
Accepted Manuscript

Construction and efficiency of multipoint root-ratio methods for finding
multiple zeros
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Abstract

Several root-ratio multipoint methods for finding multiple zeros of univariate functions
were recently presented. The characteristic of these methods is that they deal with m-
th root of ratio of two functions (hence the name root-ratio methods), where m is the
multiplicity of the sought zero, known in advance. Some of these methods were presented
without any derivation and motivation, it could be said, out of the blue. In this paper we
present an easy and entirely natural way for constructing root-ratio multipoint iterative
methods starting from multipoint methods for finding simple zeros. In this way, a vast
number of root-ratio multipoint methods for multiple zeros, existing as well new ones, can
be constructed. For demonstration, we derive four root-ratio methods for multiple zeros.
Besides, we study computational cost of the considered methods and give a comparative
analysis that involves CPU time needed for the extraction of the m-th root. This analysis
shows that root-ratio methods are pretty inefficient from the computational point of view
and, thus, not suitable in practice. A general discussion on a practical need for multipoint
methods of very high order is also considered.

AMS Mathematical Subject Classification (2010): 65H05.

Keywords: Solving nonlinear equations; Multipoint methods; Multiple zeros; Root-ratio
approach; Computational efficiency.

1 Introduction

In the last ten years a lot of papers were published in the topic of iterative methods of optimal
order for finding multiple zeros of univariate functions. Among them, several methods were
constructed using root-parameter approach dealing with parameters computed by extracting m-
th root of some values. In this paper this class of methods will be called root-ratio methods. We
concentrate on the two issuses: (i) computational cost of these methods and (ii) demonstration
of an easy procedure for natural construction of root-ratio methods starting from methods for
finding simple zeros.
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The paper is organized as follows. In Section 2 we present three two-point root-ratio
methods of optimal order four published in [1]-[5]. In Section 3 we expose three tree-point root-
ratio methods of optimal order eight proposed in [6]-[9]. An easy and fully natural procedure for
constructing root-ratio methods of optimal order, demonstrated by three examples, is presented
in Section 4. The computational efficiency of root-ratio methods is given in Section 5 applying
a comparative analysis that involves CPU time needed for the extraction of the m-th root.
This analysis has shown that root-ratio methods are pretty expensive and not-competitive
with multipoint methods which do not require the extraction of the root even if the latter ones
have lower order of convergence. See Remark 11 at the end of the paper.

2 Two-point fourth order methods

Let α be a zero of the known multiplicity m ≥ 1 of a differentiable function f, and k = 0, 1, . . .
be the iteration index. We will assume that the chosen initial approximation x0 is sufficiently
close to the zero α so that the considered iterative processes are convergent. We start with
two-point root-ratio methods for finding multiple zero of functions of one variable. Zhou et al.
proposed in [1] the following family of iterative two-step methods for finding multiple zeros:





yk = xk −m
f(xk)

f ′(xk)
,

xk+1 = yk −mG(uk)
f(xk)

f ′(xk)
, uk =

( f(yk)
f(xk)

)1/m
(k = 0, 1, . . .). (1)

Under the conditions G(0) = 0, G′(0) = 1, G′′(0) = 4, G′′′(0) < +∞, the order of convergence
of the methods (1) is four. The iterative formula was derived correctly but in a complicated
way. Observe that Taylor’s series of G is

G(u) = u+ 2u2 + · · · = u(1 + 2u) + · · · = uZ(u) + · · · = u(Z(0) + Z ′(0)u2) + · · ·

with Z(0) = 1, Z ′(0) = 2 so that the weight function G(u) in (1) can be replaced by uZ(u) and
the conditions Z(0) = 1, Z ′(0) = 2. Compare this fact with the discussion given in Remark 1.

Lee et al. constructed in [2] the following family of fourth order methods:





yk = xk −m · f(xk)

f ′(xk) + λf(xk)
,

xk+1 = yk −mW (uk) ·
f(xk)

f ′(xn) + 2λf(xk)
, uk =

( f(yk)
f(xk)

)1/m
,

(2)

where

W (u) =
u(1 + (c+ 2)u+ ru2)

1 + cu

and λ, c, r are arbitrary parameters.

