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Reconstruction of a time dependent source term from a single
boundary measurment in Maxwell’s equations with nonlinear

generalized Ohm’s law
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Abstract

Hyperbolic Maxwell’s equation with an unknown time dependent source is investigated. We consider a nonlinear generalized
Ohm’s law in our model. The source is reconstructed from a single boundary measurement over a part of the boundary. We use
well-known Rothe’s method to show the existence of a solution. In the case of regular solution, we provide a uniqueness proof as
well. To support theoretical results a numerical experiment is provided.
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1. Introduction

The domain Ω Ă R3 is assumed to be either smooth Ω P C1,1 or convex. The boundary of Ω is denoted by
BΩ “ Γ. The symbol n stands for the unit outward normal vector on the boundary Γ. We derive our model from the
traditional Maxwell equations (for further details, see [1, 2])

∇ˆ E “ ´Bt B, ∇ ¨ B “ 0,
∇ˆ H “ Bt D` J ` Japp, ∇ ¨ D “ ρ,

(1)

where E stands for the electric field, B denotes the magnetic induction field, H is the magnetic field, D represents the
electric displacement, J is the total current density, ρ is the density of electrical charge and Japp expresses the source
term.

The constitutive relations between the four vector fields B,H, D, E are generally expressed in the following man-
ner

B “ BpE,Hq, D “ DpE,Hq.
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Their exact form depends on the particular physical phenomenon we are modelling. In many cases the present values
of solutions depend on their previous values. These dependencies are expressed with a memory term. There are
plenty of applications, for instance in chiral media [3], meta-materials [4, 5], nonlinear optics [6, 7, 8] or geophysics
[9, 10, 11, 12]. The physical phenomenon which is often observed in geophysics is charge accumulation in rocks that
serve as capacitors. The charge then decays, and this introduces an effective change to the traditional Ohm’s law that
does not assume capacitance. Hence it becomes a convolution in time. The authors of [11] considered a generalized
Ohm’s law

Jptq “ pσ ˚ Eqptq,

where the symbol ˚ stands for the usual convolution in time, e.g. p f ˚ gpxqqptq “ şt
0 f pt ´ sqgpx, sq ds.

In our paper we adopt a generalized Ohm’s law in the following nonlinear form

Jptq “ pσ ˚ Eqptq ´ p1 ˚ NpEqqptq.
The electric conductivity term σ is assumed to be separable, i.e.

σpx, tq “ σ̂pxqσptq.
Both σ̂pxq and σptq are known. Therefore to improve the readability of our paper we assume σ̂pxq to be a positive
constant. Time dependent part σptq is assumed to be Lipschitz continuous and bounded, i.e. 0 ă σ˚ ď σ ď σ˚ ă 8.
The nonlinear function N is supposed to be globally Lipschitz continuous and it also fulfills the following boundary
condition

NpEq ˆ n“ 0 on Γ. (2)

Next, we consider a homogeneous dielectric material, i.e.

B “ µH, D “ εE,

where µ and ε are positive constants. Elimination of H in (1) then yields

εB2
t E` σ̂Btpσ ˚ Eq ` ∇ˆ 1

µ
∇ˆ E “ NpEq ´ Bt Japp.

The tangential component of E is supposed to be continuous across the boundary, i.e.

Eˆ n“ 0 on Γ. (3)

The initial data are prescribed as follows

Epx, 0q “ E0pxq, Bt Epx, 0q “W0pxq. (4)

The source term Bt Japp is assumed to be separable, i.e.

´Bt Japp “ hptq fpxq.
Here, the function fpxq is given but hptq is unknown. We suppose that

f ˆ n“ 0 on Γ.

For the sake of simplicity, we assume µ ” ε ” σ̂ ” 1. Then our PDE becomes

B2
t E` Btpσ ˚ Eq ` ∇ˆ ∇ˆ E “ hptq fpxq ` NpEq. (5)
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Figure 1. Vertical cut of the measured part of the boundary.

The measurement introduced below will be used to recover the time dependent part of the source term hptq
ż

Γ

φE ¨ n dΓ “ mptq. (6)

With φ being a function from C8pΩq with meastsupppφq X Γu ą 0. After applying the measurement operator to
equation (5)1 and assuming that

ş
Γ

fpxq ¨ nφ dΓ ‰ 0, we eliminate hptq to obtain

hptq “ m2ptq ` pσ ˚ mq1ptq ` ş
Ω
∇ˆ ∇ˆ E ¨ ∇φ dx´ ş

Γ
NpEq ¨ nφ dΓş

Γ
fpxq ¨ nφ dΓ

. (7)

We used the fact that Btp f ˚gqptq “ p f ˚Btgqptq` f ptqgp0q for any given functions f , g and applied the Green theorem
in the following way

ż

Γ

p∇ˆ ∇ˆ E ¨ nqφ dΓ “
ż

Ω

∇ˆ ∇ˆ E ¨ ∇φ dx`
ż

Ω

∇ ¨ p∇ˆ ∇ˆ Eqφ dx “
ż

Ω

∇ˆ ∇ˆ E ¨ ∇φ dx. (8)

The inverse source problem reads as finding a pair tEpx, tq, hptqu such that equations (5) and (7) are satisfied.

Remark 1. In the theoretical part of our paper, we do not assume any noise to be present in the measurement.
Otherwise (6) and (7) would not hold.

There is a broad range of literature considering Inverse Problems. Many papers are dealing with Inverse Source
Problems in hyperbolic setting. There are different techniques used to reconstruct the source term, for instance Carle-
man estimates have been used in [13, 14]. If the source is also space dependent then an extra measurement in space
(e.g. solution in the final time) is needed, cf. [15, 16]. Linear problems have been addressed in [17, 18, 19]. Boundary
measurements were used in [20, 21, 22].

We measure only the normal component of E on a part of the boundary Γ which is modeled by the function φ.
Let us explain the purpose of this function in more detail. Assume that the measurement is done on a part of the
boundary denoted as η. Naturally, η is a subset of Γ, i.e. η Ă Γ. Then the function φ is defined as φpxq “ 1 if x P η
and meastsupppφq X ηu “ |η|, moreover, meastsupppφq X Γu “ |η| ` ε, for some small and positive ε. For better
interpretation see Fig. 1. The implementation of φ in our measurement is solely due to mathematical reasons. With
this addition, we can use the Green theorem as in equation (8).

Structure of our paper is organized as follows. In Section 2, we propose a weak formulation of our problem
and then in Section 3, we discretize the time variable and approximate (3),(4),(5) and (7). Moreover, we prove the
existence of a unique solution at each time step. A numerical scheme for obtaining this solution is also provided. In
Section 4, we provide some stability results for our solution. Then in Section 5, we use Rothe’s functions cf. [23] to

1We multiply (5) with φ P C8pΩq, take a dot product with a unit outward normal vector n and integrate over Γ.
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approximate our discretized system in the continuous form and state an existence theorem. Uniqueness of the solution
is then proved in Section 6. To support our numerical scheme, we provide a numerical experiment in the last section.

2. Weak Formulation

Let us introduce some functional spaces and basic notations which will be used in the sequel of the paper. We
denote the traditional inner product of L2pΩq by p¨, ¨q. Norm induced by it is denoted as }¨}. Functional space
Cpr0,T s;Yq is a set of abstract functions q : r0,T s Ñ Y with the usual norm maxtPr0,T s }¨}Y . For p ą 1 we define a

norm in the space Lppp0,T q;Yq as
´şT

0 }¨}p
Y

¯1{p
. The dual space of a given functional space Y is denoted as Y˚.

Functional spaces Hpcurl ; Ωq “ tϕ;ϕ P L2pΩq,∇ˆϕ P L2pΩqu and Hpdiv; Ωq “ tϕ;ϕ P L2pΩq,∇ ¨ϕ P L2pΩqu
are commonly associated with the solutions of problems derived from classical Maxwell’s equations. We will be
working in the following spaces (see [24, 25])

X “ Hpcurl ; Ωq XHpdiv; Ωq,
XN “ X X tϕ;ϕˆ n“ 0 on Γu “ H0pcurl ; Ωq XHpdiv; Ωq.

