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Abstract

Several root-ratio multipoint methods for finding multiple zeros of univariate functions
were recently presented. The characteristic . .” ~»» methods is that they deal with m-
th root of ratio of two functions (hence the 1 ie root-ratio methods), where m is the
multiplicity of the sought zero, known in .. ance Some of these methods were presented
without any derivation and motivation, it cc 'la e said, out of the blue. In this paper we
present an easy and entirely natural = -, “* . onstructing root-ratio multipoint iterative
methods starting from multipoint methoa. for finding simple zeros. In this way, a vast
number of root-ratio multipoint methods for multiple zeros, existing as well new ones, can
be constructed. For demonstratic 1, we Jerive four root-ratio methods for multiple zeros.
Besides, we study computations cost of the considered methods and give a comparative
analysis that involves CPU tir e neew 7 for the extraction of the m-th root. This analysis
shows that root-ratio methor s ar . pretty inefficient from the computational point of view
and, thus, not suitable in prac.'* e. A general discussion on a practical need for multipoint
methods of very high ord ¢ is also onsidered.

AMS Mathematical Subiect Clu. “ification (2010): 65HO5.

Keywords: Solving ronli 2ar equations; Multipoint methods; Multiple zeros; Root-ratio
approach; Computat.. »7 . efficiency.

1 Introduction

In the last ter years a lot of papers were published in the topic of iterative methods of optimal
order for fin ing mu 'tiple zeros of univariate functions. Among them, several methods were
constructed us.. ~ ~_ot-parameter approach dealing with parameters computed by extracting m-
th root of "o lues. In this paper this class of methods will be called root-ratio methods. We
concentrate a the two issuses: (i) computational cost of these methods and (ii) demonstration
of an easy procedure for natural construction of root-ratio methods starting from methods for
finding simple zeros.
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The paper is organized as follows. In Section 2 we present three two-poin. root-ratio
methods of optimal order four published in [1]-[5]. In Section 3 we expose chre > tree-point root-
ratio methods of optimal order eight proposed in [6]-[9]. An easy and fully ..~ ural procedure for
constructing root-ratio methods of optimal order, demonstrated by three « -amyles, is presented
in Section 4. The computational efficiency of root-ratio methods is -,ve 1 in Section 5 applying
a comparative analysis that involves CPU time needed for the ¢ -tre _tion of the m-th root.
This analysis has shown that root-ratio methods are pretty evrens,.~» and not-competitive
with multipoint methods which do not require the extraction o the rc¢ \t even if the latter ones
have lower order of convergence. See Remark 11 at the end of (e par er.

2 Two-point fourth order methods

Let a be a zero of the known multiplicity m > 1 of a cifferent1 ble function f, and k =0,1,...
be the iteration index. We will assume that the choi ™ n..%-. approximation zq is sufficiently
close to the zero a so that the considered iterative proc =ses are convergent. We start with
two-point root-ratio methods for finding multiple » "o of functions of one variable. Zhou et al.
proposed in [1] the following family of iterative *wo-step methods for finding multiple zeros:

f(zg)

Y =T — M7,
()

(k=0,1,...). (1)

Ty = Yr — mG(ug)

S u:(f(yk,))l/m
Pl % \flay)

Under the conditions G(0) =0, G'(C, = 1, G"(0) =4, G"(0) < 400, the order of convergence
of the methods (1) is four. The ite. “tive f rmula was derived correctly but in a complicated
way. Observe that Taylor’s series of (7 15

Gu)=u+2u*+---=u(t 2 )+ - =uZ(u)+---=u(Z(0) + Z'(0)u*) + - -

with Z(0) =1, Z'(0) = 2 so that e weight function G(u) in (1) can be replaced by uZ(u) and
the conditions Z(0) =1, _ ") = 2. Compare this fact with the discussion given in Remark 1.

Lee et al. constructea - [2] the following family of fourth order methods:

v Nd-A- f(xk)
\ f'@e) + Af (@)’ o
w41 = Jk W( /C) f/(xn) + 2)‘]0(3:/6)’ k — (f(l'k)) 5

where
W () = u(l + (c+ 2)u + ru?)
1+ cu

and A\, ¢, r . ce arbitrary parameters.

