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An accelerated technique for solving one type of
discrete-time algebraic Riccati equations

Matthew M. Lin1,

Department of Mathematics, National Cheng Kung University, Tainan 701, Taiwan.

Chun-Yueh Chiang2,∗

Center for General Education, National Formosa University, Huwei 632, Taiwan.

Abstract

Algebraic Riccati equations are encountered in many applications of control
and engineering problems, e.g., LQG problems and H∞ control theory. In this
work, we study the properties of one type of discrete-time algebraic Riccati
equations. Our contribution is twofold. First, we present sufficient conditions
for the existence of a unique positive definite solution. Second, we propose
an accelerated algorithm to obtain the positive definite solution with the rate
of convergence of any desired order. Numerical experiments strongly support
that our approach performs extremely well even in the almost critical case. As
a byproduct, we provide show that this method is capable of computing the
unique negative definite solution, once it exists.

Keywords: algebraic Riccati equations, Sherman Morrison Woodbury
formula, positive definite solution, semigroup property, doubling algorithm,
r-superlinear with order r
2000 MSC: 39B12, 39B42, 47J22, 65H05, 15A24

1. Introduction

Originated from the study of control theory, the discrete-time algebraic Ric-
cati equation (DARE) of the compact form:

X = H +AHX(I +GX)−1A (1)
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has been extensively investigated; see [20, 13, 9, 16, 23, 10, 17, 6, 15, 5, 22, 24, 19]
and the references therein. Theoretically, the DARE is highly related to the so-
called nonlinear matrix equation (NME) with plus sign [8, 3]:

X +BHX−1B = Q (2a)

or the one with minor sign [1, 18]:

X −BHX−1B = Q, (2b)

where B ∈ Cn×n and Q is a n× n (Hermitian) positive definite matrix. This is
because when G is a positive definite matrix and X is a Hermitian solution of
Eq. (1), let X̂ := G + GXG, B̂ := AG and Q̂ := G + GHG + B̂HG−1B̂. The
form of Eq. (1) becomes

G+GXG = G+G(H +AHX(I +GX)−1A)G

= G+G(H +AH(X +G−1)(I +GX)−1A−AHG−1(I +GX)−1A)G

= G+GHG+ (AG)HG−1(AG)− (AG)H(G+GXG)−1(AG),

or equivalently, X̂ + B̂HX̂−1B̂ = Q̂, a form of NME with plus sign (2a). Al-
ternatively, if B is a nonsingular matrix and X is a positive definite solution of
Eq. (2b), let Â := B−HB, Ĝ := B−HQB−1 and Ĥ := Q. The form of Eq. (2b)
becomes

X = Q+BHX−1B = Q+BH(Q+BHX−1B)−1B

= Q+ ÂH(X−1 + Ĝ)Â = Ĥ + ÂHX(I + ĜX)Â,

a form of DARE (1). Only recently has the conjugate NME X+AHX̄−1A = Q
received considerable attention; see [14, 25, 11, 4]. It can be said that one of its
main application of the conjugate NME is the study of modern quantum theory
by means of consimilarity [25]. A parallel study of this conjugate NME is to
investigate the conjugate discrete-time algebraic Riccati equation (CDARE) in
the form with the plus sign:

X = H +AHX(I +GX)−1A (3a)

or in the form with the minus sign:

X = H −AHX(I +GX)−1A, (3b)

where A ∈ Cn×n, matrices G and H are two positive definite matrices of size
n × n, and the n-square matrix X is an unknown Hermitian matrix and to be
determined.

In the paper, we derive some sufficient conditions for the existence of the
unique positive solution. Moreover, we present a numerical procedure, based
on the fixed point iteration, to solve CDAREs, and show that the speed of
convergence can be of any desired order.
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An immediate question is whether this conjugate formulae (3) could be
equivalently transformed to the compact form (1). To this end, we use the
notations:

F±(X) = H ±AHX∆G,XA, (4)

with ∆G,X := (I + GX)−1 to simplify our discussion, that is, (3) can also be
represented by

X = F±(X).

Following from the fact that

∆G,F±(X) = ∆G,H ∓∆G,HGA
H
X∆G1,XA∆G,H , (5)

it can be seen that

F (2)
± (X) := F±(F±(X)) = H ±AHF±(X)∆G,F±(X)A

= H1 ± (Π1 + Π2 + Π3), (6)

where

Π1 = ±AHA
H
X∆G,XA∆G,HA,

Π2 = ∓AHH∆G,HGA
H
X∆G1,XA∆G,HA,

Π3 = −AHA
H
X∆G,XA∆G,HGA

H
X∆G1,XA∆G,HA,

G1 = G±A∆G,HGA
H
, (7)

H1 = H ±AHH∆G,HA. (8)

Note that (5) is an application of the well-known Sherman Morrison Woodbury
formula, which can be stated as follows.

Lemma 1.1. [2] Let A and B be two arbitrary matrices of size n, and let
X and Y be two n × n nonsingular matrices. Assume that Y −1 ± BX−1A is
nonsingular. Then, X ±AY B is invertible and

(X ±AY B)−1 = X−1 ∓X−1A(Y −1 ±BX−1A)−1BX−1.

We further observe that

Π1 + Π3 = ±AHA
H
X∆G,X

(
In ∓A∆G,HGA

H
X∆G1,X

)
A∆G,HA

= ±AHA
H
X∆G,X∆−1

G,X
∆G1,XA∆G,HA

= ±AHA
H
X∆G1,XA∆G,HA.

Thus, we have

Π1 + Π2 + Π3 = AH
(
±In ∓H∆G,HG

)
A

H
X∆G1,XA∆G,HA

= ±AH
1 X∆G1,XA1,
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where
A1 := A∆G,HA. (9)

This concludes that (3) can be transformed into the standard DAREs

X = H1 +AH
1 X∆G1,XA1. (10)

Starting with a fixed point iteration, we propose a 3-term iterative method in
Section 3. We show that this method has a semigroup property and is equivalent
to the structured doubling algorithm (SDA), i.e.,

Ak+1 = Ak(I +GkHk)−1Ak,

Gk+1 = Gk +Ak(I +GkHk)−1GkA
H
k ,

Hk+1 = Hk +AH
k Hk(I +GkHk)−1Ak,

under a specific transformation. Though the SDA is known for its efficiency of
computing the solution of DARE [15] with quadratic convergence, we use this
semigroup property to build up an accelerated iterative method with the rate
of convergence of any desired order.

The paper is organized as follows. In Section 2 and Section 3, we propose,
respectively, sufficient conditions for the existence of unique positive definite
solutions of (3) by means of the solvable analysis of (1). Based on the fixed
point iteration, we construct a way to solve the unique positive definite solutions
of (3). We show in Theorem 3.1 that this way satisfies a semigroup property.
In Section 4, we apply this property to build up an accelerated approach to
compute the positive definite solution with r-superlinear convergence of order
r, for any integer r > 1. In Section 5, we examine two examples to illustrate
the capacity and efficiency of our proposed accelerated technique. In Section 6,
we make our concluding remarks.

In the subsequent discussion, the symbols Cn×n and Pn stand for the set of
n× n complex matrices and positive definite matrices, respectively. We denote
the m×m identity matrix by Im, the conjugate matrix of A by A, the conjugate
transpose matrix of A by AH , the spectrum of A by σ(A) and use ρ(A) to denote
the spectral radius of a square matrix A. We use the symbol A > 0 (or A ≥ 0) to
represent that A is a Hermitian positive definite matrix (or a Hermitian positive
semidefinite matrix) and the Loewner order A > B (or A ≥ B ) if A − B > 0
(or A−B ≥ 0). A matrix operator f is order preserving on Pn if f(A) ≥ f(B)
when A ≥ B and A,B ∈ Pn.

2. Solvability properties

In this section, we present sufficient conditions for unique existence of the
positive definite solutions of (3). To this end, we start by investigating the
solvability of the standard conjugate Stein matrix equation:

X = Q+AHXA, (11)

where A ∈ Cn×n and Q ∈ Pn.
Its proof is based on the following well-known fact.
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Lemma 2.1. [2, Proposition 8.6,3.] Let {Ai}∞i=1 be a sequence of positive
semidefinite matrices satisfying Aj ≥ Ai ≥ 0 if j ≥ i, and assume that B is
another positive semidefinite matrix satisfying B ≥ Ai for all i > 0. Then,
A := lim

i→∞
Ai exists and B ≥ A ≥ 0.

Upon using Lemma 2.1, our next result is to propose a necessary and suffi-
cient condition for the existence of a unique positive definite solution of (11).

Lemma 2.2. The equation (11) has a unique positive definite solution if and
only if ρ(AA) < 1.