Norm in the space XN is defined as }w}XN
“ }w}`}∇ˆ w}`}∇ ¨ w}. According to [24, Theorem 2.12] XN Ă H1pΩq

if Ω P C1,1. The same embedding is also obtained from [24, Theorem 2.17] if Ω is convex. This embedding is very
important since we will be using it extensively throughout the paper.

Space XN is associated with the solution of (5). To obtain the weak formulation of (5), we multiply it by a test
function ϕ P H0pcurl ; Ωq. Then integrate over Ω, take into account boundary condition (3) and use Green’s theorem
to obtain

`B2
t E,ϕ

˘` pBtpσ ˚ Eq,ϕq ` p∇ˆ E,∇ˆ ϕq “ hptq p fpxq,ϕq ` pNpEq,ϕq , (9)

for any ϕ P H0pcurl ; Ωq.
Then, the weak formulation of problem (3), (4), (5) and (6) reads as:

Find a solution pair thptq, Epx, tqu satisfying (3),(4),(7) and (9) such that hptq P L2pp0,T qq, E P Cpr0,T s; L2pΩqq X
L8pp0,T q; XNq with its first order time derivative Bt E P L2pp0,T q; L2pΩqq X Cpr0,T s; X˚Nq and second order time
derivative B2

t E P L2pp0,T q; pH0pcurl ; Ωqq˚q.

3. Time Discretization

To discretize our continuous formulation (5), (7), we start by splitting the time interval r0,T s into n P N equidistant
parts with the time step τ “ T {n. We use the following notation (w is an arbitrary function)

ti “ iτ, wi “ wptiq, δwi “ wi ´ wi´1

τ
, δ2wi “ δwi ´ δwi´1

τ2

The discretized convolution for given functions f , g is then defined as

p f ˚ gqi “
iÿ

k“0

fi´kgkτ.

This also implies

δp f ˚ gqi “ p f ˚ gqi ´ p f ˚ gqi´1

τ
“ f0gi `

i´1ÿ

k“0

δ fi´kgkτ, for i ě 1.

4
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Now, we consider a system with unknown variables tei, hiu and approximate our ISP at each time step ti for i “
1, . . . , n

δ2ei ` pσ ˚ δeqi ` ∇ˆ ∇ˆ ei “ Npei´1q ` hi f ´ σiE0 in Ω

ei ˆ n “ 0 on Γ

e0 “ E0
δe0 “W0

(DPi)

and

hi “
m2i ` pσ ˚ m1iqi ` p∇ˆ ∇ˆ ei´1,∇φq ´

ş
Γ

Npei´1q ¨ nφ dΓş
Γ

fpxq ¨ nφ dΓ
(DMPi)

The scheme above is nonlinear and decoupled. The abbreviations DPi and DMPi stands for the Discretized Problem at
the time step t “ ti and the Discretized Measured Problem at the time step t “ ti, respectively. The pseudo-algorithm
for obtaining the solution pair tei, hiu at each time step ti reads as

Algorithm 1 Implicit Euler
Require: m, σ, f , δe0 “ E0, δe “W0, n P N

1: for i “ 1, i ď n do
2: hi Ð Solve: pDMPiq
3: ei Ð Solve: pDPiq
4: i Ð i` 1
5: return th1, e1u, . . . , thn, enu

We now proceed with a Lemma which guarantees the existence of a unique solution pair tei, hiu at each time step
ti for i “ 1, . . . , n.

Remark 2. From now on, the inequalities of a type a ď Cb, where C ą 0 is a generic constant will be denoted as
a À b. The symbol C will always denote a positive constant.

Lemma 1. Let Ω P C1,1 or Ω be convex. Moreover assume that N is globally Lipschitz continuous, φ P C8pΩq
with meastsupppφq X Γu ą 0, f P XN , E0 P XN ,W0 P XN ,m P C2pr0,T sq and

ş
Γ

fpxq ¨ nφ dΓ ‰ 0 and also
0 ă σ˚ ď σptq ď σ˚ ă 8 for any t P r0,T s. Then for any i “ 1, . . . , n there exists a unique pair tei, hiu solving
(DPi) and (DMPi). Furthermore, hi P R, ei P XN ,∇ˆ ∇ˆ ei P L2pΩq and ∇ˆ ∇ˆ ei ˆ n“ 0 on Γ.

Proof. For a given ∇ˆ ∇ˆ ei´1 P L2pΩq and ei´1 P XN we can compute hi from (DMPi). We also see that

|hi|2À
´

1` }∇φ}2
CpΩq }∇ˆ ∇ˆ ei´1}2 ` }φ}2

CpΩq }Npei´1q}2
L2pΓq

¯

À
´

1` }∇ˆ ∇ˆ ei´1}2 ` }ei´1}2
L2pΓq

¯ H1pΩqĂL2pΓqÀ
´

1` }∇ˆ ∇ˆ ei´1}2 ` }ei´1}2
H1pΩq

¯

XNĂH1pΩqÀ
´

1` }∇ˆ ∇ˆ ei´1}2 ` }ei´1}2
XN

¯
ď Ci.

Now, assume that e1, . . . , ei´1 P XN and let us take a look at (DPi)

ei

ˆ
σ0 ` 1

τ2

˙
` ∇ˆ ∇ˆ ei “ δei´1

τ
` ei´1

ˆ
σ0 ` 1

τ2

˙
` Npei´1q ` hi f ´

i´1ÿ

k“0

σi´kδekτ´ σiE0. (10)

Now, let us state the weak formulation of (10):

5
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Find ei P H0pcurl ; Ωq with e0 “ E0 and δe0 “W0 such that
ˆ
σ0 ` 1

τ2

˙
pei,ϕq ` p∇ˆ ei,∇ˆ ϕq “1

τ
pδei´1,ϕq `

ˆ
σ0 ` 1

τ2

˙
pei´1,ϕq ` pNpei´1q,ϕq ` hi p f ,ϕq

´
i´1ÿ

k“0

σi´kτ pδek,ϕq ´ σi pE0,ϕq

is true for any ϕ P H0pcurl ; Ωq. Since the right hand side of the weak formulation above is from the space L2pΩq, we
can apply the Lax-Milgram lemma to obtain a unique ei P H0pcurl ; Ωq.

To conclude the proof, we need to obtain some additional estimates for our solution ei. After employing a diver-
gence operator to the equation (10), we also see that

∇ ¨ ei “ ∇ ¨ ei´1 ` τ

1` σ0τ2∇ ¨ δei´1 ` τ2

1` σ0τ2

˜
∇ ¨ Npei´1q ` hi∇ ¨ f ´

i´1ÿ

k“0

σi´1∇ ¨ δekτ´ σi∇ ¨ E0

¸
.

Since
ˇ̌
ˇ τ

1`σ0τ2

ˇ̌
ˇ ď C and

ˇ̌
ˇ τ2

1`σ0τ2

ˇ̌
ˇ ď C, we obtain the following estimate for ∇ ¨ ei

}∇ ¨ ei}À }∇ ¨ ei´1} `
˜

1` }∇ ¨ δei´1} ` }ei´1}H1pΩq `Ci }∇ ¨ f} `
i´1ÿ

k“0

}∇ ¨ δek} τ` }∇ ¨ E0}
¸

XNĂH1pΩqď Cip1` }ei´1}XN
q ď Ci.

Therefore, ei P XN . Furthermore, we can also see that

∇ˆ ∇ˆ ei “ Npei´1q ` hi f ´ σiE0 ´ δ2ei ´ pσ ˚ δeqi P L2pΩq
∇ˆ ∇ˆ ei ˆ n“ Npei´1q ˆ n` hi f ˆ n´ σiE0 ˆ n´ δ2ei ˆ n´ pσ ˚ δeˆ nqi “ 0 on Γ,

which concludes our proof.

