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Abstract

By combining Traub-Gander’s family of third order for finding a multiple zero and suitable
corrective approximations od Schröder’s and Halley’s type, a new family of iterative methods for
the simultaneous approximation of multiple zeros of algebraic polynomials is proposed. Taking
various forms of a function involved in the iterative formula, a number of different simultaneous
methods can be obtained. It is proved that the order of convergence is 4, 5 or 6, depending of the
type of employed corrective approximations. Two numerical examples are given to demonstrate
the convergence properties of the proposed family of simultaneous methods. Displayed trajectories
of the sequences of approximations point to global characteristics of the proposed family of
iterative methods.
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1 Introduction

The problem of approximating the zeros of algebraic polynomials is one of the most important
problems in the theory and practice of iterative processes. For many decades available root-finding
algorithms have calculated only one zero of the given polynomial at a time using the process of
deflation if more than one zero was needed. This approach often gives “falsified” coefficients of
deflated polynomial whose degree is lowered by one. This flaw is consequence of handling with
an approximation xi to the sought zero αi after removing the corresponding linear factor x − xi
(instead of x− αi). In many cases the above drawback can be overcome by approximating all zeros
simultaneously, in a parallel fashion.

Simultaneous methods have been developed about the sixties of the twentieth century in the
works of Durand [1], Dochev [2], Kerner [3], Ehrlich [4], Börsch-Supan [5], Aberth [6] and others.
For more details see the books [7]–[10] and references cited therein. Simultaneous methods for the
determination of multiple zeros of polynomials have been considered in many papers and books, see,
e.g., [9], [11]–[25].

In this paper we propose a new family of iterative methods for the simultaneous approximation
of multiple zeros of a polynomial f. This family is constructed by combining Traub-Gander’s family

∗Corresponding author
E-mail addresses: miodragpetkovic@gmail.com (M. S. Petković), ljiljana@masfak.ni.ac.rs, (L. D. Petković)
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of third order, presented in [26], the so-called Weierstrass’ function and suitable corrective approxi-
mations cj,r (r ∈ {1, 2, 3}) in order to obtain as fast as possible convergence. The proposed iterative
formula is of the form

φ(zi) = zi −
mih(ti)

f ′(zi)
f(zi)

−
∑

j 6=i

mj

(
zi − cj,r

)−1
,

where z1, . . . , zn are approximations to the zeros of f and the function h satisfies the conditions
h(0) = 1, h′(0) = 1

2 . Taking various forms of h it is possible to produce many different simultaneous
methods, which is the main advantage of the proposed family. In Section 3 we prove that the order
of convergence is four for ordinary approximations cj,1 = zj , five for Schröder’s approximations
cj,2 = zj −mjf(zj)/f

′(zj) and six for Halley-like corrective approximations cj,3 = zj − f(zj)/
(
(mj +

1)f ′(zj)/(2mj) − f(zj)f
′′(zj)/f ′(zj)

)
. To demonstrate the convergence properties of the proposed

family of simultaneous methods, two numerical examples are given. Due to a very high convergence
of the proposed methods, two iterations are sufficient to provide a high accuracy of the produced
approximations to the zeros in solving most practical problems. It has been also shown that the
computational convergence order matches well the theoretical order of convergence.

Finally, note that the implementation of simultaneous methods for multiple zeros of polynomials
requires the knowledge of multiplicities in advance, which is not a trivial task. In fact, procedures
for finding reasonably good initial approximations and multiplicities, together with an efficient zero-
finding method, are parts of a composite algorithm, as discussed in [23], [27] and [28]. Fortunately, an
extensive study in Farmer’s dissertation [23] and the recent results presented in [25] give satisfactory
solution of the aforesaid task concerning multiplicity. In this paper we restrict our research to the
development of a new, efficient family of simultaneous methods.

