible for a fine

enough mesh, while Majumdar solution is always independent of αu.
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Fig. 5: Error in the determination of vertical velocity at (0.1548, 0.5) for OMIM (thin

lines) and Majumdar correction (thick lines) for several under-relaxation factors: αu = 0.2

(− · −); αu = 0.5 (—); αu = 0.8 (· · · ).

It was verified that for a given mesh, the solution obtained by all the

pressure-velocity coupling algorithms presented in Section 4 was the same

for a fixed value of αu with OMIM, or for any value of αu if the Majumdar

correction was applied. For the case of Re = 1000 convergence speed of each

combination algorithm - momentum interpolation method, has been checked

for two possible values of αu, 0.2 and 0.8, and for the four meshes described in

Table 1. In particular, the required number of iterations to achieve a residual

lower than 10−6 for both velocity components and continuity is represented
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in Fig. 6.

Analysis of Fig. 6 shows that no significant difference in terms of speed

of convergence is observed for this case and for the algorithms considered,

and that Majumdar correction does not influence the convergence speed.

For a given mesh, number of iterations for all solvers is approximately the

same, as far as the same velocity under-relaxation is considered. Certainly,

all cases with higher under-relaxation factor (αu = 0.8) converge faster than

those with a lower under-relaxation factor (αu = 0.2). As a reminder, all

PISO-derived and SIMPLER-derived algorithms solve twice for a pressure

correction equation, and no pressure under-relaxation is performed, while for

the rest of the algorithms pressure under-relaxation is set to αp = 1−αu and

only one pressure correction equation is solved.

When considering the pressure correction equation, solving for pressure

correction p′ instead of a direct solution for pm slightly increases the number

of iterations until convergence. For a given solver, the influence of applying

Majumdar correction is does not show a clear trend. For instance, when

considering the non-uniform mesh, Majumdar correction accelerates conver-

gence for αu = 0.2 for almost all solvers but it has a negative influence when

αu = 0.8. Considering the hex-dominant mesh, the influence is the opposite,

slightly positive for αu = 0.8 and slightly negative for αu = 0.2 .

When comparing solvers, SIMPLEC-like solvers tend to converge slightly

faster but again no clear trend is observed.

Taking into account the small differences found for Re = 1000, the study

is now extended to the case of Re = 5000. Firstly, mesh convergence of

standard OMIM and Majumdar correction is tested, using in this case either
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Fig. 6: Required number of iterations to reduce all residuals below 10−6 when αu is

fixed to αu = 0.2 (grey) and αu = 0.8 (black). Results are reported for uniform (first),

non-uniform orthogonal (second), hex-dominant (third) and triangles (fourth) meshes.
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a uniform mesh or a non-uniform orthogonal mesh. For this higher Reynolds

case differences are more evident. For the uniform orthogonal mesh, only

coarse meshes allow solvers to converge. Fig. 7 shows how solution changes

with αu for fairly coarse uniform meshes, while Fig. 8 shows the profiles with

more refined non-uniform meshes. Again, Majumdar correction completely

removes the dependency as it can be seen in Fig. 9 where errors in the

determination of vertical velocity at (0.06072, 0.5), corresponding to peak

velocity in the experimental reference, are shown.
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Fig. 7: Vertical velocity profiles along horizontal center-line obtained with uniform or-

thogonal meshes for OMIM (thin lines) and Majumdar correction (thick lines) for several

under-relaxation factors: αu = 0.2 (− · −); αu = 0.5 (—); αu = 0.8 (· · · ). Results are

compared to benchmark solution (◦ ◦ ◦). Mesh refinement increases from left to right:

10× 10, 15× 15, 25× 25.

Following the procedure of the previous case, convergence speed is eval-

uated for the four meshes described in Table 1. As the Reynolds number

increases, convergence becomes more difficult and, depending on the value

of under-relaxation factor, it might not be achievable. It is also observed

that, if convergence is achieved, the solution is exactly the same as long as
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Fig. 8: Vertical velocity profiles along horizontal center-line obtained with non-uniform

orthogonal meshes for OMIM (thin lines) and Majumdar correction (thick lines) for several

under-relaxation factors: αu = 0.2 (− · −); αu = 0.5 (—); αu = 0.8 (· · · ). Results are

compared to benchmark solution (◦ ◦ ◦). Mesh refinement increases from left to right:

40× 40, 60× 60, 80× 80.

the same αu is used for any of the algorithms, or Majumdar correction is

applied. Number of iterations required to achieve convergence is represented

in Fig. 10, where (-1) refers to cases that do not converge.