Remark 1. In most papers that study iterative methods with free parameters, the choice
of parameters which improve convergence behavior of the proposed methods has not been
considered. This is the case with the methods presented in this paper. It is hard to expect
that the parameter λ in (2) can improve convergence characteristics of the methods (2) (after
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all, the proof was not given). Here, in (2) (see, also (4)), the situation is quite different than
in the case of the modified Newton’s method for simple zeros

xk+1 = xk −
f(xk)

f ′(xk) + af(xk)
, (3)

where the additional term af(xk) could adjust the tangent at the point (xk, f(xk)) in order to
avoid overshooting. In spite of this (possibly favorable) property, the above Newton’s modified
method (3) is applied in practice very seldom since the choice of optimal parameter a is a very
difficult problem. Considering the family (2) for m ≥ 2, we observe that both values f ′(xk) and
f(xk) are very small in magnitude if the approximation xk are sufficiently close (in magnitude)
to the zero α of f so that the impact of of additional term is drastically lesser than in the case
of the method (2). Consequently, the parameter λ does not play any important role so that
one can take λ = 0 in (2) without loss of generality. The derivatives of W are given by

W ′(u) =
1 + 2(c+ 2)u+ (2c+ c2 + 3r)u2 + 2cru3

(1 + cu)2
, W ′′(u) =

4 + 2ru(3 + 3cu+ c2u2)

(1 + cu)3
.

Setting u = 0 one obtains W (0) = 0, W ′(0) = 1, W ′′(0) = 4. Therefore, the method (2) is
essentially a special case of the more general method (1).

Combining the approaches applied for the construction of the methods (1) and (2), Zafar
et al. [3] proposed the two-point family of iterative methods





yk = xk −m
f(xk)

f ′(xk) + γf(xk)
,

xk+1 = yk −mukZ(uk)
f(xk)

f ′(xk) + 2γf(xk)
, uk =

( f(yk)
f(xk)

)1/m
(k = 0, 1, . . .), (4)

which reaches the order four under the conditions Z(0) = 1, Z ′(0) = 2, |Z ′′(0)| < ∞. Here
c ∈ R is an arbitrary parameter.

Remark 2. The discussion on the additional term given in Remark 1 for the family (2) is
also valid for the family (4) and the additional terms γf(xk) and 2γf(xk). Therefore, one can
take γ = 0 without loss of generality and the iterative formula (4) reduces to the simpler form





yk = xk −m
f(xk)

f ′(xk)
,

xk+1 = yk −mukZ(uk)
f(xk)

f ′(xk)
, uk =

( f(yk)
f(xk)

)1/m
(k = 0, 1, . . .). (5)

Comparing the conditions related to (1) and (5) we observe one can take G(u) ≡ uZ(u) with
Z(0) = 1, Z ′(0) = 2, as discussed above analyzing the family (1). Therefore, the families (1)
and (5) (arising from (4) for γ = 0) are equivalent.

Using root-ratio approach in a slightly different way, Liu et al. derived in [4] the family of
two-point iterative methods





yk = xk −m
f(xk)

f ′(xk)
,

xk+1 = yk −mG(uk)
f(xk)

f ′(xk)
, uk =

( f ′(yk)
f ′(xk)

) 1
m−1

(k = 0, 1, . . .), (6)
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which converges with the order of convergence four under the conditions

G(0) = 0, G′(0) = 1, G′′(0) =
4m

m− 1
.

The family (6) cannot be applied for finding simple zeros (m = 1), which is an obvious dis-
advantage. This drawback limits its applications in composite algorithms where a zero-finding
method is part of the algorithm in which the case m = 1 is possible; actually, this case often
appears in practical problems (for example, solving engineering problems).