Proof. Assume that Xp is the unique positive definite solution of (11). Thus,
Xp is a solution of the equation:

X = Q+AHQA+ (AA)HX(AA). (12)

This implies that for any integer k > 0,

Xp =

k∑

i=0

(
(AA)i

)H
(Q+AHQA)(AA)i +

(
(AA)k+1

)H
Xp(AA)k+1 > 0. (13)

Since Q+AHQA > 0 and Xp is positive definite, we see that

∞∑

i=0

(
(AA)i

)H
(Q+AHQA)(AA)i

converges, and hence ρ(AA) < 1.
Conversely, assume that ρ(AA) < 1. Let A ⊗ B be the Kronecker product

of matrices A an B. Observe from (12) that
(
I − (AA)> ⊗ (AA)H

)
vec(X) = vec(Q + AHQA),

where vec(·) is the column stretching function defined as

vec(A) = [a11, · · · , am1, · · · , a1n, · · · , amn]>

for any m× n matrix A = [aij ]. This implies that the solution, say Xp, of (12)
exists. Also, from [26, Lemma 12], we know that (11) has a solution if ρ(AA) <
1. Following from (13), we have

Xp =
∞∑

i=0

(
(AA)i

)H
(Q+AHQA)(AA)i,

which is positive definite. Once (12) has a unique positive definite solution, this
solution is also the unique positive definite solution of (11). This completes the
proof.

Note that Lemma 2.2 enables us to discuss the solvability of (3). To make
our discussion more clearly and explicitly, the rest of this section is divided into
two parts, respectively: One is for (3a) and the other is for (3b).
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2.1. The solvability of (3a)

Using the formula in (4), let P1 be a set defined by

P1 = {X > 0|X ≥ F+(X)} . (14)

Consider the fixed point iteration

Xk+1 = F+(Xk) (15)

with X1 = H. It is easy to see that {Xk} is a monotone increasing matrix
sequence with respect to the Loewner order. Once P1 is nonempty, choose a
matrix XP1

in P1. It can be shown by induction that for any integer k > 0,
Xk ≤ XP1 . This is because for k = 1, it is true that XP1 ≥ H = X1. Assume
that this statement is true for k = n. Then,

XP1 ≥ H +AHXP1
∆G,XP1

A

≥ Xn+1 +AH
(
(I +XP1

G)−1XP1
− (I +XnG)−1Xn

)
A

= Xn+1 +AH
(

(X
−1
P1

+G)−1 − (X
−1
n +G)−1

)
A ≥ Xn+1.

Hence, the sequence {Xk} converges, i.e.,

X∗ := lim
k→∞

Xk (16)

exists and satisfies (3a).
In addition, let

TX = ∆G,XA, (17)

and
T̂X = TXTX . (18)

It can be seen that for this XP1 ∈ P1, we know that

XP1 − TH
XP1

XP1TXP1
= XP1 −AH(I −XP1G(I +XP1G)−1)XP1∆G,XP1

A

= XP1
−AHXP1

TXP1
+AHXP1

G∆XP1
,GXP1

∆G,XP1
A

≥ H + (∆XP1
,GXP1

A)HG(∆XP1
,GXP1

A),

which yields
XP1

≥ T̂H
XP1

XP1
T̂XP1

+H,

or, equivalently,

XP1
≥

m∑

k=0

(T̂H
XP1

)kHT̂ k
XP1

for any integer m > 0. This implies that the specific matrix computation T̂XP1

satisfying
ρ(T̂XP1

) < 1.

6



In particular, it can be seen that if X solves (3a),

T̂X = ∆G,XA∆G,XA

= ∆G,XA
(
I +G

(
H +A

H
X∆G,XA

))−1
A

= ∆G,XA

(
∆G,H −∆G,HGA

H
X
(
I + (G+A∆G,HGA

H
)X
)−1

A∆G,H

)
A

= ∆G,XA(∆G,H −∆G,HGA
H
X∆G1,XA∆G,H)A

= ∆G,XA1 −∆G,XA
(

∆G,HGA
H
X∆G1,XA∆G,H

)
A

= ∆G,X

(
I +G1X −A∆G,HGA

H
X
)

∆G1,XA1

= ∆G1,XA1.

To make it clearly, we summarize results as follows.

theorem 2.1. Let P1, TX , and T̂X be the notation defined in (14), (17),
and (18), respectively.

(a) If P1 is nonempty, then there exists a positive definite solution of (3a).

(b) If X ∈ P1, then ρ(T̂X) < 1.

(c) If X solves Eq. (3a), then T̂X = ∆G1,XA1.

Inspired by our above findings, we now propose a necessary and sufficient
condition for the existence and uniqueness of the positive definite solution
of (3a).

theorem 2.2. The set P1 is nonempty if and only if there exists a unique
positive definite solution of (3a).

Proof. If P1 is nonempty, Theorem (2.1) implies that there exists a positive
definite solution of (3a). Next, we show that the positive definite solution
of (3a) is unique. To this end, let X1 and X2 be two positive definite solutions
of (3a). It follows that

X1 −X2 = AH(I +X1G)−1(X1(I +GX2)− (I +X1G)X2)(I +GX2)−1A

= TH
X1

(X1 −X2)TX2
.

Subsequently, we have

X1 −X2 = (T̂H
X1

)k(X1 −X2)T̂ k
X2

for any integer k > 0, which gives rise to the fact that

X1 −X2 = lim
k→∞

(T̂H
X1

)k(X1 −X2)T̂ k
X2

= 0.
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This is because X1 and X2 are in P1 and from Theorem 2.1 (b), we know that

ρ(T̂X1
) < 1 and ρ(T̂X2

) < 1.
Conversely, if there exists a unique solution of (3a), it is trivial that P1 is

nonempty.

Note that Theorem 2.2 provides a necessary and sufficient condition for the
existence of a unique positive definite solution of (3a). However, the assumption
P1 6= φ is not easy to check. A useful sufficient condition for the existence of a
unique positive definite solution of (3a) can be written as follows.

corollary 2.1. Assume that the coefficient matrix A in (3a) satisfies ρ(AA) <
1. Then, there exists a unique positive definite solution to (3a).

Proof. Since ρ(AA) < 1, it follows from Lemma 2.2 that there exists a positive
definite matrix X1 such that

X1 = H +AHX1A ≥ H +AHX1A− (X1A)H(G−1 +X1)−1(X1A) = F+(X1).

Thus, P1 is nonempty. From Theorem 2.1, there exists a positive definite solu-
tion of (3a).

2.2. The solvability of (3b)

In this section, we discuss a counterpart of (3a). To start with, we let P2 be
a set defined by

P2 := {X > 0|H ≥ X ≥ F−(X)} , (19)

and let H1, G1, and A1 be matrices defined in (8), (7) and (9) with minus signs.
Note that the set P2 is nonempty, since H ∈ P2.

Our purpose in this section is to show that there exists one and only one
positive matrix X ∈ P2, and X satisfies (3b) and ρ(T̂X) < 1. To prove these
facts and make this work self-contained, we recall the result for nonlinear matrix
equations in [7, Lemma 5.5] and [7, Theorem 5.6].

theorem 2.3. Let F(X) = −X +XH(X)X be an order preserving mapping of
Pn into n× n negative definite matrices. Assume that H satisfies the following
two properties:

H(X)XH(X) ≤ H(X),

H(Y )−H(X) = H(X)(X − Y )H(Y ).

Then, there is a unique positive definite solution X to the equation

X −AHXA+AHXH(X)XA = H,

where A,H ∈ Cn×n and H ≥ 0. Moreover, for this solution X, the spectrum
radius of the matrix T̂X defined by

T̂X = A−H(X)XA

satisfying ρ(T̂X) < 1.

8



Corresponding to (3), we consider the case that F(X) = −X + XH(X)X,
where H(X) = ∆G1,XG1 and show that this F(X) satisfies the requirement of
Theorem 2.3.

corollary 2.2. Let F(X) = −X+XH(X)X be a mapping of Pn, where H(X) =
∆G1,XG1 and G1 > 0. Then,

(a) F(X) = −X∆G1,X , i.e., 0 ≤ X ≤ Y implies that F(X) ≥ F(Y ).

(b) H(X)XH(X) ≤ H(X) and H(Y )−H(X) = H(X)(X − Y )H(Y ).

(c) There is a unique positive definite solution X to the DARE

X −AH
1 X∆G1,XA1 = H1,

where H1 > 0. Moreover, for this solution X, ρ(T̂X) < 1 with the matrix

T̂X defined by T̂X = ∆G1,XA1.

Proof. Clearly, F(X) = −X + X∆G1,XG1X = −X∆G1,X . Following from a
direct computation, we see that H(X) satisfies the following two properties:

H(X)XH(X) = (I +G1X)−1G1X(I +G1X)−1G1

= (I +G1X)−1(I − (I +G1X)−1)G1

= H(X)−∆H
X,G1

G1∆X,G1 ≤ H(X),

H(Y )−H(X) = H(X)(X − Y )H(Y ).