With the exception of few cases (simplePcorr-simplePcorrMajumdar in

non-uniform orthogonal and hex-dominant meshes, and simpleR-simpleRMajumdar

in hex-dominant mesh), a large velocity under-relaxation factor αu = 0.8

helps the convergence of the cases (which might not be achievable for αu = 0.2

as in the triangles mesh), or increases convergence speed (as in the non-

uniform orthogonal or the hex-dominant mesh). When considering Majum-

dar correction applied to SIMPLE or SIMPLE-C, the general trend is that

it slightly improves convergence speed, even if the effect can be opposite for

some combinations of mesh-αu. In the selection of algorithm, SIMPLE-C is

the most promising, with or without Majumdar correction (considering than
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Fig. 9: Error in the determination of vertical velocity at (0.06070, 0.5) for OMIM (thin

lines) and Majumdar correction (thick lines) for several under-relaxation factors: αu = 0.2

(− · −); αu = 0.5 (—); αu = 0.8 (· · · ). Results are shown for uniform mesh (left) and

non-uniform orthogonal mesh (right).

only one pressure correction equation is solved for iteration).

Summing up, when fully converged results are achieved, Majumdar cor-

rection eliminates αu-dependency, without changing convergence speed sig-

nificantly. Dependency of OMIM on αu is quickly reduced as mesh refine-

ment increases. When several algorithms are considered, SIMPLE-C seems

the most promising alternative to the standard SIMPLE algorithm. Under

these considerations effects of momentum interpolation and pressure-velocity

algorithm will now be tested on a more complex geometry where coupling

between velocity field and turbulence variables becomes important.

30



Fig. 10: Required number of iterations to reduce all residuals below 10−6 when αu is

fixed to αu = 0.2 (grey) and αu = 0.8 (black). Results are reported for uniform (first),

non-uniform orthogonal (second), hex-dominant (third) and triangles (fourth) meshes.
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5.2. NACA 0012 airfoil profile

The turbulent flow (Re ≈ 6 · 106 based on the chord length) around a

NACA 0012 airfoil profile is studied under incompressible conditions (M =

0.15). As proposed in ERCOFTAC references, a structured C-grid of 14336

cells (225 × 65 points with 129 points on airfoil surface) is employed, giving

an approximate average y+ ≈ 1 over the airfoil profile. Fig. 11 shows a

representation of the mesh, which satisfies the characteristics shown in Table

2.

Fig. 11: Representation of the mesh used in NACA 0012 case

Number of cells 14336

Max. non-orthogonality 77.2

Avg. non-orthogonality 10.2

Max. skewness 0.62

Table 2: Mesh characteristics for cavity case

A freestream turbulence intensity of 0.052% together with a freestream

turbulent viscosity νt = 0.009ν are used to set the turbulence boundary con-

ditions. First order upwind spatial discretization is used for divergence terms
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of turbulence variables and LUST (Linear Upwind Stabilized Transport) is

used for convective term in velocity equations. While velocity and pressure

under-relaxation are set to different values during this study, turbulence vari-

ables under-relaxation factor has been fixed to 0.8.

Typical flow features are used for the evaluation of numerical solutions.

In particular, experimental results for pressure distribution [25], lift and drag

coefficients [26] on the upper wall for different angles of attack (β) are used

as reference. The mesh used in this study is chosen after a mesh convergence

analysis. Standard SIMPLE (simple) algorithm with OMIM and αu = 0.7

is used with four increasingly refined meshes; coarse (3584 cells), medium

(14336 cells), fine (57344 cells) and very fine (229376 cells) leading to the

drag coefficient values and pressure coefficient profiles shown in Figs. 13 and

12 for β = 0.
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Fig. 12: Mesh convergence of pressure coefficient on upper wall: coarse(—); medium

(−−−); fine(− ·−); very fine (· · · ). Results are compared to experimental results (◦ ◦ ◦).

According to this, medium mesh is selected for the study, since it is the

coarsest mesh for which mesh convergence is acceptable.
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Fig. 13: Mesh convergence of drag coefficient

As a starting point for momentum interpolation comparison, standard

SIMPLE algorithm with OMIM or MMIM is used to compute Cp, CD and

CL for a range of angles of attack β: 0, 6, 12 and 15 degrees and for different

values of αu: 0.2, 0.5 and 0.8. Fig. 14 shows the results obtained with

OMIM while Fig. 15 shows the same results when Majumdar correction is

considered in the solver. For each case simulation was run until a residual

lower than 10−10 is achieved for all variables.