Remark 1. In most papers that study iterative methods with free parameters, the choice
of parameters which improve convergence behavior of the proposed methods has not been
considered. This is the case with the methods presented in this paper. It is hard to expect
that the parameter A in (2) can improve convergence characteristics of the methods (2) (after



all, the proof was not given). Here, in (2) (see, also (4)), the situation is ~mite du.erent than
in the case of the modified Newton’s method for simple zeros

f ()

) T af(er)’ ®)

Tkl = T — 7

where the additional term af(zy) could adjust the tangent at the v ¢ (z, f(xg)) in order to
avoid overshooting. In spite of this (possibly favorable) propertr, vae abcve Newton’s modified
method (3) is applied in practice very seldom since the choice « f optin 1\l parameter a is a very
difficult problem. Considering the family (2) for m > 2, we obser. ~ t++ .t both values f/(x) and
f(xg) are very small in magnitude if the approximation zj wre s . ciently close (in magnitude)
to the zero a of f so that the impact of of additional term 1. urast cally lesser than in the case
of the method (2). Consequently, the parameter A does 1..* piay any important role so that
one can take A = 0 in (2) without loss of generality. The deriv atives of W are given by

1+ 2(c+2u+ (2¢+ & + 3r)u + 2cru®

4+ 2ru(3 + 3cu + u?)
(1+ cu)? N '

W' (u) (1+ cu)?

)

Setting u = 0 one obtains W(0) = 0, W'(0) = 1, ""(0) = 4. Therefore, the method (2) is
essentially a special case of the more general met. »d (1).

Combining the approaches applied for the ~o.."truction of the methods (1) and (2), Zafar
et al. [3] proposed the two-point family ¢ i..7ot. 7e methods

! Tg) + 7y $7}7 -
Try1 = Yk — mugZ (ug)— ) . (f(yk;))l/m (k=0,1,...), (4)
: (513')+~7f(33k)’ f(fl'k)

which reaches the order four .nde. tb: conditions Z(0) = 1, Z/(0) = 2, |Z"(0)| < oco. Here
c € R is an arbitrary param . ~.

Remark 2. The disc'.ss1 n on the additional term given in Remark 1 for the family (2) is
also valid for the family (1) .nd the additional terms ~yf(x) and 2vf(zy). Therefore, one can
take v = 0 without los 5 of ge.. rality and the iterative formula (4) reduces to the simpler form

i i N f/((l‘k))’
Ty =V —mu kZ(u )f(”“’k) w — (f(yk))l/m (k=0,1,...). (5)
k4. k k f/(l,k) ) f(:L‘k)

Comparing t. @ conc .tions related to (1) and (5) we observe one can take G(u) = uZ(u) with
Z(0) =1 7'(0) = 2, as discussed above analyzing the family (1). Therefore, the families (1)
and (5) (au'sir g trom (4) for v = 0) are equivalent.

Using root ratio approach in a slightly different way, Liu et al. derived in [4] the family of
two-point iterative methods

f(zy)

f'xx) . (k=0,1,..)), (6)

Tyl = Yk — mG(uk)JJ:/((ZIZ))’ wp = (f/(yk)>m—l

Y =T —M




which converges with the order of convergence four under the conditions

im
G0)=0, G0)=1, G"0)=——.
(0) 0) 0)=—""
The family (6) cannot be applied for finding simple zeros (m = 1', which 13 an obvious dis-
advantage. This drawback limits its applications in composite algc -ith as where a zero-finding
method is part of the algorithm in which the case m = 1 is poseible; . ~tually, this case often
appears in practical problems (for example, solving engineerin' probi ms).

Geum et al [5] constructed the following two-point root-ratic met’.od

2m f(xk)

Ye =Tk — 2" !
2 () , _ (k=0,1,...), (7)
Try1 = Yr — D(ug) flaw) Uk = (f (y_k)>l’ ”
+ f’(fﬂk)’ f’(;b“\

where n € Q. The family (7) has the order four under enac. "¢ conditions for the weight function
D, presented in [5]. The choice n € N is of greates  vpractical interest. In the case of simple
zeros (m = 1), taking n = 1 the conditions for = ~~duce to
!/ % " 9
D) =1, D'(x; -—, D'(1) =< (8)
’ 4 8
(see Theorem 3.2 in [5]). Interestingly, the 'teraive formula (7) then becomes

)
Yk = Tk — % : ;,((ija

, (x !
Tl = Yk — f&uk)?,élﬁ, ug = ;,Eig

(k=0,1,...),

which is Jarratt-like family of ¢wo-p. ~i" ¢ methods (assuming that (8) holds), see, e.g., [14, pp.
74-75]. From this considerat.c. we conclude that the choice n = m in (7) would provide that
the method (7) works for mnltiple a., well as simple zeros without any altering iterative formula
(7).