2 Simultaneous methods of Traub-Gander’s type

Let α be the zero of f of the known order of multiplicity m ≥ 1. The following iteration function for
finding a single multiple zero, referred to as Traub-Gander’s family, has been presented in [26]

Gm(f ; z) = z −m
f(z)

f ′(z)
h(Tf (z)), (1)

where

Tf (z) = 1−m+
mf(z)f ′′(z)

f ′(z)2
(2)

and h is at least two-times differentiable function of one variable. For simplicity, we will write
sometimes only t instead of Tf (z) assuming that t is a function of z given by (2). It has been proved
in [26] that necessary and sufficient conditions which guarantee cubic convergence of the family of
iterative methods (1) are

h(0) = 1, h′(0) = 1/2, |h(k)(0)| ≤ M < ∞ (k = 2, 3, . . . , M is a positive constant). (3)

The iterative formula (1) is quite general since produces a lot of particular methods for finding
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multiple zeros. Some examples of simple functions h which satisfy the conditions (3) are given below:





h1(t) = (1 + t/4)2,

h2(t) = 1 + t/2 + bt2, b is arbitrary,

h3(t) = 1 +
t

2(1 + bt)
, b is arbitrary,

h4(t) = 1/(1 − t/2), Halley-like method,

h5(t) =
1 + (12 + b)t+ ct2

1 + bt+ dt2
, b, c, d are arbitrary,

h6(t) = 1/
√
1− t, Ostrowski-like method,

h7(t) = 2/(1 +
√
1− 2t ), Euler-like method.

(4)

Observe that h3 can be obtained from h5 setting c = d = 0, and h4 from h3 taking b = −1/2.
We note that h3 leads to the following family of iterative methods for finding multiple zeros

Vm(f, β; z) = z −m
f(z)

f ′(z)

(
1 +

Tf (z)

2(1− βTf (z))

)
(β is an arbitrary parameter). (5)

In the case of simple zeros (m = 1) h3 reduces to the Werner family [29]

V (f, β; z) = z − f(z)

f ′(z)

(
1 +

Rf (z)

2(1 − βRf (z))

)
, Rf (z) =

f(z)f ′′(z)
f ′(z)2

,

so that the family (5) will be called the family of Werner’s type.
Let f be a polynomial of order N with simple or multiple zeros α1, . . . , αn (n ≤ N) of the multi-

plicities m1, . . . ,mn, respectively, and assume that c1,r, . . . , cn,r are sufficiently close approximations
to the zeros α1, . . . , αn. The second subscript index r points to the kind of approximation that will
be applied.

Let us introduce

δλ,i =
f (λ)(zi)

f(zi)
, Sλ,i =

∑

j 6=i

mj

(zi − cj,r)λ
(λ = 1, 2).

In this paper we consider three kinds of corrective approximations cj,r:





(1) cj,1 = zj (ordinary approximation),

(2) cj,2 = zj −mi/δ1,i (Schröder’s approximation, [30]),

(3) cj,3 = zj −
2δ1,i

mi+1
mi

δ21,i − δ2,i
(Halley-like approximation, [31], [32]).

(6)

The name comes from the fact that the approximations cj,2 and cj,3 improve the order of convergence
without additional calculations since they use values δ1,i and δ2,i already calculated in the execution
of iterative methods presented below by (10). In this way, we attain a high computational efficiency.
Among cubically convergent methods we have taken Halley-like methods although we could also
choose Ostrowski’s, Euler’s or Chebyshev’s method. However, the first two methods deal with square
root increasing computational costs, while Halley’s method gives better results than Chebyshev’s
method for most polynomial equations.
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Let us define Weierstrass-like function (see [10, Ch. 1])

Wi(z) =
f(z)

n∏

j=1
j 6=i

(z − cj,r)
mj

(z 6= cj,r; i ∈ {1, . . . , n}). (7)

Obviously, the function Wi(z) has the same zeros as the polynomial f. Using this fact, Traub-
Gander’s family (1) can be rewritten in the form