4. A priori energy estimates

In this section, we provide some energy estimates for ei and hi. Both discrete and continuous version of Grönwall’s
lemma will be key in the proofs of the following sections. For that reason, we state them here.

Lemma 2 (Discrete version of Grönwall’s lemma, from [26]). Let tynu and tgnu be non-negative sequences and C a
non-negative constant. If

yn ď C `
n´1ÿ

i“0

giyi for n ě 0,

then

yn ď C exp

˜
n´1ÿ

i“0

gi

¸
for n ě 0.

Lemma 3 (Continuous version of Grönwall’s lemma, from [26]). Let y and g be non-negative integrable functions
and C a non-negative constant. If

yptq ď C `
ż t

0
gpsqypsq ds for t ě 0,

6
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then

yptq ď C exp
ˆż t

0
gpsq ds

˙
for t ě 0.

Lemma 4. Let N be a global Lipschitz continuous function. Assume that f P L2pΩq,W0 P L2pΩq, E0 P H0pcurl ; Ωq
and 0 ă σ˚ ď σ ď σ˚ ă 8. Then we have the following estimate

max
1ď jďn

}δe j}2 ` max
1ď jďn

}∇ˆ e j}2 `
nÿ

i“1

}δei ´ δei´1}2 `
nÿ

i“1

}∇ˆ ei ´ ∇ˆ ei´1}2À
˜

1`
nÿ

i“1

h2
i τ

¸
.

Proof. We multiply (scalar multiplication) the first equation in (DPi) by δeiτ, integrate over Ω, use Green’s theorem
and sum up for i “ 1, . . . , j to get

jÿ

i“1

`
δ2ei, δei

˘
τ`

jÿ

i“1

ppσ ˚ δeqi, δeiq τ`
jÿ

i“1

p∇ˆ ei, δ∇ˆ eiq τ “
jÿ

i“1

pNpei´1q, δeiq τ`
jÿ

i“1

phi f , δeiq τ

´
jÿ

i“1

σi pE0, δeiq τ.

The convolution term on the left hand side can be bounded in the following way
ˇ̌
ˇ̌
ˇ

jÿ

i“1

ppσ ˚ δeqi, δeiq τ
ˇ̌
ˇ̌
ˇÀ 1`

jÿ

i“1

}δei}2 τ.

In the next step, we take into account Abel’s summation formula

jÿ

i“1

bipbi ´ bi´1q “ 1
2

#
b2

j ´ b2
0 `

jÿ

i“1

pbi ´ bi´1q2
+
.

Now, using the above-mentioned formula, we can rewrite the terms on the left hand side as follows

jÿ

i“1

`
δ2ei, δei

˘
τ “

jÿ

i“1

pδei ´ δei´1, δeiq “ }δe j}2

2
´ }W0}2

2
` 1

2

jÿ

i“1

}δei ´ δei´1}2 ,

jÿ

i“1

p∇ˆ ei, δ∇ˆ eiq τ “ }∇ˆ e j}2

2
´ }∇ˆ E0}2

2
` 1

2

jÿ

i“1

}∇ˆ ei ´ ∇ˆ ei´1}2 .

The first term on the right hand side is handled via the Lipschitz continuity of Np¨q, Young’s and Cauchy’s inequalities
and the identity ei “ E0 `ři

k“1 δekτ

jÿ

i“1

pNpei´1q, δeiq τÀ
jÿ

i“1

p1` }ei´1}q }δei} τ “
jÿ

i“1

«
1`

›››››E0 `
i´1ÿ

k“1

δekτ

›››››

ff
}δei} τ

À
jÿ

i“1

r1` }E0}s }δei} τ`
jÿ

i“1

iÿ

k“1

}δek} }δei} τ2

À 1`
jÿ

i“1

}δei}2 τ.

7
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The rest of the right hand side is estimated using Young’s and Cauchy’s inequalities once again
ˇ̌
ˇ̌
ˇ

jÿ

i“1

phi f , δeiq τ´
jÿ

i“1

σi pE0, δeiq τ
ˇ̌
ˇ̌
ˇÀ

jÿ

i“1

h2
i } f}2 τ` }E0}2 `

jÿ

i“1

}δei}2 τ

À
˜

1`
jÿ

i“1

h2
i τ

¸
`

jÿ

i“1

}δei}2 τ.

Collecting all partial results above, we obtain

}δe j}2 ` }∇ˆ e j}2 `
jÿ

i“1

}δei ´ δei´1}2 `
jÿ

i“1

}∇ˆ ei ´ ∇ˆ ei´1}2À
˜

1`
jÿ

i“1

h2
i τ

¸
`

jÿ

i“1

}δei}2 τ.

The rest of the proof follows from the application of the discrete version of Grönwall’s Lemma 2.

Remark 3. The identity e j “ E0 `ř j
i“1 δeiτ and Lemma 4 above also imply

max
1ď jďn

}e j}2À
˜

1`
nÿ

i“1

h2
i τ

¸
.

Lemma 5. Assume that N is a global Lipschitz continuous function. Moreover, we suppose that f P Hpdiv; Ωq,W0 P
Hpdiv; Ωq, E0 P XN and 0 ă σ˚ ď σ ď σ˚ ă 8. Then we have the following estimate

max
1ď jďn

}∇ ¨ δe j}2 `
nÿ

i“1

}∇ ¨ δei ´ ∇ ¨ δei´1}2À
˜

1`
nÿ

i“1

h2
i τ

¸
.

Proof. First, we apply the divergence operator to the first equation in (DPi), then multiply by ∇ ¨ δeiτ, integrate over
Ω and sum up for i “ 1, . . . , j. We obtain the following

jÿ

i“1

`∇ ¨ δ2ei,∇ ¨ δei
˘
τ “

jÿ

i“1

p∇ ¨ Npei´1q,∇ ¨ δeiq τ`
jÿ

i“1

hi p∇ ¨ f ,∇ ¨ δeiq τ´
jÿ

i“1

pσi∇ ¨ E0,∇ ¨ δeiq τ

´
jÿ

i“1

ppσ ˚ ∇ ¨ δeqi,∇ ¨ δeiq τ.

The left hand side can be rewritten using Abel’s summation formula

jÿ

i“1

`∇ ¨ δ2ei,∇ ¨ δei
˘
τ “ }∇ ¨ δe j}2

2
´ }∇ ¨W0}2

2
` 1

2

jÿ

i“1

}∇ ¨ δei ´ ∇ ¨ δei´1}2 .

8
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First term on the right hand side is estimated as

jÿ

i“1

p∇ ¨ Npei´1q,∇ ¨ δeiq τ ď
jÿ

i“1

}∇ ¨ Npei´1q} }∇ ¨ δei} τÀ
jÿ

i“1

}ei´1}H1pΩq }∇ ¨ δei} τ

À
jÿ

i“1

}ei´1}XN
}∇ ¨ δei} τ “

jÿ

i“1

p}ei´1} ` }∇ˆ ei´1} ` }∇ ¨ ei´1}q }∇ ¨ δei} τ

Lemma 4,Remark 3À
˜

1`
jÿ

i“1

h2
i τ

¸
`

jÿ

i“1

}∇ ¨ δei}2 τ`
jÿ

i“1

}∇ ¨ ei} }∇ ¨ δei} τ

À
˜

1`
jÿ

i“1

h2
i τ`

jÿ

i“1

}∇ ¨ δei}2 τ

¸
`

jÿ

i“1

›››››∇ ¨ E0 `
iÿ

k“1

∇ ¨ δekτ

››››› }∇ ¨ δei} τ

À
˜

1`
jÿ

i“1

h2
i τ`

jÿ

i“1

}∇ ¨ δei}2 τ

¸
.