All five two-point metu. 1s (1), (2), (4), (6) and (7) are optimal in the sense of Kung-Traub
conjecture [10]: The ' wghs st order of convergence of an n-point method requiring n+ 1 function
evaluations is 2™.

3 Three-pvint 'nethods of eighth order

In this sectio . we pr. sent some recent three-point optimal iterative methods for finding multiple
zeros of the k. ~wn -aultiplicity.

Behl « .. rroposed in [6] (without derivation and motivation) the family of three-point
methods ot ,timal order eight:

()
Yk k f/(xk)’
2k =Yk — uks(hk) ff,((i‘];))v (]€ = 07 17 . )7 (9)

X
T+1 = 2 — ukVRR (I, vg) S o)

\ f'(zk)



where

_ (Ll g o fz)\ m
U = (f(xk)) , hip= m (a1 #0), v = (f_(yn_\) '

Under some specific conditions for the function S (at the point 0) and r. ‘at the point (0,0)),
the order of convergence of the family of iterative methods (9) is ei .ht.

Zafar et al. presented in [7] (without derivation and motivat..» the following iterative
three-point method
( CD)

Yp =T —M

f'@k)’
f (k)
2y = Y — mupH (ug)——=, k=0,1,...), 10
;)
\ Tpt1 = 2k — UV (B1 + Baug)P(vg)G(w,) Jj'(/l,;j
where By, By € R are free parameters, H, P, G ¢ . vuc weight functions and
1/ N1/ 1/
"y — (f(yk)> "= (ﬁm%, &, — (f(%)) m (1)
f (@) Sy, f (@)
Zafar et al. proposed in [8] (without deriv. tic. and motivation) the family of three-point
methods
( Yp = Tk — M f (k)
SRR TEAY
J k)
2k = Yp — mugl (ug)m —=, kE=0,1,...), 12
k= Uk k k)f,\$k) ( ) (12)
. f ()
Tpa1 = 2 — ugpt (up G(vg)L(wg
+1 ( ( ) ( )f/(wk)

where u, v, w are defined by \*'1). The family (12) is obvious generalization of the family (10).
Indeed, comparing (10) ana (12), .- note that P(u) = By + Bou, G(v) = vP(v). Clearly, the
authors could work imme dia. 2ly at start with the product of weight functions P(u)G(v)L(w)
since the generalization .. < .ite obvious.

Remark 3. Nei’aer Jhe ‘dea nor the motivation for the construction of the methods (9),
(10) and (12) were pre. nt d; the iterative formulas appear out of the blue, without prelimi-
nary explanation imtroc iction of the basic idea and derivation procedures. Such non-preamble
approach is not i. the s’ irit of the methodology of scientific work and educational principles,
both useful fo . caders.

Remark * T'e need for arbitrary parameters in any iterative formula is discussed in
Remark ? .. ™his relates to the parameters A, c¢,r in (2), v in (4), and a; and ay in (9). Since
any advant. o of using a; and ay was not proved in [6], (actually, it is very difficult to prove
it), it is logic.' to take a3 = 1 and ay = 0 without loss of generality. At first sight, this is a
special case but, in fact, it is a natural choice which simplifies artificially generalized iterative
formula (9). Consequently, it follows hj = uj and the family (9) reduces to a simpler iterative



method (without hy)

( f(zg)

Y =T —M )
()

f(zg)
fa)’
f(xx)

T =z — upVp R(ug, v ) ——=
{ k+1 k kVEk (k7 k)f/(-rk)

2 = Y — upS(ug)

Another optimal three-point methods of order eight was .2ceu.:y constructed in [9] in the

form
Yk = Tk — mka)
f'(xx)’
2k =Yk — mLf(Uk)}f,((Z)y (k=0,1,...) (14)
| ot = 2= m [ Lyp(ug) + K, )| f/(xi))

where uy, and vy are defined by (11).

4 Can we construct them easicr:

In this section we show that some of the ab. e-presented methods can be derived using an
easy way, well known in the literatur- “~r almost 150 years. The idea is credited to German
mathematician E. Schréder, see his paper '11] and the English translation [12], and goes as
follows in the case of Newton’s methol

f(zg)
f'(w)

applied to the function f having . ~ero a of multiplicity m > 1.

(k=0,1,...)

Ty, =T —

4.1 Schréder’s fY™. nprach

Let F(z) = f(x)! ™. " hen «a is a simple zero of the function F. Applying Newton’s method
to F', we obtain
o Flag) fla)tm
Ukl = Tk — Filan) Tp — T i) ()]

and hence

Tpt1 = Tk — m;/((zlz)) (k=0,1,...),

which is w~ll-} uv.wn Schroder’s method for finding multiple zero of the known multiplicity m.
This useful 1 ea was applied in many papers during the last 70 years.