Note that

H1 = X −AH
1 X∆G1,XA1

= X −AH
1 XA1 +AH

1 XG1∆X,G1
XA1,

and
T̂X = (I − (I +G1X)−1G1X)A1 =A1 −H(X)XA1.

Thus, part (c) follows directly from Remark 2.3, which completes the proof.

Based on Theorem 2.3, we have the condition of the existence of a unique
positive definite solution of (3b).

theorem 2.4. Let G1 and H1 be two matrices defined by (7) and (8) with minus
signs, and let P2 be the set in (19).

(a) If H1 > 0, then there exists a positive definite matrix X in P2 such that
X is also a solution of (3b).

(b) If G1 > 0 and H1 > 0, then the positive definite solution of (3b) exists

uniquely. In particular, T̂X := ∆G,XA∆G,XA = ∆G1,XA1 and ρ(T̂X) < 1.
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Proof. It is true that the set [H1, H] = {X ∈ Pn|H1 ≤ X ≤ H} is a compact
convex subset of the Banach space Cn×n with an unitarily invariant matrix
norm. Also, the operator F− maps [H1, H] into itself, since

H1 = F−(H) ≤ F−(X) ≤ H

for H1 ≤ X ≤ H. It then follows from the Schauder fixed point theorem (see,
e.g. [21]) that F− has a fixed point X in [H1, H]. This implies that there exists
a element X ∈ P2 and X solves (3b).

Considering this solution X of (3b), it follows that X is a solution of the
equation

X = F
(2)
− (X) = H1 +AH

1 X∆G1,XA1. (20)

Note that the uniqueness of the solution of (3b) is guaranteed, once the solution
of (20) is unique. By Corollary 2.2, this is immediately true, since G1 > 0 and
H1 > 0. Also,

T̂X = ∆G,XA∆G,XA

= ∆G,XA
(
I +G

(
H −AH

X∆G,XA
))−1

A

= ∆G,XA

(
∆G,H + ∆G,HGA

H
X
(
I + (G−A∆G,HGA

H
)X
)−1

A∆G,H

)
A

= ∆G,XA(∆G,H + ∆G,HGA
H
X∆G1,XA∆G,H)A

= ∆G,XA1 + ∆G,XA
(

∆G,HGA
H
X∆G1,XA∆G,H

)
A

= ∆G,X

(
I +G1X +A∆G,HGA

H
X
)

∆G1,XA1

= ∆G1,XA1.

By Corollay 2.2, ρ(T̂X) < 1, since

T̂X = ∆G1,XA1 = (I − (I +G1X)−1G1X)A1 =A1 −H(X)XA1,

which completes the proof.

3. Iterative method and convergence analysis

In this section, a method originated from the fixed point iteration will be
presented to solve (3) indirectly. A direct method to solve (3) is referred to
appendix 6.1 for the details. We show that our proposed approach can give
rise to an accelerated way with the rate of r-superlinear convergence up to any
desired order in Section 4.

Let R(X) = H1 + AH
1 X∆G1,XA1 represent the computation of the right-

hand side of (10), and let Xd be a solution of (10), that is,

Xd = R(Xd).
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Following from a similar derivation for (10), it can be seen that

Xd = R(R(Xd)) = H2 +AH
2 Xd∆G2,Xd

A2,

where A2 = A1∆G1,H1
A1, G2 = G1 + A1∆G1,H1

G1A
H
1 , and H2 = H1 +

AH
1 H1∆G1,H1

A1. Continually, we have

Xd = R(k−1)(R(Xd)) = Hk +AH
k Xd∆Gk,Xd

Ak,

where Ak, Gk, and Hk for k = 1, 2, . . . , be three matrices denoted by

Ak = A1∆Gk−1,H1Ak−1, (21a)

Gk = G1 +A1∆Gk−1,H1Gk−1A
H
1 , (21b)

Hk = Hk−1 +AH
k−1H1∆Gk−1,H1

Ak−1, (21c)

with initial matrices G1, H1, and A1 defined by (7), (8), and (9), respectively.
Note that the iterative method given by (21) provide a direct way to solve (10)
and an indirect way to solve (3). We show in the next result that (21) has a
semigroup property. Its proof is quite lengthy, though it is done by mathematical
induction. To the reader’s interest, we put the proof in the appendix 6.2.

theorem 3.1. If all sequences of matrices generated by (21) are well-defined,
then the sequence (Ak, Gk, Hk) satisfies the following property:

Ai+j = Aj(I +GiHj)
−1Ai, (22a)

Gi+j = Gj +Aj(I +GiHj)
−1Gi(Aj)

H , (22b)

Hi+j = Hi + (Ai)
HHj(I +GiHj)

−1Ai, (22c)

for all integers i, j ≥ 1.

Based on Theorem 3.1, we have Hk = H1 + AH
1 Hk−1∆G1,Hk−1

A1. Hence,
the iteration in (21) is called the fixed point iteration, since its purpose is to
construct a convergent sequence Hk to solve (10).

From Theorem 2.1, we know that if the coefficient matrix A satisfies ρ(AA) <
1, then the set P1is nonempty and the positive definite solution of (3a) uniquely
exists. Our next result is to prove that the sequence of (Ak, Gk, Hk) in (21) is
well-defined, and Hk tends to this positive definite solution.

Lemma 3.1. Let A,G,H ∈ Cn×n and G,H > 0 be coefficient matrices in (3a).
Then,

(a) (Ak, Qk, Hk) is well-defined for all integers k ≥ 1.

(b) If X ∈ P1, then X is an upper bound of {Hk}. In particular,

X ≥ Hk ≥ Hk−1 ≥ · · · ≥ H1 ≥ H.

(c) If ρ(AA) < 1, Hk converges to the unique positive definite solution of (3a)
as k →∞.
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Proof. First, the proof of part (a) is completed, once the matrix ∆Gk−1,H1 exists
for any integer k ≥ 2. This suffices to show that the product of any eigenvalue
of Gk−1 and H1 is not equal to −1. From (7) and (8), it can be seen that

G1 = G
H

+AGH∆
H

H
,GHA

H
= G1

H > 0, (23)

H1 = HH +AH∆
H

H
,GHH

H
A = HH

1 > 0, (24)

since G,H > 0. Similarly, we have Gk = GH
k > 0 and Hk = HH

k > 0 for any
integer k ≥ 2. This implies that σ(Gk−1H1) ⊆ R+, since Gk−1 > 0 and H1 > 0,
which completes the proof of part (a). Here R+ is the positive real line.

Second, if there exists X ∈ P1, then X ≥ H. Note that

Hk = F (2)
+ (Hk−1) = F (2(k−1))

+ (H1) = F (2k−1)
+ (H), (25)

for all integers k ≥ 2. Thus, we have

X −Hk ≥ F (2k−1)
+ (X)−F (2k−1)

+ (H) ≥ 0, (26)

since F+ is an order preserving operator. It follows from (25) and (26) that

X ≥ Hk ≥ Hk−1 ≥ · · · ≥ H1 ≥ H,

which completes the proof of part (b).
Third, since ρ(AA) < 1, Theorem 2.1 implies that there exists X ∈ P1. It

follows from Lemma 2.1 that the sequence {Hk} converges, i.e.

H∗ := lim
k→∞

Hk

exists and satisfies (10). By Theorem 2.1, there exists a unique positive definite
solution to (3a). Since the solution of (3a) is also a solution of (10). Provided
G1 > 0, Corollary 2.2 implies that (10) can have only one positive definite
solution, which completes the proof.

For (3b), a similar result can be derived as follows. Since the proof is similar
to Lemma 3.1, we omit our proof here.

Lemma 3.2. For (3b), let G1 and H1 be matrices defined by (7) and (8) with
minus signs, and let P2 be the set in (19). Suppose that H1 and G1 > 0. Then,

(a) (Ak, Qk, Hk) is well-defined for all integers k ≥ 1.

(b) If X ∈ P2, then X is an upper bound of {Hk}. In particular,

H ≥ X ≥ Hk+1 ≥ Hk ≥ · · · ≥ H1.

(c) Hk tends to the unique positive definite solution of Eq. (3b) as k →∞.

12



From Lemma 3.1 and Lemma 3.2, we have the numerical behavior of the
sequence {Hk}. To our interest, we would like to predict the behavior of the
sequence {Gk} in (21). We thus consider the following dual matrix equations

X = G+AX(I +HX)−1A
H
, (27a)

X = G−AX(I +HX)−1A
H
. (27b)

It has been shown in Theorem 2.1 and Theorem 2.4 that there exists a unique
positive definite solution X of (3), once certain conditions are satisfied. Here,
we assume that the coefficient matrix A is nonsingular and define Y = −X−1,
where X is the solution of (27). Following from (27), we have

A−1(X −G)A−H = ±(X−1 +H)−1.