Geum et al [5] constructed the following two-point root-ratio method





yk = xk − 2m
m+2 · f(xk)

f ′(xk)
,

xk+1 = yk −D(uk)
f(xk)

f ′(xk)
, uk =

( f ′(yk)
f ′(xk)

)1/n
(k = 0, 1, . . .), (7)

where n ∈ Q. The family (7) has the order four under specific conditions for the weight function
D, presented in [5]. The choice n ∈ N is of greatest practical interest. In the case of simple
zeros (m = 1), taking n = 1 the conditions for D reduce to

D(1) = 1, D′(1) = −3

4
, D′′(1) =

9

8
(8)

(see Theorem 3.2 in [5]). Interestingly, the iterative formula (7) then becomes





yk = xk − 2
3 ·

f(xk)

f ′(xk)
,

xk+1 = yk −D(uk)
f(xk)

f ′(xk)
, uk =

f ′(yk)
f ′(xk)

(k = 0, 1, . . .),

which is Jarratt-like family of two-point methods (assuming that (8) holds), see, e.g., [14, pp.
74-75]. From this consideration we conclude that the choice n = m in (7) would provide that
the method (7) works for multiple as well as simple zeros without any altering iterative formula
(7).

All five two-point methods (1), (2), (4), (6) and (7) are optimal in the sense of Kung-Traub
conjecture [10]: The highest order of convergence of an n-point method requiring n+1 function
evaluations is 2n.

3 Three-point methods of eighth order

In this section we present some recent three-point optimal iterative methods for finding multiple
zeros of the known multiplicity.

Behl et al. proposed in [6] (without derivation and motivation) the family of three-point
methods of optimal order eight:





yk = xk −m
f(xk)

f ′(xk)
,

zk = yk − ukS(hk)
f(xk)

f ′(xk)
,

xk+1 = zk − ukvkR(hk, vk)
f(xk)

f ′(xk)

(k = 0, 1, . . .), (9)
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where

uk =
(f(yk)
f(xk)

)1/m
, hk =

uk
a1 + a2uk

(a1 6= 0), vk =
(f(zk)
f(yk)

)1/m
.

Under some specific conditions for the function S (at the point 0) and R (at the point (0,0)),
the order of convergence of the family of iterative methods (9) is eight.

Zafar et al. presented in [7] (without derivation and motivation) the following iterative
three-point method





yk = xk −m
f(xk)

f ′(xk)
,

zk = yk −mukH(uk)
f(xk)

f ′(xk)
,

xk+1 = zk − ukvk(B1 +B2uk)P (vk)G(wk)
f(xk)

f ′(xk)

(k = 0, 1, . . .), (10)

where B1, B2 ∈ R are free parameters, H, P, G are the weight functions and

uk =
( f(yk)
f(xk)

)1/m
, vk =

(f(zk)
f(yk)

)1/m
, wk =

( f(zk)

f(xk)

)1/m
. (11)

Zafar et al. proposed in [8] (without derivation and motivation) the family of three-point
methods 




yk = xk −m
f(xk)

f ′(xk)
,

zk = yk −mukH(uk)
f(xk)

f ′(xk)
,

xk+1 = zk − ukP (uk)G(vk)L(wk)
f(xk)

f ′(xk)

(k = 0, 1, . . .), (12)

where u, v, w are defined by (11). The family (12) is obvious generalization of the family (10).
Indeed, comparing (10) and (12), we note that P (u) = B1 + B2u, G(v) = vP (v). Clearly, the
authors could work immediately at start with the product of weight functions P (u)G(v)L(w)
since the generalization is quite obvious.

Remark 3. Neither the idea nor the motivation for the construction of the methods (9),
(10) and (12) were presented; the iterative formulas appear out of the blue, without prelimi-
nary explanation/introduction of the basic idea and derivation procedures. Such non-preamble
approach is not in the spirit of the methodology of scientific work and educational principles,
both useful for readers.