Schroder’s approach can be applied to multipoint methods for finding a simple zero in order
to construct corresponding multipoint mehods for multiple zeros. As above, let f be a function
having a zero of the known multiplicity m > 1. First, we set F(z) = f(z)"/™ (Schroder’s



Y ™_approach) and derive the following relations:

F@) _  f@ym @)

Fla) — Ii@f@ymt @)

Fly) _ fy)tm mf(x)(f(y))l/m:mu& A ’i’ﬂ_))l/m

Fiiz) — L) f)m=—1 " " f2) \f(2) Fla)’ \fl@))

) fQWm?%Jn_ng@>0@5wm0vbvm:mmj@> TENE
o) — Lp@i@im @ \f@))  \fy) o) i)
F(y fly)l/m

FEx§ - fgmil/m - (15)
Fz) _ f@Ym

Fly) — "

Fiz) _ f@vm

F) — fl)m

4.2 Fighth-order family (9) derived by Schréa v s approach

For demonstration, we will apply the presei.tea Schroder’s approach to the following three-
point family of iterative methods for fina.. = a .- iple zero of a function f, proposed in [23]:

L d
Y= TR i)
= gl BB k=0, (16)
Thy = 2k ‘I(Uk,vk);,((i];))
where
_ fur) ~ f(=)

T f@ T T

and p(u) and ¢q(u,v) 7 ce £ nctions of one and two variables, respectively. The following theorem
has been proved in |z.. see also, [14]).

Theorem 1. Let a, b and ¢ be arbitrary constants. If p and q are arbitrary differentiable
functions with Tay. ~~’< series of the form

b
) = 1+2u+gu2+6u3+---,
2 6a + b — 24
) = 1+2u+o+ % 4 duw+ So? 4 22T ud + -

2 6 o
then the family of three-point methods (16) is of order eight. It is assumed that higher-order

terms are represented by the dots, and they can take arbitrary values.

Remark 5. The weight functions p and ¢ in Theorem 1 are expressed in the form of poly-
nomials. This form empirically shown poor convergence so that univariate rational functions



(for p) and bivariate rational functions (for ¢) (with Taylor series given in Theorem 1) are used
in practice, see, e.g., [9].

Assume that f has the zero a of multiplicity m > 1, known in adve ~ce. 7= modify (16) by
using the above-mentioned Schréder’s strategy with the function F(~) = ,/=)!/™ for which a
is a simple zero. First, replacing f with F', rewrite (16) in the forr

P D)
yk - k F/(.'Ijk)’
F
L) SN Ne) am
F(z
Try1 = 2 — Qu, Uk)F,((x];))
where _
. F(yk) o = Sz
F(ay)’ Tyk)
Using the relations (15), the family (17) can be wri.*en in the following form:
" :mk_mf(ﬂfk)
f'(zg)’
o~
= = P ) T (k=0.1,..), (18)
x
\ Thyl = @(:Uk) =ZE - kUkQ(uk,'uk)ffl((x];))
where v 4 i(L)\ 1/m o — (f(Zk)>1/m (19)
NS ) ’ f (k)

The weight functions P(u) r ac 9(u,v) should be determined in such a way that the iterative
methods defined by (18) b=ve the iaximal order of convergence using only the calculation of
f(x), f'(z), f(y) and f(.). 1. the ideal case, the order would reach eight, and the family (18)
would be optimal accordi.,_ to Kung-Traub’s hypothesis [10].

We proceed using a te -hnique based on Taylor’s series by employing symbolic computation
in computer algebra s, ~ em Jathematica. Since this technique was seen many times in existing
papers, we presen’ ualy an outline of convergence analysis.

We omit the _‘eratior index k and define the errors
E=T—q, gg=yY—q, g,=2—q, E=1—q,
where & is a new wpproximation xgq. Introduce

m! M) (q)
(m+nr)l fm(a)

(r=12,...).

r =

We will use the following development of the function f about the zero a of multiplicity m

(m)
f(z) = / fa) em (1 + Che + Coe? + C36® + Cue* + Cse® + Cpe® + Cre” + Cse® + 0(59)),
m:




and a program in Mathematica. As usual, in finding the weight functions P =nd @), we represent
these functions by their Taylor’s series at the neighborhood of v = 0 (for ) i nd (u,v) = (0,0)