This implies that
X−1 +H = ±AH(X −G)−1A,

That is,
Y = H±AHY (I +GY )−1A,

which is exactly equivalent to the matrix equation (3). Like Theorem 2.1 and
Theorem 2.4, we thus have the following result.

theorem 3.2. Assume that A is nonsingular. Then,

1. There exists a unique negative definite solution to (3a) if ρ(AA) < 1.

2. There exists a unique negative definite solution to (3b) if G1 > 0 and
H1 > 0.

Now, we would like to investigate the relationship between the sequence
{Gk} and the dual equations (27). For the sake of simplicity, let G±(X) be the
matrix operator defined by

G±(X) = G±AX∆H,XA
H
.

Then, the dual equations (27) can be rewritten as

X = G±(X).

Analogous to the case of operator F±, we have the following formula

X = G(2)± (X) = H̃1 + ÃH
1 X∆G̃1,X

Ã1,

where

Ã1 = A
H

∆H,GA
H

= AH
1 , (28a)

G̃1 = H ±AH∆H,GHA = H1, (28b)

H̃1 = G±AG∆H,GA
H

= G1, (28c)

13



or even more,

X = G(2k)± (X) = H̃k + ÃH
k X∆G̃k,X

Ãk,

where

Ãk = Ã1∆G̃k−1,H̃1
Ãk−1, (29a)

G̃k = G̃1 + Ã1∆G̃s−1,H̃1
G̃s−1Ã

H
1 , (29b)

H̃k = H̃k−1 + ÃH
k−1H̃1∆G̃k−1,H̃1

Ãk−1. (29c)

By induction on k, it is true that

Ãk = AH
k , G̃k = Hk, H̃k = Gk. (30)

Thus, the sequence of matrices (Ãk, G̃k, H̃k) generated by the iterations (21)

with initial matrices (Ã1, G̃1, H̃1) = (AH
1 , H1, G1) is well-defined, once the se-

quence of matrices (Ak, Gk, Hk) is well-defined. Let D1 and D2 be two sets
defined by

D1 = {Y > 0|Y ≥ G+(Y )}, (31)

D2 = {Y > 0|G ≥ Y ≥ G−(Y )}, (32)

respectively. By (29), we have the following result. Its proof is similar to
Lemma 3.1 and Lemma 3.2 and is omitted here.

Lemma 3.3. Let A,G,H ∈ Cn×n be the coefficient matrices of (3) such that
G,H > 0. Then,

1. For (3a),

(a) (Ãk, G̃k, H̃k) is well-defined for all integers k ≥ 1.

(b) If Y ∈ D1, then Y is an upper bound of {Gk}. In particular,

Y ≥ Gk ≥ Gk−1 ≥ · · · ≥ G1 ≥ G.

(c) If ρ(AA) < 1, Gk converges to the unique positive definite solution
of (27a) as k →∞.

2. Assume that G1 > 0 and H1 > 0 . For (3b),

(a) (Ãk, G̃k, H̃k) is well-defined for all integers k ≥ 1.
(b) If Y ∈ D2, then Y is an upper bound of {Gk}. In particular,

G ≥ Y ≥ Gk+1 ≥ Gk ≥ · · · ≥ G1.

(c) Gk tends to the unique positive definite solution of (27b) as k →∞.

In summary, following from Lemmas 3.1, 3.2, and 3.3, we have the following
main result of this section.

14



theorem 3.3. Let A,G,H ∈ Cn×n be the coefficient matrices of (3) such that
G,H > 0. Consider the sequence of matrices (Ak, Gk, Hk) generated by iter-
ations (21) with a given initial matrices (A1, G1, H1) defined by (9), (7), and
(8), respectively. Let H∞ = lim

`→∞
H` and G∞ = lim

`→∞
G`. Then,

1. Assume that ρ(AA) < 1. For (3a),

(a) H∞ is the unique positive definite solution to (3a).

(b) −G−1∞ is the unique negative definite solution to (3a) if A is nonsin-
gular.

2. Assume that H1 > 0 and G1 > 0. For (3b),

(a) H∞ is the unique positive definite solution to (3b).

(b) −G−1∞ is the unique negative definite solution to (3b) if A is nonsin-
gular.

Remark 3.1. It is interesting to ask whether the matrix Y = −X−1, where X
is the solution of (27), is still a negative positive solution of (3) if A is singular.
To answer this question, we see that

I +GY = I −G(G±AX(I +HX)−1AH)−1

= I −G(G−1 ∓G−1AX(I +HX ±AHG−1AX)−1AHG−1)

= ±AX(I + (H ±AHG−1A)X)−1AHG−1.

Namely, rank(I + GY )=rank(A). We conclude that the matrix Y = −X−1 is
not a solution of (3) when A is singular, since I +GY is not invertible.

4. An acceleration of iterative method

Let {Ak, Gk, Hk} be the sequence of matrices generated by (21). It has been
shown in Theorem 3.1 that matrices Ak, Gk, and Hk, for each k, depend only
on the subscripts in Ai, Aj , Gi, Gj , Hi, and Hj , once i + j = k. Our next
algorithm is to fully take advantage of this invariance to design an algorithm
with speed of convergence of any desired order.

Algorithm 4.1. (An accelerated iteration method to solve (3))

1. Given a positive integer r > 1, let (Â0, Ĝ0, Ĥ0) = (A1, G1, H1) with initial
matrices G1, H1, and A1 defined by (7), (8), and (9), respectively;

2. For k = 1, 2, . . ., iterate

Âk := A
(r−1)
k−1 (In + Ĝk−1H

(r−1)
k−1 )−1Âk−1,

Ĝk := G
(r−1)
k−1 +A

(r−1)
k−1 (In + Ĝk−1H

(r−1)
k−1 )−1Ĝk−1(A

(r−1)
k−1 )H ,

Ĥk := Ĥk−1 + ÂH
k−1H

(r−1)
k−1 (In + Ĝk−1H

(r−1)
k−1 )−1Âk−1,

until convergence (see Section 5 for example), where the sequence (A
(r−1)
k−1 , G

(r−1)
k−1 , H

(r−1)
k−1 )

is defined in step 3.
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3. For ` = 1, · · · , r − 2, iterate

A
(`+1)
k−1 := A

(`)
k−1(In + Ĝk−1H

(`)
k−1)−1Âk−1,

G
(`+1)
k−1 := G

(`)
k−1 +A

(`)
k−1(In + Ĝk−1H

(`)
k−1)−1Ĝk−1(A

(`)
k−1)H ,

H
(`+1)
k−1 := Ĥk−1 + ÂH

k−1H
(`)
k−1(In + Ĝk−1H

(`)
k−1)−1Âk−1,

with (A
(1)
k−1, G

(1)
k−1, H

(1)
k−1) = (Âk−1, Ĝk−1, Ĥk−1).

By Theorem 3.1, we have the following result. Its proof is straightforwardly
done by induction. We thus omit the proof here.

Remark 4.1. If (Ak, Gk, Hk) for all integers k ≥ 1 is well-defined, that

(Âk, Ĝk, Ĥk) = (Ark , Grk , Hrk)

for all integers k ≥ 1.

The convergence analysis of Algorithm 4.1 can be done by means of the fol-
lowing properties. Since the proof is long and tedious, we put it in Appendix 6.3.

Lemma 4.1. Assume that (Ak, Gk, Hk) is a well-defined sequence of matrices
from (21) and this sequence is convergent. Let

H∞ = lim
k→∞

Hk, G∞ = lim
k→∞

Gk,

Tk = ∆Gk,H∞Ak, Sk = Ak∆G∞,Hk
, (33)

for all integers k ≥ 1. Then, the following three conditions are satisfied.

1. Tk = T k
1 and Sk = Sk

1 .

2. H∞ −Hk = TH
k H∞Ak = TH

k (H−1∞ +Gk)Tk and G∞ −Gk = SkG∞AH
k =

Sk(G−1∞ +Hk)SH
k .

3. σ(T1) = σ(SH
1 ).