Remark 4. The need for arbitrary parameters in any iterative formula is discussed in
Remark 10. This relates to the parameters λ, c, r in (2), γ in (4), and a1 and a2 in (9). Since
any advantage of using a1 and a2 was not proved in [6], (actually, it is very difficult to prove
it), it is logical to take a1 = 1 and a2 = 0 without loss of generality. At first sight, this is a
special case but, in fact, it is a natural choice which simplifies artificially generalized iterative
formula (9). Consequently, it follows hk = uk and the family (9) reduces to a simpler iterative
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method (without hk)





yk = xk −m
f(xk)

f ′(xk)
,

zk = yk − ukS(uk)
f(xk)

f ′(xk)
,

xk+1 = zk − ukvkR(uk, vk)
f(xk)

f ′(xk)

(k = 0, 1, . . .). (13)

Another optimal three-point methods of order eight was recently constructed in [9] in the
form 




yk = xk −m
f(xk)

f ′(xk)
,

zk = yk −mLf (uk)
f(xk)

f ′(xk)
,

xk+1 = zk −m
[
Lf (uk) +Kf (uk, vk)

] f(xk)
f ′(xk)

(k = 0, 1, . . .) (14)

where uk and vk are defined by (11).

4 Can we construct them easier?

In this section we show that some of the above-presented methods can be derived using an
easy way, well known in the literature for almost 150 years. The idea is credited to German
mathematician E. Schröder, see his paper [11] and the English translation [12], and goes as
follows in the case of Newton’s method

xk+1 = xk −
f(xk)

f ′(xk)
(k = 0, 1, . . .)

applied to the function f having a zero α of multiplicity m ≥ 1.

4.1 Schröder’s f1/m-approach

Let F (x) = f(x)1/m. Then α is a simple zero of the function F. Applying Newton’s method
to F , we obtain

xk+1 = xk −
F (xk)

F ′(xk)
= xk −

f(x)1/m

1
mf ′(x)f(x)1/m−1

and hence

xk+1 = xk −m
f(xk)

f ′(xk)
(k = 0, 1, . . .),

which is well-known Schröder’s method for finding multiple zero of the known multiplicity m.
This useful idea was applied in many papers during the last 70 years.

Schröder’s approach can be applied to multipoint methods for finding a simple zero in order
to construct corresponding multipoint mehods for multiple zeros. As above, let f be a function
having a zero of the known multiplicity m ≥ 1. First, we set F (x) = f(x)1/m (Schröder’s
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f1/m-approach) and derive the following relations:

F (x)

F ′(x)
=

f(x)1/m

1
mf ′(x)f(x)1/m−1

= m
f(x)

f ′(x)
,

F (y)

F ′(x)
=

f(y)1/m

1
mf ′(x)f(x)1/m−1

= m
f(x)

f ′(x)

(f(y)
f(x)

)1/m
= mu

f(x)

f ′(x)
, u =

(f(y)
f(x)

)1/m
,

F (z)

F ′(x)
=

f(z)1/m · f(y)1/m

f(y)1/m

1
mf ′(x)f(x)1/m−1

= m
f(x)

f ′(x)

(f(y)
f(x)

)1/m(f(z)
f(y)

)1/m
= muv

f(x)

f ′(x)
, v =

(f(z)
f(y)

)1/m
,

F (y)

F (x)
=

f(y)1/m

f(x)1/m
= u, (15)

F (z)

F (y)
=

f(z)1/m

f(y)1/m
= v,

F (z)

F (x)
=

f(z)1/m

f(x)1/m
= w = uv.

4.2 Eighth-order family (9) derived by Schröder’s approach

For demonstration, we will apply the presented Schröder’s approach to the following three-
point family of iterative methods for finding a simple zero of a function f, proposed in [23]:





yk = xk −
f(xk)

f ′(xk)
,

zk = yk − p(uk)
f(yk)

f ′(xk)
,

xk+1 = zk − q(uk, vk)
f(zk)

f ′(xk)

(k = 0, 1, . . .), (16)

where

uk =
f(yk)

f(xk)
, vk =

f(zk)

f(yk)

and p(u) and q(u, v) are functions of one and two variables, respectively. The following theorem
has been proved in [23] (see, also, [14]).