(for Q):
P(u) = P(0) + P'(0)u + @ﬁ .
Q(”? U) = Q(Ov 0) + Qu0(07 O)U + QOU((]? O)U + %(Quu(oy 0)U2 + n/}uv(b, Q)UU + Qm)(o, 0)2)2) + -

Subscript indices denote partial derivatives. In the last developn. nts, - s well as in the program,
the following notation is used:

fam = f"™(Q), fr=f(x), fy=fQ), fz- f(z) 1tz =f(z),

e=¢, ey =gy, €2 =, el = ¢,

P (u)
r du (u=0) (T ) )7
0Q . 0Q
00 = Q(0,0), u) = — B W= 5 )
QU0 = Q.00 Quo=" | et T Tl uw=00
0%Q 0%, 0%Q
Quu = A u? | (uv)=(0,0) Quo = ¢ 1) =(0,0) Quo = 902 | (u,0)=(0,0)

The coefficients of Taylor’s developmen.* ot vne weight functions P and () are determined
using an interactive approach by combining the program realized in Mathematica (two parts)
and the annihilation of coefficients s* ana.. 9 at € of lower power.

PART I (Mathematica)

fxx=1+Cl*e+C2*e~2+C3*e~ 3+ C4: ~~4 -Cb* :~5+C6*e”~ 6+ C7*e”7+C8*e”8;
fx=fam/m!*e " m*fxx; fx1=D[fy,el; n. - c=Series[fx/fx1,{e,0,8}];
ey=e-m¥newt; fyy=1+Clxey+/ 2x»_ ~~2+3%ey~ 3+Cl*xey~4;
yx=fyy*Series[1/fxx,{e,0 °}];

yxm=Series[yx~1/m,{e,0 3}]

u=yxm*ey/e;

P=PO+P1*u+P2/2*u"~ 2+ 3/€ u”~3+P4/24xu"4;

ez=Series [ey-m*u*P~. ~v ¢//F1l1Simplify,{e,0,8}]

This program a givex the following OUTCOME:

8
£, = E < e’

r=2
. (k'1 — ;‘l,po)éj
= _ mi
+(—2U2m(—1 + Po) =+ 012(—1 + m(—l + Po) + 3P0 — Pl))é‘g

m2

1
55 (~6Com (=1 + ) + 2C1Com(~4+ 3m(~1 + Py) + 117 — 4Py

8
+C3(2 — 13Py + 10P;, + m(4 — 2m(—1 4 Py) — 11Py + 4P}) — P2)>54 +) U +0().
r=>5



10

To annihilate coefficients by €2 and €3, from the condition Sy = 0 and S» = 0 we find
Py=1, P =2, P, arbitrary, (20)

yielding

—2mC1Cy + C3(9 +m — Py)
€y = -
2ms3
The part II of the program uses previously found entries ar 4 serves for finding additional
conditions which provide optimal order eight.

et +0( 7). (21)

PART II - CONTINUATION (Mathematica)

fzz=1+Clxez+C2*xez"2; fyy=1+Clxey+C2*ey~ 2+ C3*ey 3+(C'*ey~ 4.
zy=fzz*Series[1/fyy{e,0,8}]; zym=Series[zy~ (1/m),{e,0,c,7;
v=zym*ez/ey;
Q=Q00+QuO*u+QOv*v+Quu/2*u” 2+Qvv/2*v" 2+Quv*u*xv;

el=Series[ez-m*u*v*Q*newt,{e,0,8}]//FullSimpl: *-
The error € = & — « (= el) is given in the form

8

= Z N T 0(69)

r=4

From the conditions Ty =0, T5 =0, T = v, 17 = 0, we find the coefficients
Qoo =1, Quo=2, Qoo =1, Quo= = P isarbitrary, P3 =24 - 6P, Quu=F+2. (22)

In addition, we obtain

Ty = —ﬁ{q[(}%(m—@: 9)~-2m02]

x| G (<142 43 gyl — Py + 9)2 4 6mP, — 204m + 150P; — Py — 1054)
—12mC2Co(Qr am - Py +9) — 4m + Py — 34) — 24m?2CyCs + 12m2C2(Qy — 2)] }
so that we can write
¢ = Tye® + 0(Y),

that is,
k1l —a=P(xy) —a = O(Ez), € = T — Q.

In this way we ' ave ..oved the following assertion.
Theoren. 2. If .he initial approximation xq is sufficiently close to the zero o of f and the
condition ‘20 and (22) are valid, then the order of the three-point family (18) is eight.

Note th.’ Ty tends to the asymptotic error constant of the family (18) when ¢ — 0.
According to .heorem 2, it follows that the three-point family (18) is optimal.