Gm(zi) = zi −mi
Wi(zi)

W ′(zi)
h(ti), ti = 1−mi +mi

Wi(zi)W
′′
i (zi)

Wi(zi)2
(i = 1, . . . , n), (8)

where zi are some approximations to the zeros αi (i = 1, . . . , n).
Starting from (7) and applying the logarithmic derivatives, we find

W ′
i (zi)

Wi(zi)
= δ1,i − S1,i,

(9)

W ′′
i (zi)

W ′
i (zi)

= δ1,i − S1,i +
δ2,i − δ21,i + S2,i

δ1,i − S1,i
.

Substituting these expressions in (8), we obtain the following family of iterative methods of Traub-
Gander’s type 




ti = 1 +
mi(δ2,i − δ21,i + S2,i)

(δ1,i − S1,i)2
,

ẑi = Gm(zi) = zi −
mi h(ti)

δ1,i − S1,i
, (i = 1, . . . , n),

(10)

where ẑ1, . . . , ẑn denote new approximations to the zeros α1, . . . , αn.

Let z
(0)
1 , . . . , z

(0)
n be initial approximations to the zeros of the polynomial f, then the new family

of iterative methods is of the form

z
(k+1)
i = Gm(z

(k)
i ) = z

(k)
i − mi h(t

(k)
i )

δ
(k)
1,i − S

(k)
1,i

, (i = 1, . . . , n; k = 0, 1, . . .), (11)

where

δ
(k)
r,i =

f (k)(zi)

f(zi)
, S

(k)
r,i =

∑

j 6=i

mj(
z
(k)
i − c

(k)
j,r

)λ (r ∈ {1, 2, 3}; λ = 1, 2).

The family (11) belongs to the class of total-step methods (“Jacobi” or parallel mode). For simplicity,
in what follows we will omit the iteration index k and use the formula (10).

3 Convergence analysis

For simplicity, let f be a monic polynomial, then

f(z) =

n∏

j=1

(z − αj)
mj . (12)
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Applying the logarithmic derivative to (12) we obtain

f ′(z)
f(z)

=
n∑

j=1

mj

z − αj
(13)

and hence
f ′′(z)f(z) − f ′(z)2

f(z)2
= −

n∑

j=1

mj

(z − αj)2
. (14)

Setting z = zi and combining (13) and (14) we get

δ1,i =
n∑

j=1

mj

zi − αj
(15)

and

δ2,i − δ21,i = −
n∑

j=1

mj

(zi − αj)2
. (16)

Let us introduce the errors εj = zj − αj , εj,r = zj − cj,r and assume that all errors ε1,r, . . . εn,r
have magnitudes of approximately the same size, that is, |εi,r| = O(|εj,r|) = O(|εr|), where εr ∈
{ε1,r, . . . , εn,r} is the error of the largest magnitude. If cj,r = cj,1 = zj , then it is clearly εj,1 = εj.

Theorem 1. Let z
(0)
1 , . . . , z

(0)
n be initial approximations sufficiently close to the zeros α1, . . . , αn

of a polynomial f and let the conditions (3) hold. Then the family of iterative methods (11) with
corrective approximations cj,r, given by (6), has the order of convergence r + 3, r ∈ {1, 2, 3}.

Proof. For simplicity, we omit the iteration index and use the formulas (10). Also, we will write
∑

j 6=i

aj instead of
n∑

j=1
j 6=i

aj .