The other terms on the right hand side are estimated using Cauchy’s and Young’s inequalities. Therefore, gathering
all partial results, we arrive at

}∇ ¨ δe j}2 `
jÿ

i“1

}∇ ¨ δei ´ ∇ ¨ δei´1}2À
˜

1`
jÿ

i“1

h2
i τ`

jÿ

i“1

}∇ ¨ δei}2 τ

¸
.

An application of discrete version of the Grönwall Lemma 2 and taking maximum over 1 ď j ď n yields to the
desired result.

Remark 4. Using the identity ∇ ¨ ei “ ∇ ¨ E0 `ři
j“1 ∇ ¨ δe jτ and Lemma 5 above, we obtain an estimate for ∇ ¨ ei

max
1ď jďn

}∇ ¨ e j}2À
˜

1`
nÿ

i“1

h2
i τ

¸
.

Lemma 6. Let N be a global Lipschitz continuous function and also assume f P H0pcurl ; Ωq,W0 P H0pcurl ; Ωq, E0 P
XN ,∇ˆ ∇ˆ E0 P L2pΩq and 0 ă σ˚ ď σ ď σ˚ ă 8. Then we have the following estimate

max
1ď jďn

}∇ˆ δe j}2 ` max
1ď jďn

}∇ˆ ∇ˆ e j}2 `
nÿ

i“1

}∇ˆ δei ´ ∇ˆ δei´1}2

`
nÿ

i“1

}∇ˆ ∇ˆ ei ´ ∇ˆ ∇ˆ ei´1}2À
˜

1`
nÿ

i“1

h2
i τ

¸
.

Proof. We start by applying the curl operator to the first equation in (DPi), then we multiply it with ∇ˆδeiτ, integrate
over Ω, use Green’s theorem (Lemma 1 guarantees ∇ˆ ∇ˆ eiˆn“ 0 on Γ) and sum up for i “ 1, . . . , j

jÿ

i“1

`∇ˆ δ2ei,∇ˆ δei
˘
τ`

jÿ

i“1

p∇ˆ ∇ˆ ei,∇ˆ ∇ˆ δeiq τ`
jÿ

i“1

ppσ ˚ ∇ˆ δeqi,∇ˆ δeiq τ

“
jÿ

i“1

p∇ˆ Npei´1q,∇ˆ δeiq τ`
jÿ

i“1

hi p∇ˆ f ,∇ˆ δeiq τ´
jÿ

i“1

pσi∇ˆ E0,∇ˆ δeiq τ.

9
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To bound the first two terms on the left hand side, we employ Abel’s summation rule once again, i.e.

jÿ

i“1

`∇ˆ δ2ei,∇ˆ δei
˘
τ “ }∇ˆ δe j}2

2
´ }∇ˆW0}2

2
` 1

2

jÿ

i“1

}∇ˆ δei ´ ∇ˆ δei´1}2 ,

jÿ

i“1

p∇ˆ ∇ˆ ei,∇ˆ ∇ˆ δeiq τ “ }∇ˆ ∇ˆ e j}2

2
´ }∇ˆ ∇ˆ E0}2

2
` 1

2

jÿ

i“1

}∇ˆ ∇ˆ ei ´ ∇ˆ ∇ˆ ei´1}2 .

Last term on the left hand side can be bounded as follows
ˇ̌
ˇ̌
ˇ

jÿ

i“1

ppσ ˚ ∇ˆ δeqi,∇ˆ δeiq τ
ˇ̌
ˇ̌
ˇÀ

˜
1`

jÿ

i“1

}∇ˆ δei}2 τ

¸
.

We continue with estimates for the right hand side. Starting with the first term, we obtain

jÿ

i“1

p∇ˆ Npei´1q,∇ˆ δeiq τÀ
˜
}E0}2

H1pΩq `
jÿ

i“1

}ei}2
H1pΩq τ

¸
`

jÿ

i“1

}∇ˆ δei}2 τ

À
˜
}E0}2

XN
`

jÿ

i“1

}ei}2
XN

τ

¸
`

jÿ

i“1

}∇ˆ δei}2 τ

Lemma 4,5À
˜

1`
jÿ

i“1

h2
i τ

¸
`

jÿ

i“1

}∇ˆ δei}2 τ.

The rest of the right hand side terms can be bounded via Cauchy’s and Young’s inequalities

jÿ

i“1

hi p∇ˆ f ,∇ˆ δeiq τÀ
jÿ

i“1

h2
i }∇ˆ f}2 τ`

jÿ

i“1

}∇ˆ δei}2 τÀ
jÿ

i“1

h2
i τ`

jÿ

i“1

}∇ˆ δei}2 τ,

ˇ̌
ˇ̌
ˇ

jÿ

i“1

pσi∇ˆ E0,∇ˆ δeiq τ
ˇ̌
ˇ̌
ˇÀ}∇ˆ E0}2 `

jÿ

i“1

}∇ˆ δei}2 τÀ
˜

1`
jÿ

i“1

}∇ˆ δei}2 τ

¸
.

Now, we can congregate all partial results above to see that

}∇ˆ δe j}2 `
jÿ

i“1

}∇ˆ δei ´ ∇ˆ δei´1}2 ` }∇ˆ ∇ˆ e j}2 `
jÿ

i“1

}∇ˆ ∇ˆ ei ´ ∇ˆ ∇ˆ ei´1}2

À
˜

1`
jÿ

i“1

h2
i τ

¸
`

jÿ

i“1

}∇ˆ δei}2 τ.

Using Grönwall’s Lemma 2 and taking maximum over 1 ď j ď n, we conclude the proof.

Lemma 7. Let N be a global Lipschitz continuous function and suppose f P XN ,W0 P XN , E0 P XN ,∇ˆ ∇ˆ E0 P
L2pΩq,m P C2pr0,T sq, ş

Γ
fpxq ¨ nφ dΓ ‰ 0 and 0 ă σ˚ ď σ ď σ˚ ă 8. Then we have the following estimates

piq max
1ď jďn

}e j}2
XN
` max

1ď jďn
}∇ˆ ∇ˆ e j}2À 1

piiq max
1ď jďn

|h j|2À 1

piiiq max
1ď jďn

››δ2e j
››pH0pcurl ;Ωqq˚ À 1.

10
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Proof. piq According to the proof of Lemma 1 and (DMPi), we have

h2
iÀp1` }∇ˆ ∇ˆ ei´1}2 ` }ei´1}2

XN
q ùñ

jÿ

i“1

h2
i τÀ

˜
1`

jÿ

i“1

}∇ˆ ∇ˆ ei´1}2 τ`
jÿ

i“1

}ei´1}2
XN

τ

¸
.

Lemmas 4,5 and 6 together with the bound above yield

}e j}2
XN
` }∇ˆ ∇ˆ e j}2À

˜
1`

jÿ

i“1

h2
i τ

¸
À
˜

1`
jÿ

i“1

}ei´1}2
XN

τ`
jÿ

i“1

}∇ˆ ∇ˆ ei´1}2 τ

¸
.

Thus, employing Grönwall’s Lemma 2 once again and taking maximum over 1 ď j ď n the first statement of Lemma
7 is proven.
piiq The second statement is directly implied by piq.
piiiq We take ϕ P H0pcurl ; Ωq and make a scalar multiplication with (DPi). Then we integrate in Ω and use

Green’s theorem to observe
`
δ2ei,ϕ

˘ “ pNpei´1q,ϕq ` hi p f ,ϕq ´ pσiE0,ϕq ´ ppσ ˚ δeqi,ϕq ´ p∇ˆ ei,∇ˆ ϕq .
Using statements piq, piiq and Lemma 4, we conclude

ˇ̌`
δ2ei,ϕ

˘ˇ̌À}ϕ} ` }∇ˆ ϕ}À }ϕ}H0pcurl ;Ωq .

Therefore,

››δ2e j
››pH0pcurl ;Ωqq˚ “ sup

ϕ‰0,ϕPH0pcurl ;Ωq

ˇ̌`
δ2e j,ϕ

˘ˇ̌

}ϕ}H0pcurl ;Ωq
À 1.