The simplest forms of the weight functions P and () are their truncated Taylor series
Pu)=142u+pu*+(4-28)u, Qu,v) =1+2u+v+4uv+ (B+1)u?, f is arbitrary.

Finding a list of particular weight functions P and @ is a routine work and it is left to the
interested reader as exercise.
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4.3 FEighth-order family (12) derived by Schréder’s approach

The presented Schroder’s f1/™-approach can also be applied for the dei. = Jion of the method
(12). Let us start from the following three-point method for simple zerc.

(o flaw)
I T i )

=y —u U f (@) =
25 = Yk rH( k)f’(xk) (k=0.1,...), (23)
Th+1 = Rk — ukP(uk)G(vk)L(wk) f/(l'k)
[,
where
) e )
Fla 7 fuw T s

This method has the order 8 under the conditions

H(0) =1, H'(0) =2, P'(0) =2P(0), .>"(0) = P(0)(2 + H"(0)),

L'(0) = 2L(0), P"(0) = P(0)(R" 0)+ 6H"(0) — 24), (24)
e 1 ». 2
G(0) = 0, G(O)—m, G o)_m.

The denotation of weight functions in (23) and (24) is adjusted to the denotation used in [8].

Applying Schrider’s f1/"-approz a1 «.d (15) we obtain the family of three-point methods
for finding multiple zeros

f\mk\
Yk =Tp —mi——
J \1“7)
‘ f ()
2k = Yk — (v H(uk)f’(a:k)’ (k=0,1,...), (25)

f(zg)
f'(w)

which is equivalent t- (17 setting mG*(v) = G(v) (compare (12) and (25)).

Tht1 = 2k - mugP(ug)G*(vg) L(wy,)

Remark 6. /2.uong ovaer methods, the first author of this paper presented the family of
methods (23) in s lecti re under the title Multipoint methods for solving nonlinear equations
at International cc-fer.nce Computational Methods in Applied Mathematics (Berlin, 2012).
However, du . to tl = similarity to the iterative formula (4.91) in the book [14, p 151], the
author did nc* publ'sh (23). Other possible sources of (23) are not known to the authors.

4.4 A i od fication of the family (12)

Since

(f(2)>1/m (f(y))l/M(f(Z)>1/m
= = = U - ’U’
f(x) f(x) f)

the weight function L(w) can be omitted in (12). Then we can construct in an easy way the
following family of three-point methods for finding multiple zeros involving two parametric
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functions
yk:xk_mf(fﬂk)
f(wg)’
f(xg)
Z = Y — mupH (u , 26
(
Tt = 2 — Mugvk(1 + 2uvk) P(ug) G (vg) ,c,(x] <
T,

Making suitable changes in the above program in Mathematic. (see § 4.2), we prove that the
method (26) is of order eight under the following conditions:

HO0)=1, H'(0)=2, H"(0)=m+09,
P(0)=1, P'(0)=2, P"(0)=m+11, r"(0) 30+ 6m+ H"(0),
G(0)=1, H'(0) = L

4.5 Fourth order methods for multiple zeros

Chun constructed in [15] the following two-boint . mily of iterative methods for finding

_ (k)
Yk = Tk — —
Thry = ye — & f‘(qm\._ wp = T (yr)
i h(ug, ' (zk)’ flag)’
where h(u) is the weight function. ... wethod (27) is of fourth order under the condition
h(0) =1, K'(0) = —1, |h"(0)| < 4o .. To ge rerate suitable two-point methods, sometimes it is
necessary to develop the function % in.. T .ylor’s or geometric series.

simple zeros

A slightly more direct appror.ch v itheut altering the weight function, based on Chun’s idea,
was given in [16] in the form

[ Yk = Wy — J (@)
\ t (k)
I f(yr) f(yr)
Ck+1 = Yk — P Uk y Uk = .
O (E A [E
The family (28) pos. ssrs th . optimal order four if p(0) =1, p/(0) = 2 and [p”(0)| < +oo.
Proceeding in ..e san.. way as in the case of the family of three-point methods (16) and
using (15), we o>tain fiom (28) the fourth order two-point family of iterative methods for
finding multiple ze. ~«

! f(zg)

Y =T —M

(28)

fak)’ )
1“w=%—mwmwﬁ@“ = (L0
J'(@x)’ flar))
where P(u) is the weight function which satisfies

that is, its truncated Taylor series is

P(u) =1+ 2u.
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This result is expected since the iterative formula (29) coincides with the first two teps of the
family (18). Explicit expression of ¢ = & — « (regarding (29)) is given br (21 (for ).