First, we have

δ1,i − S1,i =

n∑

j=1

mj

zi − αj
−
∑

j 6=i

mj

zi − cj,r
=

mi

εi
−
∑

j 6=i

aij εj,r, aij =
mj

(zi − αj)(zi − cj,r)
. (17)

In a similar way we find

δ2,i − δ1,i + S2,i = −
n∑

j=1

mj

(zi − αj)2
+
∑

j 6=i

mj

(zi − cj,r)2
= −mi

ε2i
+
∑

j 6=i

mj

( 1

(zi − cj,r)2
− 1

(zi − αj)2

)
,

wherefrom

δ2,i − δ1,i + S2,i = −mi

ε2i
+
∑

j 6=i

bij εj,r, bij =
mj(2zi − αj − cj,r)

(zi − αj)2(zi − cj,r)2
. (18)

Substituting (17) and (18) in (10), we obtain for ti

ti =
−2miεiA

∗
i,r + ε2i

(
A∗

i,r

)2
+miε

2
iB

∗
i,r

(mi − εiA∗
i,r)

2
, (19)

where
A∗

i,r =
∑

j 6=i

aij εj,r, B∗
i,r =

∑

j 6=i

bij εj,r.
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The errors εj,r can be expressed as εj,r = γj,rεr where γj,r are some constants and εr ∈
{ε1,r, . . . , εn,r} is the error of maximal magnitude. Let

Ai,r =
∑

j 6=i

γj,raij , Bi,r =
∑

j 6=i

γj,rbij .

Then
A∗

i,r = εrAi,r = O(|εr|), B∗
i,r = εrBi,r = O(|εr|).

From (19) we observe that ti = O(εiεr) so that the function h(t) appearing in (10) can be represented
by its Taylor’s series at the point t = 0. First, we introduce a complex value

Qi =
∞∑

k=2

h(k)(0)

k!
tk−2
i . (20)

Since, using (3),

|Qi| ≤
∞∑

k=2

|h(k)(0)|
k!

|ti|k−2 ≤ M

|ti|2
( ∞∑

k=0

|ti|k
k!

− 1− |ti|
)

= Mφ(|ti|),

where

φ(|ti|) =
e|ti| − 1− |ti|

|ti|2
.

The function φ is monotonically increasing on the interval [0, 1] with φ(0) → 1/2 as |ti| → 0 and
φ(|ti|) ≤ e− 2 ≈ 0.718 for |ti| ∈ [0, 1].

Therefore, Qi is bounded and we can take Qi = O(1). Then Taylor’s series of h can be represented
by

h(ti) = h(0) + h′(0)ti +Qit
2
i , (21)

where Qi is given by (20). Later we will show that the terms of higher order, expressed by Qit
2
i , do

not influence the order of convergence of the family (10).
Now, from (10) and (17) there follows

ẑi = zi −
miεi

mi − εiεr
∑

j 6=i γj,raij

(
1 + 1

2 ti +Qit
2
i

)
. (22)

Let ε̂i = ẑi−αi. The determination of expression of the errors ε̂i requires long and tedious calculation
so that we have used symbolic computation in algebra computer system Mathematica. Starting from
(22) we have found

ε̂i =
ε3i εr

2(εiεrAi,r −mi)5

{
2ε3i ε

4
rA5

i,r +miε
2
i ε

3
rA4

i,r(2Qi − 7)

+m2
i εiε

2
rA2

i,r

(
εiBi,r(4Qi + 1)− 8Ai,r(Qi − 1)

)

+m3
i εr

(
2Qi(εiBi,r − 2Ai,r)

2 −Ai,r(3Ai,r + 2εiBi,r)
)
+ Bi,rm

4
i

}
,

wherefrom, after some rearrangement,

|ε̂i| =
|εi|3|εr|

∣∣∑
j 6=i γj,rbij

∣∣

2mi

∣∣∣1−
εiεr

∑
j 6=i γj,raij

mi

∣∣∣
5
+O(|εi|3|εr|2). (23)
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Note that higher-order terms expressed by Qit
2
i (see (21)) are not involved in the main part of (23),

which means that they do not influence the order of convergence of the family of methods (11).
Since Schröder’s and Halley-like method have the orders two and three, respectively, there follows

|εr| = γr|ε|r (r = 1, 2, 3), εi = γi,1|ε| and (23) becomes

|ε̂i| =
|γr||γi,1|3

∣∣∑
j 6=i γj,rbij

∣∣

2mi

∣∣∣1−
εiεr

∑
j 6=i γj,raij

mi

∣∣∣
5
· |ε|r+3 +O(|ε|3+2r). (24)