5. Existence of a solution

We construct piece-wise constant and piece-wise linear in time functions and show the convergence of subse-
quences of these functions to a weak solution tE, hu which satisfies (9) and (7). These functions are also called
Rothe’s functions and are created in the following manner

ĎEnptq “ ei t P pti´1, ts,
Enptq “ ei´1 ` pt ´ ti´1qδei t P pti´1, ts,
ĎEnp0q “ Enp0q “ E0,
ĎWnptq “ δei t P pti´1, ts,
Wnptq “ δei´1 ` pt ´ ti´1qδei t P pti´1, ts,
ĎWnp0q “Wnp0q “W0,
shnptq “ hi t P pti´1, ts,
Ďmnptq “ mi, Ďm1nptq “ m1i , Ďm2nptq “ m2i t P pti´1, ts,
Ďσnptq “ σi t P pti´1, ts.

Now, we can rewrite (DPi) and (DMPi) in a continuous form (for t P pti´1, tis)
BtWnptq ` pĎσn ˚ ĎWnqptiq ` ∇ˆ ∇ˆĎEnptq “ NpĎEnpt ´ τqq ` shnptq f ´ sσptqE0 in Ω

ĎEnptq ˆ n “ 0 on Γ

Enp0q “ E0
Wnp0q “W0,

(DP)

11
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shnptq “
Ďm2nptq ` pĎσn ˚Ďm1nqptiq `

`∇ˆ ∇ˆĎEnpt ´ τq,∇φ˘´ ş
Γ

NpĎEnpt ´ τqq ¨ nφ dΓş
Γ

fpxq ¨ nφ dΓ
. (DMP)

Then the variational formulation of (DP) has the following structure for any t P pti´1, tis and ϕ P H0pcurl ; Ωq
pBtWnptq,ϕq `

`pĎσn ˚ ĎWnqptiq `ĎσnptqE0,ϕ
˘` `∇ˆĎEnptq,∇ˆ ϕ

˘ “ `
NpĎEnpt ´ τqq,ϕ˘` shnptq p fpxq,ϕq .

(11)

The abbreviations DP and DMP stands for the Discretized Problem and the Discretized Measured Problem, respec-
tively.

Theorem 1. Let Ω P C1,1 or Ω be convex. Assume that N and σ are global Lipschitz continuous functions and f P
XN , E0 P XN ,W0 P XN ,∇ˆ∇ˆ E0 P L2pΩq,m P C2pr0,T sq, ş

Γ
fpxq ¨ nφ dΓ ‰ 0, φ P C8pΩ̄q with measpsupppφq X

Γq ą 0 and 0 ă σ˚ ď σ ď σ˚ ă 8.
Then there exists a weak solution tE, hu which satisfies (9) and (7). Furthermore, we have h P L2pp0,T qq, E P

Cpr0,T s; L2pΩqqXL8pp0,T q; XNqwith Bt E P L2pp0,T q; L2pΩqqXCpr0,T s; X˚Nq, B2
t E P L2pp0,T q; pH0pcurl ; Ωqq˚q

and ∇ˆ ∇ˆ E P L8pp0,T q; L2pΩqq.
Proof. The Lipschitz continuity of σ implies

Ďσn Ñ σ in L2pr0,T sq. (12)

Lemma 7 says that
şT

0

ˇ̌ shnpsq
ˇ̌2 dsÀ 1. From the reflexivity of the space L2pp0,T qq, we have a subsequence of shn (still

denoted as shn for the sake of clarity), which converges weakly to h in this space, i.e.

shnptq á hptq in L2pp0,T qq. (13)

Remark 5. In the sequel, we will frequently use the convergence of subsequences. To enhance the readability and
clarity of our paper, we will not distinguish between the original sequence and a subsequence and continue to denote
the subsequence with the same denotation as the original sequence.

From [24, Theorem 2.8], we have a compact embedding for any Lipschitz domain Ω.

XN Ť L2pΩq.
Deducing from Lemmas 4,5,6, and 7, we obtain

ż T

0
}Bt Enptq}2 dtÀ 1, }Enptq}XN

À 1 @t P r0,T s.

Applying [23, Lemma 1.3.13], we obtain an existence of a vector field E P Cpr0,T s; L2pΩqq X L8pp0,T q; XNq with
Bt E P L2pp0,T q; L2pΩqq and a subsequence of En for which the following convergence results hold

En Ñ E in Cpr0,T s; L2pΩqq,
ĎEn Ñ E in L2pp0,T ; L2pΩqqq,
Enptq á Eptq in XN , @t P r0,T s,
ĎEnptq á Eptq in XN , @t P r0,T s,
ĎWn “ Bt En á Bt E in L2pp0,T q; L2pΩqqq.

(14)

Lemma 7 together with XN Ă H0pcurl ; Ωq Ă pH0pcurl ; Ωqq˚ Ă X˚N implies

}BtWn}X˚N À}BtWn}pH0pcurl ;Ωqq˚ À 1.

12
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Now, thanks to the embedding XN Ť L2pΩq, which implies L2pΩq Ť X˚N and Lemma 4, we also have for t P pti´1, tis
}Wn}X˚N À}Wn} “

››δei´1 ` pt ´ ti´1qδ2ei
››Àp}δei} ` }δei´1}qÀ 1.

Hence, the sequence Wn is equi-bounded in Cpr0,T s; X˚Nq. Moreover, for any t ‰ s, t, s P r0,T s and any ϕ P XN , we
have

|pWnptq ´Wnpsq,ϕq| “
ˇ̌
ˇ̌
ż t

s
pBtWnpzq,ϕq dz

ˇ̌
ˇ̌ ď |t ´ s| }BtWn}X˚N }ϕ}XN

À |t ´ s| }ϕ}XN
.

Thus the sequence Wn is also equi-continuous in Cpr0,T s; X˚Nq and so applying a modification of Arzelà-Ascoli
theorem (see [23, Lemma 1.3.10]), we conclude that the sequence is compact in there, i.e.

Wn ÑW in Cpr0,T s; X˚Nq. (15)

Now, for any t P pti´1, tis and any ϕ P XN , we have

ˇ̌`
Wn ´ ĎWn,ϕ

˘ˇ̌ “
ˇ̌
ˇ̌
ż ti

t
pBtWnpsq,ϕq ds

ˇ̌
ˇ̌ ď τ }BtWn}X˚N }ϕ}XN

Àτ }ϕ}XN

nÑ8ÝÑ 0.

Therefore,

ĎWn ÑW in Cpr0,T s; X˚Nq. (16)

Using this and (14), we conclude the following for any ϕ P XN

ż T

0
pBt E,ϕq dt “ lim

nÑ8

ż T

0

`ĎWnptq,ϕ
˘

dt “
ż T

0
pW,ϕq dt ùñ Bt E “W.

Lemma 7 implies BtWn P L2pp0,T q; pH0pcurl ; Ωqq˚q. Since this space is reflexive, there exists a z from the space
L2pp0,T q; pH0pcurl ; Ωqq˚q such that BtWn á z in this space. Using the previous results for the sequence Wn, we
conclude for any ϕ P H0pcurl ; Ωq

ż t

0

`B2
t Epsq,ϕ˘ ds “ pWptq ´Wp0q,ϕq “ lim

nÑ8 pWnptq ´Wnp0q,ϕq

“ lim
nÑ8

ż t

0
pBtWnpsq,ϕq ds “

ż t

0
pzpsq,ϕq ds.