Let all the sequences in Algorithm 4.1 be well-defined. Our next result
is to show that once ρ(T1) < 1, the convergence speed of (Âk, Ĝk, Ĥk) is r-
superlinearly with order r, for any integer r > 0. The definition of r-superlinear
convergence is referred to [12, Definition 4.1.3.].

theorem 4.1. Suppose that {Âk, Ĝk, Ĥk} is the sequence of matrices generated
by iterations (21) and be well-defined and convergent. Let H∞, G∞ and Tk, Sk,
for all integers k ≥ 1, be matrices defined by (33). Then,

lim sup
k→∞

rk
√
‖Âk‖ ≤ ρ(T1), lim sup

k→∞

rk
√
‖G∞ − Ĝk‖ ≤ ρ(T1)2,

lim sup
k→∞

rk
√
‖H∞ − Ĥk‖ ≤ ρ(T1)2.
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Proof. From Lemma 4.1, we know that Âk = Ark = (I + GrkH∞)T rk

1 , G∞ −
Ĝk = Srk(G−1∞ +Hrk)SH

rk , and H∞− Ĥk = TH
rk (H−1∞ +Grk)Trk . It follows that

lim sup
k→∞

rk
√
‖Âk‖ = lim sup

k→∞
rk
√
Grk(G−1

rk
+H∞)T rk

1

≤ lim sup
k→∞

rk
√
‖G∞‖ · lim sup

k→∞
rk
√
‖G−11 +H∞‖ · lim sup

k→∞
rk
√
‖T rk

1 ‖ = ρ(T1),

lim sup
k→∞

rk
√
‖G∞ − Ĝk‖ ≤ lim sup

k→∞
rk
√
‖Srk

1 ‖ · lim sup
k→∞

rk
√
‖(G−11 +H∞)‖ ·

lim sup
k→∞

rk
√
‖Srk

1 ‖ = ρ(T1)2,

lim sup
k→∞

rk
√
‖H∞ − Ĥk‖ ≤ lim sup

k→∞
rk
√
‖T rk

1 ‖ · lim sup
k→∞

rk
√
‖(H−11 +G∞)‖ ·

lim sup
k→∞

rk
√
‖T rk

1 ‖ = ρ(T1)2.

Here, the last equalities follow from the well-known Gelfand’s formula such that
for any matrix norm ‖ · ‖, we have ρ(A) = lim sup

k→∞
‖Ak‖1/k.

5. Numerical experiments

Under the assumptions of Theorem 3.3, two numerical examples are used
in this section to demonstrate the application of accelerated techniques given
by Algorithm 4.1. We compare Algorithm 4.1 with the standard fixed point
iterations:

Xk+1 = F±(Xk), with X1 = H. (34)

It can be shown that the convergence speed of (34) is r-linearly if ρ(T1) < 1.
The details for the convergence analysis can be found in Appendix 6.1. For
clarity, two things should be emphasized here. First, the unique negative definite
solution of (3) can be obtained by Algorithm 4.1 when A is nonsingular. That
is, Algorithm 4.1 enable us to solve the unique positive and negative definite
solutions, simultaneously. Second, when ρ(T1) ≈ 1, then iteration (34) could be
very slow. However, this disadvantage can be overcome without any difficulty
by Algorithm 4.1. While solving (3), we show that the use of Algorithm 4.1
tends to has less computational time and higher accuracy than the fixed point
methods given by (34).

All computations were performed using MATLAB/version 2016b on Mac-
Book Air with a 2.2 GHZ Intel Core i7 processor and 8 GB of memory. To
gauge the effectiveness of our algorithm, we employ the parameters, residual
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(Res) and the normalized residual (NRes) with definitions defined below:

Res := ‖X −F±(X)‖F ,

NRes :=
‖X −F±(X)‖F

‖H‖F + ‖A‖2F ‖X‖F ‖∆G,X‖F
,

where X is an approximate maximum positive solution to (3). All iterations
are terminated whenever Res or NRes is less than or equal to nu, where u =
2−52 ∼= 2.22× 10−16 is the machine zero.

Example 5.1. Let n = 100 and Ĝ, Ĥ ∈ Rn×n be two real diagonal matrices
with given positive diagonal elements between 0 and 1. They are then reshuffled
by the unitary matrix Q ∈ Cn×n to form

(G,H) = (QHĜQ,QHĤQ), (35)

that is, in MATLAB commands, we define

Ĝ = 1e2 ∗ diag(rand(n)), Ĥ = 1e2 ∗ diag(rand(n)),

Q = orth(crandn(n)).

For (3a), Theorem 2.1 implies that a unique positive definite solution exists,

if ρ(AA) < 1. To satisfy this constraint, let Â be a randomly generated square
complex matrix, let a be a random number lying in the interval (0, 1), and let

temp be the spectral radius of ÂHÂ, namely,

Â = crandn(n), a = rand,

temp = max(abs(eig(conj(Â) ∗ Â))).

We then have a matrix

A =
√
a ∗ Â/√temp (36)

satisfying ρ(AA) < 1 so that the unique positive definite solution to (3a) exists.
For (3b), we have shown that the unique positive definite solution exists if

G1 > 0 and H1 > 0. To this end, we repeatedly generate matrices A, G, and
H by (35) and (36) until G1 and H1 > 0 are satisfied. We record numerical
results in Table 2.

Note that in Tables 1 and 2, the values in the second row are the results
obtained using the standard fixed point method given in (34), and the values
in the other rows are results obtained using Algorithm 4.1 with r = 2, 3, 4, 5,
respectively. The minimal number of iterations ( MinIt), the maximal number
of iterations ( MaxIt), the average number of iterations ( AveIt), and the average
elapsed times of iterations ( AveTime) performed by the fixed point method and
our algorithm are recorded by choosing 100 initial matrices (G,H,A) randomly,
as are described above. Let N1 and Nr, with r = 2, 3, 4, 5, be the least integer
numbers satisfying

ρ(T1)
N1 < n · u,

(
ρ(T1)

2
)rNr

< n · u, r = 2, 3, 4, 5,
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respectively. That is, N1 and Nr, with r = 2, 3, 4, 5, are integer numbers defined
by

N1 =

[
log10(n · u)

log10 (ρ(T1))

]
+ 1 (37)

and

Nr =

[
logr

(
log10(n · u)

log10 (ρ(T1)2)

)]
+ 1. (38)

Here, the symbol [x] denotes the floor of x, i.e., the largest integer less than or
equal to x and T1 = ∆G1,H∞A1. We then record in the fifth column of Tables 1
and 2 the number of iterations ( TheIt) estimated by means of (37) and (38).
The records show that the estimated numbers TheIt are highly correlated to the
numerical iterative numbers AveIt. This implies that in practice, TheIt can
be served as a priori prediction of the possible iterative numbers. Also, we can
see from the records in the columns of AveIt and TheIt that our algorithm
outperform the fixed point method not only in the number of required iterations,
but also in the elapsed times.

Table 1: Numerical experiments by means of the fixed point method (F.P.) given in (34) and
accelerated methods originated from Algorithm (Alg.) 4.1 (r = 2, 3, 4, 5) to solve (3a).

Method MinIt MaxIt AveIt TheIt AveTime
F.P. with “+” 1 7 3.43 3.95 3.8526e-02

Alg. 4.1 with r = 2 1 2 1.41 1.23 2.1181e-02
Alg. 4.1 with r = 3 1 2 1.04 1.02 1.9381e-02
Alg. 4.1 with r = 4 1 1 1 1 2.1875e-02
Alg. 4.1 with r = 5 1 1 1 1 2.4443e-02

Table 2: Numerical experiments by means of the fixed point method (F.P.) given in (34) and
accelerated methods originated from Algorithm (Alg.) 4.1 (r = 2, 3, 4, 5) to solve (3b).

Method MinIt MaxIt AveIt TheIt AveTime
F.P. with “-” 1 10 3.8 4.35 4.2394e-02

Alg. 4.1 with r = 2 1 3 1.58 1.38 2.3283e-02
Alg. 4.1 with r = 3 1 2 1.08 1.05 1.9851e-02
Alg. 4.1 with r = 4 1 2 1.02 1.01 2.1808e-02
Alg. 4.1 with r = 5 1 1 1 1 2.4341e-02

In the next example, we show that as the value of ρ(Tx) come closer to 1, the
fixed point method will fail to converge, but our algorithm can converge with
no difficulty.

Example 5.2. If n = 1, the corresponding equations of (3) become to

x = h± |a|
2x

1 + gx
, (39)
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where a ∈ C and the real numbers g, h > 0. To measure performance of different

methods, four cases, i.e., ρ(T1) = 1
2 ,

1√
2
,
√
3
2 ,
√

0.9999 with different parameters

will be taken into account; namely, we set g = 1 and a = 1√
2
,
√
3
2 ,
√

0.9999, and
√

0.99999 corresponding to ρ(T1) = 1
2 ,

1√
2
,
√
3
2 and

√
0.9999, respectively. For

these parameters a and ρ(T1), there exists a unique positive definite solution x
of (39) decided by

x =
a

ρ(T1)
− 1 > 0,

since ρ(T1) = (1 + x)−1a and |a|2 < 1. Thus, the resulting parameter

h = x+
|a|2x

1 + gx
> 0 (or h = x− |a|

2x

1 + gx
> 0)

satisfies the constraint for (3). Also, for the minus case, i.e., x = h− |a|
2x

1+gx , we
have

h1 = h− |a|
2h

1 + gh
> 0,

g1 = g − |a|2g
1 + gh

> 0.

Under conditions of Theorems 2.1 and 2.4 we see that there only exists a unique
positive definite solution for both cases of (39).