Let ε → 0, then the denominator of (24) tends to 2mi, while the expression |γr||γi,1|3
∣∣∑

j 6=i γj,rbij
in the numerator of (24) tends to some constant. As a consequence, from (24) we conclude that the
family of iterative methods (11) has the order 4 for r = 1 (ordinary approximations), the order 5 for
r = 2 (Schröder’s approximations), and the order 6 for r = 3 (Halley-like approximations). 2

Remark 1. Let ti be very small in magnitude, that is, ti ≈ 0. Then, according to the conditions
(3), it follows that h(ti) ≈ h(0) = 1. Setting this value in (10) one obtains approximate formula

ẑi = zi −
mi

δ1,i − S1,i
. (25)

If cj,1 = zj , then (25) is the third order method for multiple zeros originated from the method for
simple zeros considered by Ehrlich [4] and Aberth [6]. If cj,2 = zj − 1/δ1,i, then (25) is the fourth
order method of Ehrlich-Aberth’s type with Schröder’s corrections. The sum S1,i in (25) could be
also calculated with the approximations cj,3 to produce a method of fifth order; however, cj,3 requires
the evaluation of the second derivative f ′′ so that such method would be inefficient. Altogether, the
application of the mentioned errors cj,r in (25) leads to the method of order r + 2 (r ∈ {1, 2, 3}).
Having in mind this result and the assertion of Theorem 1 proved in Section 3, we observe that the
factor h(ti) = 1 + 1

2ti in (10) has a corrective role since it increases the order to r + 3.

4 Numerical results

To illustrate the convergence properties of the methods from the family (11), we have applied five
methods to a number of polynomial equations. For demonstration, two algebraic polynomials of
relatively high degree have been selected. We have dealt with the following particular functions h
(see (4)):

– h4 (Halley-like method);

– h3, b = 0 (Chebyshev-like method);

– h6 (Ostrowski-like method);

– h7 (Euler-like method);

– h5, b = c = d = 1 (Method with rational functions);

As a measure of accuracy of the obtained approximations, we have calculated Euclid’s norm

e(k) :=

(
n∑

i=1

∣∣z(k)i − αi

∣∣2
)1/2

(k = 0, 1, . . . ). (26)

In practice, the convergence behavior of iterative methods depends on the closeness of initial
approximations to the sought zeros, the location of these zeros and the structure of the tested
polynomial, as well as some other factors to a smaller extent. To check the theoretical order of
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convergence ρ we have displayed in Tables 1 and 2 the so-called computational order of convergence
rc using the formula

rc =
log |e(k)/e(k−1)|
log |e(k−1)/e(k−2)| . (27)

Jay [33] has derived this formula for a single nonlinear equation ϕ(x) = 0 and systems of nonlinear
equations, but it gives satisfactory results for simultaneous methods too; large deviations of rc
relative to the theoretical order ρ are seldom in practice.

Example 1. Five selected methods from the family (11) have been applied for the simultaneous
approximation to the zeros of the polynomial of degree N = 39 :

f1(z) = (z−4)2(z+1)3(z4−16)2(z2+9)4(z2+2z+5)(z2+2z+2)(z2−2z+2)2(z2−4z+5)2(z2−2z+10)3 .

The zeros of this polynomial and their multiplicities can be easily recognized from the above fac-
torization of f1. The initial approximations have been selected to give e(0) ≈ 0.949. The choice of
the initial approximations to the zeros that guarantee the convergence has been considered in de-
tails in [23] and [34] so that we will not discuss this issue in this paper. The error norms e(k) of
approximations in the first three iterations are given in Table 1, where A(−h) means A× 10−h.