Therefore, B2
t E “ z, i.e. BtWn á B2

t E in L2pp0,T q; pH0pcurl ; Ωqq˚q. For the convolution term, we have the following
estimate for any ϕ P XN and t P pti´1, tis

ˇ̌pĎσn ˚
`ĎWn,ϕ

˘qptiq ´ pĎσn ˚
`ĎWn,ϕ

˘qptqˇ̌

“
ˇ̌
ˇ̌
ż ti

0

`ĎWnpti ´ sq,ϕ˘Ďσnpsq ds´
ż t

0

`ĎWnpt ´ sq,ϕ˘Ďσnpsq ds
ˇ̌
ˇ̌

“
ˇ̌
ˇ̌
ż t

0

`ĎWnpti ´ sq ´ ĎWnpt ´ sq,ϕ˘Ďσnpsq ds´
ż ti

t

`ĎWnpti ´ sq,ϕ˘Ďσnpsq ds
ˇ̌
ˇ̌

Àτ ››ĎWnptiq
››
X˚N }ϕ}XN

`
ż t

0

››ĎWnpti ´ sq ´ ĎWnpt ´ sq››X˚N }ϕ}XN
ds.

The first term on the right hand side can be estimated as τ }ϕ}XN
since

››ĎWn
››
X˚N À 1. We can bound the second term

13
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in the following manner
››ĎWnpti ´ sq ´ ĎWnpt ´ sq››X˚N “

››ĎWnpti ´ sq ´Wnpt ´ sq `Wnpt ´ sq ´ ĎWnpt ´ sq››X˚N
ď ››ĎWnpti ´ sq ´Wnpt ´ sq››X˚N `

››Wnpt ´ sq ´ ĎWnpt ´ sq››X˚N
Àτ }BtWnptiq}X˚N
“ τ

››δ2ei
››
X˚N

Àτ ››δ2ei
››pH0pcurl ;Ωqq˚

Àτ.
This implies

ż t

0

››ĎWnpti ´ sq ´ ĎWnpt ´ sq››X˚N }ϕ}XN
dsÀτ }ϕ}XN

.

Therefore,
ˇ̌pĎσn ˚

`ĎWn,ϕ
˘qptiq ´ pĎσn ˚

`ĎWn,ϕ
˘qptqˇ̌Àτ }ϕ}XN

nÑ8ÝÑ 0.

Now, using (12),(16), and Lebesgue dominated convergence theorem, we conclude for any ϕ P XN and t P pti´1, tis
lim

nÑ8pĎσn ˚
`ĎWn,ϕ

˘qptiq “ lim
nÑ8pĎσn ˚

`ĎWn,ϕ
˘qptq “ pσ ˚ pBt E,ϕqqptq.

Thanks to Lemma 4 and the Lipschitz continuity of N, we have for any t P pti´1, tis and ϕ P XN

ˇ̌`
NpĎEnpt ´ τqq ´ NpĎEnptqq,ϕ

˘ˇ̌À ››ĎEnpt ´ τq ´ĎEnptq
›› }ϕ} “ }ei ´ ei´1} }ϕ} “ }δei} }ϕ} τÀτ }ϕ} .

Since ĎEn Ñ E in L2pp0,T q; L2pΩqq, also NpĎEnpt ´ τqq Ñ NpEq in this space.
Now, we can integrate (11) in time over t P r0, ξs Ă r0,T s and according to the results above, we can pass to the limit
for n Ñ8 and ϕ P XN to obtain

pBt Epξq,ϕq ´ pW0,ϕq `
ż ξ

0
ppσ ˚ Bt Eqptq ` σptqE0,ϕq dt `

ż ξ

0
p∇ˆ Eptq,∇ˆ ϕq dt

“
ż ξ

0
pNpEptqq,ϕq dt `

ż ξ

0
hptq p f ,ϕq dt.

Then differentiating with respect to the time variable ξ yields
`B2

t E,ϕ
˘` ppσ ˚ Bt Eq ` σE0,ϕq ` p∇ˆ E,∇ˆ ϕq “ pNpEq,ϕq ` hptq p f ,ϕq .

The equation above is true a.e. in r0,T s and for any ϕ P XN . The space XN is dense in H0pcurl ; Ωq, therefore, (9) is
valid for any ϕ P H0pcurl ; Ωq and B2

t E P pH0pcurl ; Ωqq˚ a.e. in r0,T s.

14
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Next step is to pass to the limit for n Ñ8 in (DMP). Since m P C2pr0,T sq and σ is bounded, we deduce

ˇ̌pĎσn ˚Ďm1nqptiq ´ pĎσn ˚Ďm1nqptq
ˇ̌ “

ˇ̌
ˇ̌
ż ti

0

Ďm1npti ´ sqĎσnpsq ds´
ż t

0

Ďm1npt ´ sqĎσnpsq ds
ˇ̌
ˇ̌

“
ˇ̌
ˇ̌
ż t

0
pĎm1npti ´ sq ´Ďm1npt ´ sqqĎσnpsq ds´

ż ti

t

Ďm1npti ´ sqĎσnpsq ds
ˇ̌
ˇ̌

ď Opτq `
ż ti

t

ˇ̌pĎm1npti ´ sq ´Ďm1npt ´ sqqĎσnpsq
ˇ̌

ds

nÑ8ÝÑ 0.

Taking into account (12), we observe the following

pĎσn ˚Ďm1nqptq nÑ8ÝÑ pσ ˚ m1qptq.
Thanks to Lemma 7 and (14), we have for any ϕ P C80 pΩq and t P r0,T s

`∇ˆ ∇ˆĎEnptq,ϕ
˘ Green1 s theorem“ `∇ˆĎEnptq,∇ˆ ϕ

˘

Green1 s theorem“ `ĎEnptq,∇ˆ ∇ˆ ϕ
˘

nÑ8ÝÑ pEptq,∇ˆ ∇ˆ ϕq “ p∇ˆ ∇ˆ Eptq,ϕq .

Since C80 pΩq is dense in H0pcurl ; Ωq and in L2pΩq, we conclude
`∇ˆ ∇ˆĎEnptq,ϕ

˘ Ñ p∇ˆ ∇ˆ Eptq,ϕq for any
ϕ P H0pcurl ; Ωq and for any t P r0,T s. Again, thanks to Lemma 6 and Lemma 7, we have

ż ξ

0

››∇ˆ ∇ˆĎEnptq ´ ∇ˆ ∇ˆĎEnpt ´ τq››2 dt ď
nÿ

i“1

}∇ˆ ∇ˆ ei ´ ∇ˆ ∇ˆ ei´1}2 τÀτ nÑ8ÝÑ 0.

Using this and the fact that φ P H1pΩq for any φ P C80 pΩq, we obtain the following convergence result

lim
nÑ8

ż ξ

0

`∇ˆ ∇ˆ Ēnpt ´ τq,∇φ˘ dt “
ż ξ

0
p∇ˆ ∇ˆ Eptq,∇φq dt.

Lemma 4, Lemma 5, and the embedding XN Ă H1pΩq gives us an estimate for ĎEn, i.e.

››ĎEnptq
››2

H1pΩqÀ 1.

We recall the Nečas inequality cf. [27] or [28, (7.116)]

}w}2
L2pΓq ď ε }∇w}2 `Cε }w}2 , @w P H1pΩq, (17)

where 0 ă ε ă ε0 and Cε :“ C
ε

for some C ą 0. Strong convergence of ĎEnptq towards Eptq in L2pΩq for any
t P r0,T s, cf. (14), and the inequality above imply

››ĎEnptq ´ Eptq››2
L2pΓqÀε

››ĎEnptq ´ Eptq››2
H1pΩq `Cε

››ĎEnptq ´ Eptq››2Àε`Cε

››ĎEnptq ´ Eptq››2
.

Thus,

lim
nÑ8

››ĎEnptq ´ Eptq››2
L2pΓqÀε

εÑ0ÝÑ 0 i.e. ĎEnptq Ñ Eptq in L2 pΓq , @t P r0,T s.
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Using Lemma 4 and same technique as above, we conclude the following for t P rti´1, tis
››ĎEnptq ´ĎEnpt ´ τq››2

L2pΓqÀε
››ĎEnptq ´ĎEnpt ´ τq››2

H1pΩq `Cε

››ĎEnptq ´ĎEnpt ´ τq››2

Àε`Cε }δei}2 τ2 τÑ0ÝÑ ε
εÑ0ÝÑ 0.