In Tables 3 and 4, the values in the second row, r = 1, are the results
obtained using the fixed point method, and the values in the other rows are results
obtained using Algorithm 4.1 with r = 2, 3, 4, 5, respectively. The number of
iterations ( Its), the output residual ( Res), and the elapsed times of iterations
( Time) performed by the fixed point method and our algorithm are recorded
correspondingly.

Table 3 shows that even with 10000 steps, the solution obtained from the
fixed point method can only have accuracy up to 10−13. What is worse, Table 4
shows that the fixed point method can hardly solve (39) with minus sign, even
after 10000 steps. The residuals and elapsed times in Table 3 show that our
accelerated technique can solve (39) more accurately and efficiently. Also, the
number of iterations by the fixed point method increase dramatically, while those
by our accelerated techniques only has a small increase. This implies that our
algorithm could provide a more reliable way to obtain numerical solutions, even
if the extreme case, i.e., ρ(T1) ≈ 1, is encountered.

6. Conclusion

In this paper, we propose sufficient conditions for the existence of a unique
positive definite solution of (3). Note that an intuitive way to solve (3) is to
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Table 3: The ITs, Res and Time for the problem x = h +
|a|2x
1+x

.

ρ(T1) 1/2 1/
√

2
√

3/2
√

0.9999

F.P. with “+”
Its 25 49 116 *(>10000)
Res 8.3267e-17 1.6653e-16 1.9429e-16 3.7124e-13

Time 1.3828e-02 9.2210-03 1.1571e-02 7.9136

Alg. 4.1 with r = 2
Its 4 5 6 17
Res 2.7756e-17 2.7756-17 0 2.7105e-20

Time 1.1086e-02 7.7436e-03 8.9338e-03 5.7342e-03

Alg. 4.1 with r = 3
Its 3 3 4 11
Res 5.5511e-17 2.7756e-17 0 0

Time 4.6519e-03 2.8196e-03 4.3291e-03 3.2251e-03

Alg. 4.1 with r = 4
Its 2 3 3 9
Res 5.5511e-17 2.7756e-17 0 0

Time 5.4670e-04 4.6242e-04 6.5906e-04 4.3089e-04

Alg. 4.1 with r = 5
Its 2 2 3 8
Res 2.7756e-17 1.6653e-16 0 0

Time 3.7408-04 3.1476e-04 5.8860e-04 3.7914e-04

Table 4: The ITs, Res and Time for the problem x = h− |a|
2x

1+x
.

ρ(T1) 1/2 1/
√

2
√

3/2
√

0.9999

F.P. with “-”
Its 25 50 120 *(>100000)
Res 1.3878e-16 1.9429e-16 2.2204e-16 4.0837e-09

Time 8.6382e-03 6.8811e-03 8.9200e-03 8.3106

Alg. 4.1 with r = 2
Its 4 5 6 18
Res 2.7756e-17 5.5511e-17 8.3267e-17 1.5491e-17

Time 4.4193e-03 9.6181e-03 6.4900e-03 7.6470e-03

Alg. 4.1 with r = 3
Its 3 3 4 11
Res 5.5511e-17 5.5511e-17 2.7756e-17 1.7171e-17

Time 4.7336e-03 3.9281e-03 2.9638e-03 3.3373e-03

Alg. 4.1 with r = 4
Its 2 3 3 9
Res 2.7756e-17 0 8.3267e-17 1.7362e-17

Time 4.3161e-04 5.1107e-04 4.7924e-04 4.2425e-04

Alg. 4.1 with r = 5
Its 2 3 3 8
Res 5.5511e-17 0 8.3267e-17 4.1064e-18

Time 3.2604e-04 5.4106e-04 3.9956e-04 3.9606e-04
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apply the fixed point method. Though this method is guaranteed to converge,
the convergence rate tends to be slow. Numerically, we provide an accelerated
way to speed up the entire iteration. This way is based on the discovery of the
semigroup property property, i.e., (22). We show that our accelerated method
converge rapidly with the rate of convergence of any desired order. Additionally,
this method can be used to solve the unique negative definite solution of (3),
once it exists. The investigation of sufficient conditions for the existence of the
negative definite solution of (3) is also included in this work.

Appendix

6.1. Convergence analysis of the fixed point iteration: X = F±(X)

We start our analysis by discussing the convergence property of the DARE.
From Corollary (2.2), we know that the DARE (1) has a unique positive definite
solution Z∗ if H1 > 0 and G1 > 0. Let

Zk+1 = H1 +AH
1 Zk∆G1,Zk

A1

be the fixed point iteration of (1) with an initial positive definite matrix Z1.
Like the discussion in Section 2.1, we immediately have the following two results:

(a) The sequence {Zk} is monotone increasing if and only if Z1 ≤ Z2; the
sequence {Zk} is monotone decreasing if and only if Z1 ≥ Z2.

(b) If Z∗ ≥ Z1, then Z∗ is an upper bounded of the sequence{Zk}; if Z∗ ≤ Z1,
then Z∗ is a lower bounded of the sequence {Zk}. Moreover, we have
lim
k→∞

Zk = Z∗ in either case.

Taking 0 < Z1 ≤ H1, for example, we see that the sequence {Zk} is monotone
increasing, Z∗ ≥ Zk for all k, and lim

k→∞
Zk = Z∗. Moreover,

Z∗ − Zk+1

= AH
1 ∆Z∗,G1

(Z∗(I +G1Zk)− (I + Z∗G1)Zk)∆G1,Zk
A1

= AH
1 ∆Z∗,G1

(Z∗ − Zk)∆G1,Zk
A1 = TH

Z∗(Z∗ − Zk)TZk

= TH
Z∗(Z∗ − Zk)TZ∗ + TH

Z∗(Z∗ − Zk)(TZk
− TZ∗)

= TH
Z∗(Z∗ − Zk)TZ∗ + TH

Z∗(Z∗ − Zk)∆G1,Zk
(I +G1Z∗ − I −G1Zk)TZ∗

= TH
Z∗(Z∗ − Zk)TZ∗ + TH

Z∗ [(Z∗ − Zk)G1∆Zk,G1
(Z∗ − Zk)]TZ∗ , (40)

where TZ∗ = ∆G1,Z∞A1. Given a positive number ε > 0, there exists a positive
integer k0 such that

Z∗ − Zk ≤ εI,
for any positive integer k ≥ k0. Since G∆Zk,G ≤ G ≤ mI for a sufficiently large
m, it follows from (40) that for this k0 > 0 and k ≥ k0,

Z∗−Zk ≤ (1+εm)TH
Z∗(Z∗−Zk−1)TZ∗ ≤ (1+εm)k−k0(TH

Z∗)
k−k0(Z∗−Zk0

)T k−k0

Z∗ ,
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or, equivalently,

lim sup
k→∞

k
√
‖Z∗ − Zk‖ ≤ (1 + εm)ρ(TZ∗)

2. (41)

Since ε is arbitrary, (41) induces that

lim sup
k→∞

k
√
‖Z∗ − Zk‖ ≤ ρ(TZ∗)

2. (42)

When the sequence {Zk} is monotone decreasing and bounded below. A
similar argument yields for the estimation (42). Thus, by (42), our discussion
to the convergence analysis of the fixed point method X = F±(X) is divided
into two scenarios:

1. Consider the fixed-point iteration Xk+1 = F+(Xk) with X1 = H. As is
discussed in Section 2.1, we know that the sequence {Xk} is a monotone
increasing matrix sequence. In particular, if the solution X∗ of (3a) exists,
it can be shown that

lim sup
k→∞

k
√
‖X∗ −X2k‖ ≤ ρ(T1)2,

lim sup
k→∞

k
√
‖X∗ −X2k+1‖ ≤ ρ(T1)2,

since X1 = H, X2 = H1, F
(2)
+ (X) = H1 + AH

1 X∆G1,XA1, and T1 =
∆G1,X∞A1. Thus, we have

lim sup
k→∞

k
√
‖Xk −X∗‖ ≤ ρ(T1).

2. Consider the fixed-point iteration Xk+1 = F−(Xk) with X1 = H. Note
that if Xi ≥ Xj for any integer i, j ≥ 1, then

Xi+1 −Xj+1 = AHXj∆G,Xj
A−AHXi∆G,Xi

A

= AH [(X
−1
j +G)−1 − (X

−1
i +G)−1]A ≤ 0,

i.e.,
Xi+1 ≤ Xj+1, (43)

if Xi ≥ Xj for any integer i, j ≥ 1. Also, if H1 and G1 > 0, then by
Lemma 3.2, we have

0 < X2 ≤ X4 ≤ · · · ≤ H, (44)

since Xk+2 = F (2)
− (Xk) = F (k−1)

− (H) for any even number k > 0. By (43)
and (44), it can be seen that

H = X1 ≥ X3 ≥ X5 ≥ · · · > 0.
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Here, the first and last inequality follows from the fact that

X3 = F−(X2) = H −AHX2∆G,X2
A ≤ H = X1,

X1 ≥ X2 > 0, X3 ≥ X4 > 0,

and so on. Upon using the fact that the positive definite solution of

X = F
(2)
− (X)

is unique once H1 and G1 > 0, we know that lim
k→∞

X2k = lim
k→∞

X2k+1 :=

X∗ , where X∗ is the unique positive definite solution of (3b). Further-
more,

lim sup
k→∞

k
√
‖X∗ −X2k‖ ≤ ρ(T1)2,

since X2 = H1 and F
(2)
− (X) = H1 +AH

1 X∆G1,XA1. Note that

X2k+1 −X∗ = TH
1 (X2k−1 −X∗)T1

+ TH
1

[
(X2k−1 −X∗)G∆X2k−1,G(X2k−1 −X∗)

]
T1.

for any positive integer k ≥ 1. Like the discussion of (42), we have

lim sup
k→∞

k
√
‖X∗ −X2k+1‖ ≤ ρ(T1)2.