Methods (10)h4 (10)h3,b=0 (10)h6 (10)h7 (10)h5,b=c=d=1

e(1) 1.67(−2) 1.19(−2) 1.32(−2) 2.43(−2) 5.16(−2)

cj,1 e(2) 2.25(−9) 6.30(−10) 1.20(−9) 3.39(−8) 8.58(−7)
order 4 e(3) 2.08(−36) 3.39(−39) 3.20(−37) 1.03(−31) 1.15(−25)

rc by (27) 3.938 4.022 3.917 4.016 3.949

e(1) 5.33(−3) 5.22(−3) 5.85(−3) 6.94(−3) 9.52(−3)

cj,2 e(2) 1.76(−13) 1.34(−13) 2.06(−13) 7.96(−13) 1.24(−11)
order 5 e(3) 2.17(−65) 3.19(−67) 1.70(−65) 3.66(−62) 3.40(−55)

rc by (27) 4.953 5.064 4.982 4.963 4.903

e(1) 2.80(−3) 2.40(−3) 2.89(−3) 3.02(−3) 2.65(−3)
cj,3 e(2) 2.63(−17) 8.92(−18) 3.29(−17) 4.41(−17) 1.01(−17)

order 6 e(3) 1.06(−100) 1.40(−105) 3.69(−100) 1.64(−99) 2.55(−103)
rc by (27) 5.945 6.085 5.948 5.958 5.936

Table 1: Norms of approximation errors to the zeros of the polynomial f1.

Example 2. In order to find the zeros of the polynomial of degree N = 27

f2(z) = (z−1)3(z−2)3(z−3)4(z−4)4(z−5)2(z−6)2(z−7)2(z−8)2(z−9)2(z−10)(z−11)(z−12),

we have applied the same methods as in Example 1. The zeros of this polynomial and their multi-
plicities are easy to detect from the factorization of f2. The initial approximations have been taken
to give the norm e(0) ≈ 0.775. The entries of the error norms e(k) in the first three iterations are
given in Table 2. Note that the polynomial f2 is of Wilkinson’s type [35], which is ill-conditioned. It
is well known that many algorithms work with big efforts with this class of polynomials. However,
the presented family of methods exhibits robustness since it deals successfully with this kind of
polynomials. Comparing Tables 1 and 2 we observe that better approximations are produced in the
case of the polynomial f1 (Example 1) although it is of higher degree.

From Tables 1 and 2 we observe that all tested methods from the family (11) produce approx-
imations of very high accuracy. The values of rc calculated by (27) show that the computational
order of convergence rc mainly fits well the theoretical order of convergence in spite of the fact that
the formula (27) was not derived directly for simultaneous methods, as noted above.
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Methods (10)h4 (10)h3,b=0 (10)h6 (10)h7 (10)h5,b=c=d=1

e(1) 1.90(−2) 9.31(−3) 2.05(−2) 2.30(−2) 2.79(−2)

cj,1 e(2) 8.60(−9) 3.46(−10) 1.38(−8) 2.84(−8) 5.97(−8)
order 4 e(3) 5.19(−34) 3.62(−40) 8.60(−33) 2.12(−31) 4.15(−30)

rc by (27) 3.976 4.034 3.922 3.914 3.909

e(1) 1.96(−2) 9.02(−3) 3.80(−2) 1.06(−1) 3.11(−2)
cj,2 e(2) 4.44(−10) 1.09(−12) 4.68(−9) 1.21(−7) 1.09(−9)

order 5 e(3) 4.61(−48) 4.43(−62) 1.52(−43) 1.47(−37) 1.72(−46)
rc by (27) 4.969 4.980 4.991 5.032 4.935

e(1) 1.27(−2) 2.30(−2) 1.02(−2) 9.35(−3) 6.02(−2)
cj,3 e(2) 2.95(−13) 6.68(−14) 1.41(−13) 1.04(−13) 2.87(−11)

order 6 e(3) 1.26(−75) 2.92(−80) 1.53(−77) 2.44(−78) 1.03(−63)
rc by (27) 5.864 5.759 5.890 5.900 5.626

Table 2: Norms of approximation errors to the zeros of the polynomial f2.