Now, we integrate (DMP) in time over t P r0, ξs Ă r0,T s, consider all convergence results above, take into account
that m P C2pr0,T sq and the Lipschitz continuity of N and pass to the limit for n Ñ8 to obtain

lim
nÑ8

ż ξ

0

shn “
şξ

0 m2ptq ` şξ
0rpσ ˚ m1qptq ` σptqmp0qs ` şξ

0

ş
Ω
∇ˆ ∇ˆ E ¨ ∇φ dx´ şξ

0

ş
Γ

NpEq ¨ nφ dΓş
Γ

fpxq ¨ nφ dΓ
.

Differentiation with respect to the time variable ξ yields (7), which also concludes our proof.

6. Uniqueness

Due to the nonlinear term N, we are not able to provide an uniqueness proof without any further regularity
assumptions on the solution E. Thus, we assume E P H1,8pΩq. Taking this into account and also presume that
N is supposedly smooth, i.e. N P C2, we conclude the following for any vector fields u, v : R3 Ñ R3 and some
ξ1, ξ2, ξ3 P r0, 1s

Npuq ´ Npvq “
¨
˝

N1puq ´ N1pvq
N2puq ´ N2pvq
N3puq ´ N3pvq

˛
‚“

¨
˝
∇N1pv` ξ1pu´ vqq ¨ pu´ vq
∇N2pv` ξ2pu´ vqq ¨ pu´ vq
∇N3pv` ξ3pu´ vqq ¨ pu´ vq

˛
‚.

Assuming that u, v P H1,8pΩq and using the Cauchy-Schwarz inequality, we obtain an estimate for derivatives in the
following form

|Bx jpNpuq ´ Npvqq| ď
3ÿ

i“1

”
|Bx j∇Nipv` ξipu´ vqq| |Bx jpv` ξipu´ vqq| |u´ v|

` |∇Nipv` ξipu´ vqq| |Bx jpu´ vq|
ı

Àp|u´ v| ` |Bx jpu´ vq|q.
Now, we can provide some further estimates which are obtained in the similar manner as estimate above

}∇ˆ pNpuq ´ Npvqq}À }u´ v}H1pΩq if N P C2, u, v P H1,8pΩq (18)

and

}∇ ¨ pNpuq ´ Npvqq}À }u´ v}H1pΩq if N P C2, u, v P H1,8pΩq. (19)

We continue with the uniqueness theorem.

Theorem 2. Let the assumptions of Theorem 1 be satisfied. Moreover, presume that N P C2. Then there exists at
most one weak solution tE, hu to the problem (5),(3), (4) and (7) fulfilling h P L8pp0,T qq, E P Cpr0,T s; L2pΩqq X
L8pp0,T q; H1,8pΩqq with Bt E P L2pp0,T q; L2pΩqqXCpr0,T s; X˚Nq, B2

t E P L2pp0,T q; pH0pcurl ; Ωqq˚q and ∇ˆ∇ˆ
E P L8pp0,T q; L2pΩqq.
Proof. Let us have two solutions tE, hu and tG, gu to the problem (5),(3), (4), (7) and denote

E´ G “ P, hptq ´ gptq “ pptq.
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Our goal is to show that P “ 0 a.e. in Ω ˆ p0,T q and p “ 0 a.e. in p0,T q.The measurements for both solutions are
the same, therefore, we have

pptq “ p∇ˆ ∇ˆ Pptq,∇φq ´ ş
Γ
pNpEptqq ´ NpGptqqq ¨ nφ dΓş

Γ
fpxq ¨ nφ dΓ

. (20)

Subtracting (5) for E and G yields

B2
t P` pσ ˚ Bt Pq ` ∇ˆ ∇ˆ P “ f p` NpEq ´ NpGq. (21)

Remark 6. Pˆ n“ 0 on the boundary Γ and Ppx, 0q “ 0, Bt Ppx, 0q “ 0.

We continue with several energy estimates implied by (20) and (21).
Part (A): Looking at (20), taking into account the embedding H1pΩq Ă L2 pΓq and the Lipschitz continuity of N, we
obtain

|ppξq|2À}Ppξq}2
H1pΩq ` }∇ˆ ∇ˆ Ppξq}2 . (A)

Part (B): Multiply (21) with Bt P, integrate over Ω, use Green’s theorem and then integrate in time to deduce

1
2
}Bt Ppξq}2 ` 1

2
}∇ˆ Ppξq}2 ď

ż ξ

0
|p| } f} }Bt P} `

ż ξ

0
}NpEq ´ NpGq} }Bt P} `

ż ξ

0
}pσ ˚ Bt Pq} }Bt P} .

We also have the following bounds for the terms on the right hand side
ż ξ

0
|p| } f} }Bt P}À

ż ξ

0
|p|2 `

ż ξ

0
}Bt P}2 ,

ż ξ

0
}pσ ˚ Bt Pq} }Bt P}À

ż ξ

0
}Bt P}2 ,

ż ξ

0
}NpEq ´ NpGq} }Bt P}À

ż ξ

0
}P} }Bt P}À

ż ξ

0
}Bt P}2 .

Here, we used the traditional Cauchy and Young inequalities, boundedness of σ, the Lipschitz continuity of N and
}Pptq} “

›››
şt

0 Bt Ppsq
››› ď şt

0 }Bt Ppsq}. Collecting all partial results and applying Grönwall’s Lemma 3, we conclude
that

}Bt Ppξq}2 ` }∇ˆ Ppξq}2À
ż ξ

0
|p|2 . (B)

Remark 7. This result also implies }Ppξq}2À şξ
0 |p|2.

Part (C): Apply the divergence operator to (21), then multiply it by ∇ ¨ Bt P and integrate in space and time to
obtain

1
2
}∇ ¨ Bt Ppξq}2 ď

ż ξ

0
|p| }∇ ¨ f} }∇ ¨ Bt P} `

ż ξ

0
}pσ ˚ ∇ ¨ Bt Pq} }∇ ¨ Bt P}

`
ż ξ

0
}∇ ¨ pNpEq ´ NpGqq} }∇ ¨ Bt P} .
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M. Slodička / Journal of Computational and Applied Mathematics 00 (2017) 1–23 18

First two terms on the right hand side are estimated via the Young’s inequality, i.e.
ż ξ

0
|p| }∇ ¨ f} }∇ ¨ Bt P} `

ż ξ

0
}pσ ˚ ∇ ¨ Bt Pq} }∇ ¨ Bt P}À

ż ξ

0
|p|2 `

ż ξ

0
}∇ ¨ Bt P}2 .

For the last term we use (19), (B), the embedding XN Ă H1pΩq, and the inequality }∇ ¨ Pptq} “
›››
şt

0 ∇ ¨ Bs Ppsq ds
››› ď

şt
0 }∇ ¨ Bs Ppsq} ds

ż ξ

0
}∇ ¨ pNpEq ´ NpGqq} }∇ ¨ Bt P}À

ż ξ

0
}P}H1pΩq }∇ ¨ Bt P}

À
ż ξ

0
}P}XN

}∇ ¨ Bt P}

À
ż ξ

0
p}P} ` }∇ˆ P}q }∇ ¨ Bt P} `

ż ξ

0
}∇ ¨ P} }∇ ¨ Bt P}

À
ż ξ

0

´
}P}2 ` }∇ˆ P}2

¯
`
ż ξ

0
}∇ ¨ Bt P}2

À
ż ξ

0
|p|2 `

ż ξ

0
}∇ ¨ Bt P}2 .