This implies that We conclude that

lim sup
k→∞

k
√
‖Xk −X∗‖ ≤ ρ(T1).

6.2. The proof of Theorem 3.1

Proof. To simply our discussion, let ∆i,j := (I+GiHj)
−1 for all i, j ∈ N. Then,

we have

Hj∆i,j = HH
j (I +GH

i H
H
j )−1 = (I +HH

j G
H
i )−1HH

j = ∆H
i,jHj ,

∆i,jGi = (I +GH
i H

H
j )−1GH

i = GH
i (I +HH

j G
H
i )−1 = Gi∆

H
i,j ,

I −Hj∆i,jGi = I −HjGi(I +GiHj)
−1 = (I +HjGi)

−1 = ∆H
i,j .

For each i, we will prove (22) by induction with respect to j. The proof is
divided into two parts. First, for i = 1, we show that

A1+j = Aj(I +G1Hj)
−1A1,

G1+j = Gj +Aj(I +G1Hj)
−1G1A

H
j ,

H1+j = H1 +AH
1 Hj(I +G1Hj)

−1A1.
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by induction. Note that for j = 1, it is trivial from the definition of A2, G2 and
H2. Now suppose that it is true for j = s. It follows from Lemma 1.1 and (21)
that

∆1,s+1 =
(
I +G1

(
Hs +AH

s H1(I +GsH1)−1As

))−1

= ∆1,s −∆1,s(G1A
H
s H1)

(
(I +GsH1) +As∆1,s(G1A

H
s H1)

)−1
As∆1,s

= ∆1,s −∆1,sG1A
H
s H1∆s+1,1As∆1,s, (45)

∆s+1,1 =
(
I + (Gs +As(I +G1Hs)

−1G1A
H
s )H1

)−1

= ∆s,1 −∆s,1As

(
(I +G1Hs) + (G1A

H
s H1)∆s,1As

)−1
G1A

H
s H1∆s,1

= ∆s,1 −∆s,1As∆1,s+1G1A
H
s H1∆s,1, (46)

∆s+1,1 = ∆s,1(I +GsH1)∆s+1,1

= ∆s,1(I + (Gs+1 −As∆1,sG1A
H
s )H1)∆s+1,1

= ∆s,1

(
I +Gs+1H1 −As∆1,sG1A

H
s H1

)
∆s+1,1

= ∆s,1 −∆s,1As∆1,sG1A
H
s H1∆s+1,1. (47)

Then, by induction hypothesis, we have

A1+(s+1) = A1∆s+1,1As+1,

= A1∆s,1

(
(I +Gs+1H1)−As∆1,sG1A

H
s H1

)
∆s+1,1As+1

= A1∆s,1

(
I −As∆1,sG1A

H
s H1∆s+1,1

)
As∆1,sA1

= A1∆s,1As

(
∆1,s −∆1,sG1A

H
s H1∆s+1,1As∆1,s

)
A1 (by (45))

= As+1∆1,s+1A1,

G1+(s+1) = G1 +A1∆s+1,1Gs+1A
H
1 ,

= G1 +A1(∆s,1 −∆s,1As∆1,s+1G1A
H
s H1∆s,1)(Gs +As∆1,sG1A

H
s )AH

1 (by (46))

= G1 +A1∆s,1GsA
H
1

−A1∆s,1As

(
∆1,s+1G1A

H
s H1∆s,1Gs

)
AH

1

+A1∆s,1As

(
∆1,sG1A

H
s

)
AH

1

−A1∆s,1As

(
∆1,s+1G1A

H
s H1∆s,1As∆1,sG1A

H
s

)
AH

1

= Gs+1 −As+1∆1,s+1G1A
H
s H1∆s,1GsA

H
1

+As+1

(
I −∆1,s+1G1A

H
s H1∆s,1As

)
∆1,sG1A

H
s A

H
1

= Gs+1 +As+1∆1,s+1G1A
H
s (I −H1∆s,1Gs)A

H
1

= Gs+1 +As+1∆1,s+1G1A
H
s (I +H1Gs)

−1AH
1

= Gs+1 +As+1∆1,s+1G1A
H
s+1,
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where I −∆1,s+1G1A
H
s H1∆s,1As = ∆1,s+1∆−11,s, and finally,

H1+(s+1) = Hs+1 +AH
s+1H1∆s+1,1As+1,

= Hs+1 +
(
AH

1 ∆H
1,sA

H
s

)
H1∆s+1,1 (As∆1,sA1)

= Hs+1 +AH
1 (I +HsG1)−1AH

s H1∆s+1,1As∆1,sA1

= Hs+1 +AH
1 (I −Hs∆1,sG1)AH

s H1∆s+1,1As∆1,sA1

= H1 +AH
1 Hs∆1,sA1

−AH
1 Hs∆1,sG1A

H
s H1∆s+1,1As∆1,sA1

+AH
1 A

H
s H1∆s,1

(
I −As∆1,sG1A

H
s H1∆s+1,1

)
As∆1,sA1

= H1 +AH
1 Hs∆1,sA1

−AH
1 Hs∆1,sG1A

H
s H1∆s+1,1As∆1,sA1

+AH
1 A

H
s H1∆s,1As∆1,sA1

−AH
1 A

H
s H1∆s,1As∆1,sG1A

H
s H1∆s+1,1As∆1,sA1 (by (47))

= H1 +AH
1 Hs+1∆1,s+1A1, (by (45))

where I − As∆1,sG1A
H
s H1∆s+1,1 = ∆−1s,1∆s+1,1, which completes the proof for

i = 1.
Assume that (22) is true for i = s and any integer j > 0. Then, for any

integer j > 0, we have

∆s+1,j = ((I +GsHj) +As(I +G1Hs)
−1G1A

H
s Hj)

−1

= ∆s,j −∆s,jAs[(I +G1Hs) +G1A
H
s Hj(I +GsHj)As]

−1G1A
H
s Hj∆s,j

= ∆s,j −∆s,jAs∆1,s+jG1A
H
s Hj∆s,j , (48)

∆1,s+j = ((I +G1Hs) +G1A
H
s Hj(I +GsHj)

−1As)
−1

= ∆1,s −∆1,sG1A
H
s Hj [(I +GsHj) +As∆1,sG1A

H
s Hj ]

−1As∆1,s

= ∆1,s −∆1,sG1A
H
s Hj∆s+1,jAs∆1,s, (49)

∆s,j+1 = (I +GsHj+1)−1 =
(
I +Gs(H1 +AH

1 Hj∆1,jA1)
)−1

= ∆s,1 −∆s,1GsA
H
1 Hj(I +G1Hj +A1∆s,1GsA

H
1 Hj)

−1A1∆s,1

= ∆s,1 −∆s,1GsA
H
1 Hj∆s+1,jA1∆s,1, (50)
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and

∆s+1,jGs+1 −∆s,jGs

= (∆s,j −∆s,jAs∆1,s+jG1A
H
s Hj∆s,j)(Gs +As∆1,sG1A

H
s )−∆s,jGs (by (48))

= ∆s,jAs∆1,sG1A
H
s −∆s,jAs∆1,s+jG1A

H
s Hj∆s,jGs −∆s,jAs∆1,s+jG1A

H
s Hj∆s,jAs∆1,sG1A

H
s

= ∆s,jAs

(
I −∆1,s+jG1A

H
s Hj∆s,jAs

)
∆1,sG1A

H
s −∆s,jAs∆1,s+jG1A

H
s Hj∆s,jGs

= ∆s,jAs∆1,s+j∆
−1
1,s∆1,sG1A

H
s −∆s,jAs∆1,s+jG1A

H
s Hj∆s,jGs

= ∆s,jAs∆1,s+jG1A
H
s (I −Hj∆s,jGs)

= ∆s,jAs (∆1,s+jG1) (∆s,jAs)
H , (51)

Hs+j∆1,s+j −Hs∆1,s

= (Hs +AH
s Hj∆s,jAs)(∆1,s −∆1,sG1A

H
s Hj∆s+1,jAs∆1,s)−Hs∆1,s (by (49))

= AH
s Hj∆s,jAs∆1,s −Hs∆1,sG1A

H
s Hj∆s+1,jAs∆1,s

−AH
s Hj∆s,jAs∆1,sG1A

H
s Hj∆s+1,jAs∆1,s

= AH
s Hj∆s,j

(
I −As∆1,sG1A

H
s Hj∆s+1,j

)
As∆1,s −Hs∆1,sG1A

H
s Hj∆s+1,jAs∆1,s

= AH
s Hj∆s,j∆

−1
s,j∆s+1,jAs∆1,s −Hs∆1,sG1A

H
s Hj∆s+1,jAs∆1,s

= (I −Hs∆1,sG1)AH
s Hj∆s+1,jAs∆1,s

= (As∆1,s)
H (Hj∆s+1,j)As∆1,s. (52)

Thus, it follows from Lemma 1.1 and induction hypothesis that the following
result holds for i = s+ 1 and any integer j > 0.