Two iterative steps of the considered sixth order methods are usually sufficient in solving most
practical problems when initial approximations are reasonably good and polynomials are well-
conditioned. The third iteration is given only to demonstrate very fast convergence but, most
frequently, it is not needed for real-life problems. Besides, we have executed the third iterations to
provide the calculation of the computational order of convergence rc, see the formula (27). Note
that the calculation by (27) is not possible in practice since the zeros are unknown. However, we
can easily avoid the third iteration by calculating the error norms in (26) as

e(k) :=

(
n∑

i=1

∣∣f(z(k)i )
∣∣2
)1/2

(k = 0, 1, . . . ).

The behavior of the family of iterative methods (11) is graphically displayed in Figures 1–4 taking
the functions h2

∣∣
b=0

(Chebyshev’s method), h4 (Halley’s method), h6 (Ostrowski’s method) and h7
(Euler’s method), see (6). We have considered the polynomial

P (z) =

15∏

r=1

(x− r)

of Wilkinson’s type with simple zeros αj = r, r = 1, 2, . . . , 15. The stopping criterion has been
given by the inequality

M(h
(k)
i ) = max

1≤j≤15
|z(k)j − αj | < 10−2 (i = 2, 4, 6, 7).

Aberth’s initial approximations z
(0)
ν (see [6]) have been taken equidistantly from the circle with the

radius r0 = 20 and the center

c = −a1
n

=
α1 + · · ·+ α15

15
= 8 (the barycenter of zeros),

where a1 is the coefficient by zn−1 of the polynomial P (z) = zn + a1z
n−1 + · · ·+ a0. Therefore,

z(0)ν = c+ r0 · exp
(
i
π

n
(2ν − 3/2)

)
= 8 + 20 · exp

(
i
π

15
(2ν − 3/2)

)
(ν = 1, . . . , 15; i =

√
−1).
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All four methods have shown approximately the same convergence behavior of global type sat-
isfying the stopping criterion after 10 iterations with the following maximal errors

M(h2
∣∣
b=0

) = 1.22 × 10−6, M(h4) = 1.70 × 10−12, M(h6) = 1.55 × 10−26, M(h7) = 2.71 × 10−3.

At the beginning, all tested methods converge linearly but almost straightforwardly toward the zeros
of P, showing very fast convergence in final iterations. From Figures 1–4 we can observe that the
sequences of approximations are radially distributed toward the zeros.
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Fig. 1 Trajectory of (11) for h2

∣∣
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Fig. 2 Trajectory of (11) for h4
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Fig. 3 Trajectory of (11) for h6 Fig. 4 Trajectory of (11) for h7

We emphasize that many authors proclaim their own methods as the best ones in the class of
methods of the same order of convergence. Such assertions are maybe true for a set of suitably
selected polynomials, but a number of numerical examples has shown that the methods of the same
order and constructed in the same/similar manner produce approximations of approximately the
same quality and that none of these methods can be the best for all examples. For this reason we
have not compared the proposed methods with existing fourth, fifth and sixth order methods.
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[22] M.S. Petković, L.D. Petković, J. Džunić, Accelerating generators of iterative methods for finding
multiple roots of nonlinear equations, Comput. Math. Appl. 59 (2010) 2784–2793.

[23] M. Farmer, Computing the Zeros of Polynomials using the Divide and Conquer Approach (Ph.D.
thesis), Department of Computer Science and Information Systems, Birkbeck, University of
London, 2013.

[24] P.D. Proinov, S.I. Cholakov, Convergence of Chebyshev-like method for simultaneous approxi-
mation of multiple zeros, Comptes rendus de l’Académie bulgare des Sciences 67 (2014) 907–918.
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