Several examples of functions that satisfy (30) are listed below.

. 2
P(u) = 1oy (of King's type,see [17]), - P(2) = {1+ 21"

1+ yu 1 Wt = 2u—1
P =150 PO e PW-—"a7 —

where r € Q and v, a, ¢ € R are arbitrary parameters.
4.6 Equivalence of methods

Some words about the equivalence of the method. nresen ed in Section 2 and 3, and the
methods derived by Schroder’s approach in Section .

Equivalence 1. In Section 2 it was shown t’ .. vuc simplified methods (2) and (4) (as-
suming slight simplifications by taking A = 0 in (2) a. 1 = 0 in (4)) are special cases of the
method (1) proposed by Zhou et al. [1]. Compa. ng .. ative methods (1) and (29) it is evident
that both formulas are equivalent, which is easil, obtained taking uP(u) = G(u). Moreover,
the family (29) requires only two conditions +''v, = «, P’(0) = 2 compared to three conditions
G(0) =0, G'(0) =1, G"(0) = 4. It is im~artan" to note that the derivation of the family (1)
and latter convergence analysis are more co.vlicated than for the family (29). Furthermore,
the derivation of (29), based on Schroder’s approach, is entirely natural and crystal clear.

Equivalence 2. The family (14, obta.1ed by natural choice a;j = 1, ag = 0 in the family
(9) (proposed in [6]), is equivalent to tu. far ily (18), which is evident setting S(u) = mP(u) and
R(u,v) = mQ(u,v). The family “J) ( .nd. consequently, (14)) was presented without derivation
and motivation, while the family (1 ,) w.s derived on an easy and obvious way using Schroder’s
approach.

Remark 7. Apart fr-. the family (6), other optimal multipoint methods for finding a
simple zero (some of the n a’ 2 presented in the book [14]) can be transformed by introducing
F(x) = f(x)Y™ to multi,.nt methods for approximating a multiple zero keeping optimal
order of convergence T} .s subject is left to readers. However, the authors of this paper do
not expect new papei. a th.s direction since such methods are pretty expensive. This is the
subject of the ney ., section.

5 Root-_atio methods are not competitive

In Section 4 w~ ha- ¢ demonstrated a general procedure for constructing multipoint methods
for multi} ¢ ...~ using basic iterative formulas for simple zeros and Schréder’s f1/"-approach.
We observe '.at all previously presented methods deal with real or complex values of the forms

flyp) \Vm fGRNYm fGR) Y
<f(i];)) (f(:zi)> (f(yl;)> '

Computer algebra systems and computer arithmetics of digital computers often meet the
problem of finding the m-th root for arbitrary m. In the case of specific values of m they find
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the principal value of the m-root z'/™ (m is natural number given as numerical en.ry) among
m values of the sought root in the form

M = | m (cos % + i sin %), 0=Argz e (—m,un (31)

From (31) it is clear that the computation of the m-root consu nes 1 lot of CPU time. The
following test, implemented on PC with Intel-i7 processor and clock sp ~ad 2.8 GHz, has given
CPU times (expressed in psec) for different values of m in caler lation f ((a+1ib)/(c+id)) Lm,
For the authenticity of the test, one million experiments have L ~en p rformed taking random
numbers for a, b, ¢, d in each cycle to eliminate the use of pos .ibly ~emorized data from previous
cycles. In the real case we set b = 0, d = 0. The experimeni - - ere ' calized in computer algebra
system Mathematica in multi-precision arithmetic with 1 si_..ficant decimal digits, which
corresponds to quadruple-precision of IEEE 754 floating-poin arithmetic. The average CPU

times for one evaluation are given in Table 1.

m 1 2 Io Dt 5 6 7
CPU (in psec), real case 525 | 22.7 | .°24 | 31.86 | 32.25 | 32.03 | 33.1
CPU (in psec), complex case | 13.77 | 54 ””_' 64.4. | 64.07 | 65.83 | 68.05 | 66.3

Table 1: CPU times in the calculation cf the +-th root of real and complex numbers

In our experiments we observed that the P U times for m > 3 almost do not change in the
real as well as the complex case (see Table 1). in this way we are able to find reliable ratio of
computation times for m > 3 (multir e zc. 9s) and m = 1 (simple zeros):

CPUgn>, CPU
Real case: ﬁ:ﬁ ~ 6.z, Complex case: WE:?;

v

~ 4.8, (32)

Remark 8. For compari ..~ purpose, we performed one million calculations of the value of
a polynomial of degree 20 with rea coefficients and complex argument, both chosen randomly
in each cycles (Horner’s ,che ne was used). Average CPU times for one evaluation was 116
wsec, which is only two 1.7 s slower than CPU time in calculation of m-th root in the case of
complex numbers (see Tahle 1.