A(s+1)+j = As+(j+1) = A1+j∆s,j+1As

= Aj∆1,jA1

(
∆s,1 −∆s,1GsA

H
1 Hj∆s+1,jA1∆s,1

)
As (by (50))

= Aj

(
∆1,j −∆1,jA1∆s,1GsA

H
1 Hj∆s+1,j

)
A1∆s,1As

= Aj

(
∆1,j −∆1,jA1∆s,1GsA

H
1 Hj∆s+1,j

)
As+1

= Aj∆1,j

(
I +Gs+1Hj −A1∆s,1GsA

H
1 Hj

)
∆s+1,jAs+1

= Aj∆1,j

(
I + (Gs+1 −A1∆s,1GsA

H
1 )Hj

)
∆s+1,jAs+1

= Aj∆1,j (I +G1Hj) ∆s+1,jAs+1

= Aj∆s+1,jAs+1,

Gs+1+j = G1+(s+j) = Gs+j +As+j∆1,s+jG1A
H
s+j

= (Gj +Aj∆s,jGsA
H
j ) +Aj

(
(∆s,jAs)(∆1,s+jG1)(∆s,jAs)

H
)
AH

j

= Gj +Aj∆s+1,jGs+1A
H
j . (by (51))

Hs+1+j = H1+(s+j) = H1 +AH
1 Hs+j∆1,s+jA1

= H1 +AH
1 Hs∆1,sA1 +AH

1 (Hs+j∆1,s+j −Hs∆1,s)A1

= (H1 +AH
1 Hs∆1,sA1) +AH

1

(
(As∆1,s)

H(Hj∆s+1,j)As∆1,s

)
A1 (by (52))

= Hs+1 +AH
s+1Hj∆s+1,jAs+1.

Now, the induction process is completed and thus the result is followed.
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6.3. The proof of Lemma 4.1

Proof. Observe that Tk = T k
1 is definitely true for k = 1. Suppose Tk is true for

some k ≥ 1. Then, by using the fact that

H∞ = H1+AH
1 H∞∆G1,H∞A1, Ak+1 = A1∆Gk,H1Ak, and Gk+1 = G1+A1∆Gk,H1GkA

H
1 ,

we have

T k+1
1 = ∆G1,H∞(A1∆Gk,H∞Ak)

= ∆G1,H∞(A1(I +GkH1 +GkA
H
1 H∞∆G1,H∞A1)−1Ak)

= ∆G1,H∞A1[∆Gk,H1
−∆Gk,H1

GkA
H
1 H∞

(
(I +G1H∞) +A1∆Gk,H1

GkA
H
1 H∞

)−1
A1∆Gk,H1

]Ak

= ∆G1,H∞Ak+1 −∆G1,H∞A1

(
∆Gk,H1GkA

H
1 H∞∆Gk+1,H∞A1∆Gk,H1

)
Ak

= ∆G1,H∞

(
I +Gk+1H∞ −A1∆Gk,H1

GkA
H
1 H∞

)
∆Gk+1,H∞Ak+1

= ∆Gk+1,H∞Ak+1 = Tk+1,

which concludes that Tk holds for all k ≥ 1.
Observe that Sk = Sk

1 is definitely true for k = 1. Suppose Sk is true for
some k ≥ 1. Then, by using the fact that

G∞ = G1+A1G∞∆H1,G∞A
H
1 , Ak+1 = Ak∆G1,Hk

A1, and Hk+1 = H1+AH
1 ∆Hk,G1

HkA1,

we have

Sk+1
1 = (Ak∆G∞,Hk

)A1∆G∞,H1

= Ak[I + (G1 +A1G∞∆H1,G∞A
H
1 ))Hk]−1A1∆G∞,H1

= Ak[∆G1,Hk
−∆G1,Hk

A1G∞(I +H1G∞ +AH
1 Hk∆G1,Hk

A1G∞)−1AH
1 Hk∆G1,Hk

]A1∆G∞,H1

= Ak+1∆G∞,H1
−Ak+1G∞(I +Hk+1G∞)−1AH

1 Hk∆G1,Hk
A1∆G∞,H1

= Ak+1∆G∞,Hk+1
(I +G∞Hk+1 −G∞AH

1 Hk∆G1,Hk
A1)∆G∞,H1

= Ak+1∆G∞,Hk+1
= Sk+1,

which concludes that Sk holds for all k ≥ 1. Note that

H∞ −Hk+1

= AH
1 (H∞∆G1,H∞ −Hk∆G1,Hk

)A1

= AH
1 H∞∆G1,H∞(I +G1Hk)∆G1,Hk

A1 −AH
1 ∆H∞,G1

(I +H∞G1)Hk∆G1,Hk
A1

= AH
1 ∆H∞,G1

(H∞ −Hk) ∆G1,Hk
A1

= AH
1 ∆H∞,G1(AH

k H∞∆Gk,H∞Ak)∆G1,Hk
A1

= TH
1 T

H
k H∞Ak+1

= TH
k+1H∞Ak+1 = TH

k+1(H−1∞ +Gk+1)Tk+1.
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Also,

G∞ −Gk+1

= A1 (∆G∞,H1
G∞ −∆Gk,H1

Gk)AH
1

= A1(G∞∆H1,G∞(I +H1Gk)∆H1,Gk
AH

1 −A1∆G∞,H1
(I +G∞H1)Gk∆H1,Gk

AH
1

= A1∆G∞,H1 (G∞ −Gk) ∆H1,Gk
AH

1

= A1∆G∞,H1
(Ak∆G∞,Hk

G∞A
H
k )∆H1,Gk

AH
1

= S1SkG∞A
H
k+1

= Sk+1G∞A
H
k+1 = Sk+1G∞(I +Hk+1G∞)SH

k+1.

By the similar discussion of Theorem 2.1 and Theorem 2.4 for Eq. (3), we
can show with no difficulty that ρ(∆H1,G∞A

H
1 ) < 1 with respect to Eq. (27),

that is,
ρ(S1) = ρ((∆H1,G∞A

H
1 )H) < 1.

On the other hand, let M and L be two matrices defined by

M =

[
A1 0
−H1 In

]
, L :=

[
In G1

0 AH
1

]
.

Let J be a skew-symmetric matrix defined by

J
[

0 In
−In 0

]

It can be seen that MJMH = LJLH , since G1 = GH
1 and H1 = HH

1 . Let
λ ∈ σ(M− λL) and x be a nonzero eigenvector satisfying MHx = λLHx. It
follows that

LJLHx =MJMHx = λMJLHx,

First, if λ 6= 0, we have M(JLHx) = (1/λ)L(JLHx). Once JLHx 6= 0, this
implies that 1/λ ∈ σ(M − λL); otherwise, MHx = 0 if JLHx = 0, which
contradicts that x is nonzero. Second, if λ = 0, there exists a nonzero vector
x such that MHx = 0. Since rank(M) = rank(L), it follows that there exists
a nonzero vector y such that Ly = 0 and, hence, ∞ := 1/0 ∈ σ(M− λL).
Thus, the eigenvalues of M − λL come in pairs, i.e., 1/λ ∈ σ(M − λL) if
λ ∈ σ(M− λL).

Let U =

[
In
H∞

]
and V =

[
−G∞
In

]
. It is true that

MU = LUT1, MV S1
H = LV.

This implies that σ(T1) ⊂ σ(M− λL) and σ(S1) ⊂ σ(L − λM). Furthermore,
there are exactly n eigenvalues of M− λL inside the unit circle and the other
outside the unit circle, since ρ(T1) < 1.

If λ ∈ σ(T1) ( i.e., 1/λ ∈ σ(M− λL)), then there exists a x 6= 0 such that
λMx = Lx and, hence, λ ∈ σ(S1). The converse is also true and concludes that
σ(T1) = σ(SH

1 ).
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