We employ Grönwall’s Lemma 3 to get

}∇ ¨ Bt Ppξq}2À
ż ξ

0
|p|2 and }∇ ¨ Ppξq}2À

ż ξ

0
|p|2 . (C)

Part (D): Apply the curl operator to (21), multiply it by ∇ ˆ Bt P, then integrate in Ω and use Green’s theorem and
then integrate in time to obtain

1
2
}∇ˆ Bt Ppξq}2 ` 1

2
}∇ˆ ∇ˆ Ppξq}2 ď

ż ξ

0
|p| }∇ˆ f} }∇ˆ Bt P} `

ż ξ

0
}pσ ˚ ∇ˆ Bt Pq} }∇ˆ Bt P}

`
ż ξ

0
}∇ˆ pNpEq ´ NpGqq} }∇ˆ Bt P} .

Again, we use Young’s inequality to handle the first two terms on the right hand side
ż ξ

0
|p| }∇ˆ f} }∇ˆ Bt P} `

ż ξ

0
}pσ ˚ ∇ˆ Bt Pq} }∇ˆ Bt P}À

ż ξ

0
|p|2 `

ż ξ

0
}∇ˆ Bt P}2 .

The last term on the right hand side is estimated with the help of (18), the embedding XN Ă H1pΩq, (B) and (C)

ż ξ

0
}∇ˆ pNpEq ´ NpGqq} }∇ˆ Bt P}À

ż ξ

0
}P}H1pΩq }∇ˆ Bt P}À

ż ξ

0
}P}XN

}∇ˆ Bt P}

À
ż ξ

0

´
}P}2 ` }∇ ¨ P}2 ` }∇ˆ P}2

¯
`
ż ξ

0
}∇ˆ Bt P}2

À
ż ξ

0
|p|2 `

ż ξ

0
}∇ˆ Bt P}2 .
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Utilizing the Grönwall Lemma 3, we achieve the following estimate

}∇ˆ Bt Ppξq}2 ` }∇ˆ ∇ˆ Ppξq}2À
ż ξ

0
|p|2 . (D)

Summary: Taking into account the embedding XN Ă H1pΩq and gathering the results from (A), (B), (C) and (D), we
have

}Ppξq}2
H1pΩq ` }∇ˆ ∇ˆ Ppξq}2À

ż ξ

0
|p|2À

ż ξ

0

´
}P}2

H1pΩq ` }∇ˆ ∇ˆ P}2
¯
.

Thus, employing the Grönwall Lemma 3 one more time, we see that P “ 0 a.e. in Ω ˆ p0,T q and from (A), we
conclude that p “ 0 a.e. in p0,T q.

7. Numerical experiment

The main goal of this section is to support theoretical results stated above. We want to demonstrate the conver-
gence of numerical scheme proposed in Section 3. Since Rothe’s method is semi-discrete, we only analyze the time
dependent part of the error of the numerical solution. Consider the following test problem. Find tEpx, tq, hptqu such
that 2

B2
t Epx, tq ` pσ ˚ Bt Eqptq ` σptqEpx, 0q ` ∇ˆ ∇ˆ Epx, tq “ fpxqhptq ` NpEpx, tqq ` Fpx, tq in Ωˆ p0,T q

Epx, tq ˆ n“ 0 in Γˆ p0,T q
fpxq ˆ n“ 0 on Γ. (22)

With initial data prescribed as

Epx, 0q “ E0pxq, Bt Epx, 0q “W0pxq
and additional measurement in the form of (6).

7.1. Setting of the experiment

Let Ω be a sphere in R3 with radius r “ 1 i.e. Ω “  
x “ px, y, zq P R3|x2 ` y2 ` z2 ă 1

(
and t P p0,T q with

T “ 1. To show the convergence of our scheme, we need an exact solution tEpx, tq, hptqu, so we can compute the
error of the numerical solution. For that reason, we define the exact solution as

Epx, tq “ et

¨
˝

x
y
z

˛
‚, hptq “ et.

The remaining functions are determined accordingly

σptq “ 4t3 ` 8t2 ` 16t ` 32,

NpEpx, tqq “ |Epx, tq|´1{2 Epx, tq ` Epx, tq,

fpxq “ 88

¨
˝

x
y
z

˛
‚, Fpx, tq “ ´

ˆ
1

px2 ` y2 ` z2q1{4 ` 12t2 ` 40t ` 56
˙¨
˝

x
y
z

˛
‚.

2If the vector field Fpx, tq is sufficiently smooth then all theoretical results achieved in previous Sections remain true. Hence, we can add this
term to the right hand side in (22).
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In order to examine the nature of error (whether it is diminishing with the decreasing time step) of our numerical
solution tEnumerical, hnumericalu, we compute multiple solutions for time steps τ “ 0.1, 0.05, 0.025, 0.0125, 0.00625.
The spatial part of our time-space domain is then divided into 553 cells (tetrahedra) with diameters ranging from
0.38513 to 0.65231. We use Lagrange finite elements of order 2 at each time step to provide a numerical solution.
This leads to a system with 16590 degrees of freedom.

Remark 8. Sometimes, when computing the electromagnetic solutions, we obtain a non-physical (spurious) solution.
This is when the discretized space Vh (spatial discretization) does not belong in V “ limhÑ0 Vh. If we require a
divergence-free constraint on the discrete test functions we suppress the non-physical solutions. In this case the use
of Nédélec (edge) finite elements is the obvious choice. However, in our case, the solution Eptq P XN does not have
to be divergence-free, even though its divergence is controlled. Therefore, we choose the Lagrange finite elements for
our numerical computations.

The part of the boundary where the measurement (6) was done is displayed in Fig. 2. The errors for the numerical

Figure 2. The boundary measurement

solutions are computed in the following manner

errorE “
}Enumerical ´ Eexact}L2pp0,T q;L2pΩqq

}Eexact}L2pp0,T q;L2pΩqq
, errorh “

dż T

0
|hnumerical ´ hexact|2 dt.

We can see the time step dependency of these errors in Fig. 3 and Fig. 4 and in the Table 7.1 below. The quality of

τ 0.1 0.05 0.025 0.0125 0.00625
errorE 0.1387535 0.0648619 0.030508687 0.0141785 0.006821868
errorh 0.07026298 0.03500252 0.0187912 0.01103294 0.00724477

Table 1. Values of errorE and errorh for different time steps τ

the numerical reconstruction of the source term hptq can be seen in Fig. 5.
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Figure 3. τ dependency of error of Enumerical Figure 4. τ dependency of error of hnumerical

Figure 5. Reconstruction of the source term hptq “ et using the time step τ “ 0.05

The performance of our algorithm with noise in the measurement is pictured in Fig. 6. As we can see, the
reconstruction of the source term was quite good for 1% and 5% noise in the data. However, when 15% of noise was
present, our reconstruction was slightly off. To reconstruct the source, we also need the information about the first
and second order time derivatives of the function mptq (measurement). Therefore, if the noise in the data is too high
(15%), the smoothness of mptq is not sufficient. This causes the errors in the reconstruction.

If the error of a given numerical solution Eτ from the exact solution Eexact depends smoothly on a time step τ then
there exist an error coefficient A such that

Eτ ´ Eexact “ Aτp ` Opτp`1q,
where p represents the order of convergence. Using the formula above, we can estimate the order of convergence for
our numerical solutions Eτ and hτ, i.e.

Eτ ´ Eexact

Eτ{2 ´ Eexact
“ Aτp ` Opτp`1q

Apτ{2qp ` Opτp`1q “ 2p ` Opτq.
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Figure 6. Source reconstruction using noisy data.

Which gives us (analogously for hτ)

log2

ˆ
Eτ ´ Eexact

Eτ{2 ´ Eexact

˙
“ p` Opτq.

Applying this method, we obtain an estimation for the order of convergence of our numerical solutions.

log2
E0.01

E0.05
log2

E0.05

E0.025
log2

E0.025

E0.0125
log2

E0.0125

E0.00625
log2

h0.01
h0.05

log2
h0.05
h0.025

log2
h0.025
h0.0125

log2
h0.0125
h0.00625

pE 1.097 1.088 1.105 1.055 ph 1.0053 0.897 0.768 0.6068

Table 2. Estimation of the order of convergence for Eτ and hτ
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