Remark 9. We e ~b size that the ratio of CPU times strongly depends on the used
computing platfo m (us -ally the hardware or the operating system) and implemented software
(assuming the usc of qus druple precision). It may differ from the values given by (32), but not
too much, the .atios are certainly higher than 3 if m > 3. This fact can be observed from Table
11 in the pay °r [5]. Ve also mention that the execution CPU time of the square root operation
(m = 2) requii.~ < aificantly lesser CPU time since this operation is realized by special (more

effective) vigo. ' ms, see the book Modern Computer Arithmetic by Brent and Zimmermann
[18].

Having in mind Remark 8 and 9 we conclude that root-ratio methods are expensive from
a computational point of view. From (32) and Remark 8 we can draw trustworthy conclusion
that root-ratio multipoint methods, such as (1), (2), (6), (9), (10), (12), (14), (25), (26) and
other non-listed methods (if there exist), are inefficient. As mentioned in Remark 7, further
work on the construction of root-ratio methods is pointless and does not make an advance in the
topic. Combining various weight functions in order to derive “new methods” is rather a kind
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of play and inevitably leads to minor modifications without a proper immortance. This fact
was emphasized in [19] but the construction of modest modifications of Jrig 1al contributions
has continued. Different iterative formula does not mean automatically t..> . a contribution to
the topic was achieved.

Is there a good alternative multi-method for multiple zeros whic is « #icient and convenient
for applications? The answer is yes, and it is very likely known .~ riany authors who work
in the area of iterative processes. Li et al. proposed in [20] the “_llow..3 (optimal) two-point
method of order four:

2m f(zg)

Yk =TT )

. (33)
Thil = Tp — %m(m —2) Aty — 55 ) f(x) f = ' A, = (m—+2>m

1— Rt f’(:Uk)’ I :Uk)’ m

Zhou et al. [21] later proposed the generalization of 1..» mewnod (33) in the form
S AC
yszvk—n%—w' ,(M_)\,
f'(
, , (34)
k+1 k k "F/(.’LL\’ k’ f’(.’]}k)’

which has the order four under the specif ~ond.*ions for the weight function ¢. See, also, [22].
The notion of “convenient” is explained in 1, mark 11.

We conclude this paper with two - ... ~tks of general interest.

Remark 10. The presence of a1, ‘trar y parameters in any zero-finding iterative formula
makes sense only if these parame ers ‘mprove characteristics of presented methods (such as ac-
celeration of convergence, wider '~ nair of convergence, more accurate approximations, lower
computational cost, etc.). Ot’.erwise, "vom an algorithmic point of view, free parameters should
be chosen so that an iterat’ve 1. -mula is as simple as possible — numerical analysts and pro-
grammers will always chor .. the simpler formula in such a way that the best characteristics of
the employed methods 2 e m aintained. Inserting numerous useless parameters does not make
a method better or mc~e ge. ~ral in the genuine sense. Unfortunately, many authors construct
“novel” iterative forrwle, by adding parameters in an artificial way or by varying different
weight functions. In . .enc ., such methods are only modest modifications of existing meth-
ods and offer a 1i’ e coutibution to the topic. Discussions on choosing the parameters that
improve results t » some xtent can be found in the paper [9].

Remark (1. I" should be emphasized that very high accuracy of solutions of nonlinear
equations, p1 wided oy root-solvers of order eight or more, is not needed for solving a huge
number of nracucal problems; fourth order methods (such as (33) and (34)) produce quite
satisfactor, resuis in practice. The question “how many decimals of zero approximations do
we really nee.' in practice?” is equivalent to the question “how many decimals of m do we really
need in practice”?” A pretty convincing answer can be found in the issue of NASA/JPL Edu,
March 16, 2016:

e For interplanetary navigation with spacecraft Voyager 1 (launched in 1977, distant from
Earth about 22 billion km), Jet Propulsion Labaratory (California Institute of California,
Pasadena, USA) and NASA use very accurate calculations involving 7 with most 15 decimal
digits! Not more! The distance error is about 5 cm!
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e The radius of the visible universe is about 46 billion light years. To express vhe circum-

ference of a circle with this radius via the diameter a hydrogen atom (t'ie s mplest atom) we
need at most 40 decimal digits of !
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