While dependency of CL (Fig. 14(a)) and Cp (Fig. 14(b)) on αu is

negligible , showing that calculated pressure field barely changes with αu,

results for CD (Fig. 14(c)) do change more significantly. It is observed

that small variations in velocity field produce larger variations in velocity

gradients and therefore drag force computation. This barely affects CL, for

which pressure force is the main contribution, but it does affect CD.

When considering the same cases with SIMPLE algorithm and MMIM,

dependence of results on αu is almost completely eliminated (see Fig. 15)

for the level of convergence achieved in the simulations. In order to bet-
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Fig. 14: CL, Cp and CD coefficients SIMPLE algorithm with OMIM for several angles of

attack β: 0, 6, 12 and 15 degrees. Results are shown for αu = 0.2 (−−−); αu = 0.5 (—);

αu = 0.8 (− · −).

ter evaluate how much of the dependency is eliminated, a single case with

β = 12 degrees (where OMIM shows the highest dependency) is considered.

Calculated CL and CD for SIMPLE algorithm with and without Majumdar

correction are shown in Table 3 and Table 4.
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Coefficient OMIM Majumdar

CL

αu = 0.2 1.2551915 1.2557273

αu = 0.8 1.2552688 1.2554411

Rel. Change 0.006 % 0.022%

CD

αu = 0.2 0.011967419 0.011588629

αu = 0.8 0.011548746 0.011450845

Rel. Change 3.498 % 1.189%

Table 3: Dependency of CD, CL on αu for a convergence of res < 10−7

Coefficient OMIM Majumdar

CL

αu = 0.2 1.2543421 1.2554539

αu = 0.8 1.2552675 1.2554399

Rel. Change 0.133 % 0.001%

CD

αu = 0.2 0.011948155 0.011446795

αu = 0.8 0.011549183 0.011451306

Rel. Change 3.339 % 0.039%

Table 4: Dependency of CD, CL on αu for a convergence of res < 10−12
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Fig. 15: CL, Cp and CD coefficients SIMPLE algorithm with Majumdar correction for

several angles of attack β: 0, 6, 12 and 15 degrees. Results are shown for αu = 0.2 (−−−);

αu = 0.5 (—); αu = 0.8 (− · −).

While for a standard convergence Majumdar correction only partially

eliminates the αu-dependence, when convergence is good enough, Majumdar

correction reduces the relative change in predicted value by two orders of

magnitude. The lack of convergence of a case due to turbulence could there-
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fore limit the effect of canceling under-relaxation factor dependency of the

Majumdar correction.

We proceed now to evaluate how Majumdar correction affects the conver-

gence speed of each of the pressure-velocity coupling algorithms described in

Section 4. For the case of β = 12 degrees, for each algorithm with or without

Majumdar correction, the number of iterations required to achieve residuals

lower than 10−6 and 10−7 is computed for two values of αu: 0.2 and 0.8 and

represented in Fig. 16.

Fig. 16: Required number of iterations to reduce all residuals below 10−6 (top) or 10−7

(bottom) when αu is fixed to αu = 0.2 (grey) and αu = 0.8 (black).

First it should be noted that SIMPLE-R algorithm did not converge to the

level of residuals considered here. For both simpleR, simpleRMajumdar,

minimum achieved residual for velocity equations was about 10−4. When
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comparing the rest of cases Majumdar correction tends to increase the re-

quired number of iterations for a low value of αu, and has almost no effect

when considering the large value of αu. SIMPLE-C is again the best perform-

ing algorithm here for both small and large values of velocity under-relaxation

factor.

6. Conclusions

Performance of MMIM when compared to OMIM is studied for several

pressure-velocity coupling algorithms in OpenFOAM R©. Numerical simu-

lations confirm that Majumdar correction correctly eliminates the under-

relaxation factor dependency of OMIM, with no significant influence on con-

vergence speed. Analysis of a lid-driven cavity case shows that dependence of

the solution on αu is almost negligible for a Reynolds number of Re = 1000

when mesh refinement is enough to approach benchmark solution, while

higher dependency is found for a larger Reynolds number Re = 5000. In

both cases MMIM correctly eliminates the dependency but generates veloc-

ity profiles further from the benchmark profiles when grid is not as fine as

that of the benchmark solution. When a more complex case as a NACA 0012

airfoil profile is considered, convergence of turbulence quantities makes full

independence of solution with respect to αu not achievable. However Ma-

jumdar correction significantly reduces the differences in computed values of

drag and lift coefficients. Majumdar correction could in principle be applied

to any pressure-velocity coupling algorithms. Simulations show that in gen-

eral Majumdar correction does not greatly modify the number of iterations

required to achieve a given level of convergence. When comparing pressure-
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velocity coupling algorithms, SIMPLE-C was the best performing option for

the numerical simulations carried out here.
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