Theorem 1. Let a, b and c be arbitrary constants. If p and q are arbitrary differentiable
functions with Taylor’s series of the form

p(u) = 1 + 2u+
a

2
u2 +

b

6
u3 + · · · ,

q(u, v) = 1 + 2u+ v +
2 + a

2
u2 + 4uv +

c

2
v2 +

6a+ b− 24

6
u3 + · · · ,

then the family of three-point methods (16) is of order eight. It is assumed that higher-order
terms are represented by the dots, and they can take arbitrary values.

Remark 5. The weight functions p and q in Theorem 1 are expressed in the form of poly-
nomials. This form empirically shown poor convergence so that univariate rational functions
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(for p) and bivariate rational functions (for q) (with Taylor series given in Theorem 1) are used
in practice, see, e.g., [9].

Assume that f has the zero α of multiplicity m ≥ 1, known in advance. We modify (16) by
using the above-mentioned Schröder’s strategy with the function F (x) = f(x)1/m for which α
is a simple zero. First, replacing f with F , rewrite (16) in the form





yk = xk −
F (xk)

F ′(xk)
,

zk = yk − P (uk)
F (yk)

F ′(xk)
,

xk+1 = zk −Q(uk, vk)
F (zk)

F ′(xk)

(k = 0, 1, . . .), (17)

where

uk =
F (yk)

F (xk)
, vk =

F (zk)

F (yk)
.

Using the relations (15), the family (17) can be written in the following form:





yk = xk −m
f(xk)

f ′(xk)
,

zk = yk −mukP (uk)
f(xk)

f ′(xk)
,

xk+1 = Φ(xk) := zk −mukvkQ(uk, vk)
f(xk)

f ′(xk)

(k = 0, 1, . . .), (18)

where

uk =
( f(yk)
f(xk)

)1/m
, vk =

(f(zk)
f(yk)

)1/m
. (19)

The weight functions P (u) and Q(u, v) should be determined in such a way that the iterative
methods defined by (18) have the maximal order of convergence using only the calculation of
f(x), f ′(x), f(y) and f(z). In the ideal case, the order would reach eight, and the family (18)
would be optimal according to Kung-Traub’s hypothesis [10].

We proceed using a technique based on Taylor’s series by employing symbolic computation
in computer algebra system Mathematica. Since this technique was seen many times in existing
papers, we present only an outline of convergence analysis.

We omit the iteration index k and define the errors

ε = x− α, εy = y − α, εz = z − α, ε̂ = x̂− α,

where x̂ is a new approximation xk+1. Introduce

Cr =
m!

(m+ r)!

f (m+r)(α)

f (m)(α)
(r = 1, 2, . . .).

We will use the following development of the function f about the zero α of multiplicity m

f(x) =
f (m)(α)

m!
εm

(
1 + C1ε+ C2ε

2 + C3ε
3 + C4ε

4 + C5ε
5 + C6ε

6 + C7ε
7 + C8ε

8 +O(ε9)
)
,
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and a program in Mathematica. As usual, in finding the weight functions P and Q, we represent
these functions by their Taylor’s series at the neighborhood of u = 0 (for P ) and (u, v) = (0, 0)
(for Q):

P (u) = P (0) + P ′(0)u+
P ′′(0)

2
u2 + · · · ,

Q(u, v) = Q(0, 0) +Qu0(0, 0)u +Q0v(0, 0)v +
1

2!

(
Quu(0, 0)u

2 + 2Quv(0, 0)uv +Qvv(0, 0)v
2
)
+ · · ·

Subscript indices denote partial derivatives. In the last developments, as well as in the program,
the following notation is used:

fam = f (m)(α), fx = f(x), fy = f(y), fz = f(z), f1x = f ′(x),

e = ε, ey = εy, ez = εz, e1 = ε̂,

P r =
P (r)(u)

du

∣∣∣
(u=0)

(r = 0, 1, 2),

Q00 = Q(0, 0), Qu0 =
∂ Q

∂ u

∣∣∣
(u,v)=(0,0)

, Q0v =
∂ Q

∂ v

∣∣∣
(u,v)=(0,0)

,

Quu =
∂ 2Q

∂ u2

∣∣∣
(u,v)=(0,0)

, Quv =
∂ 2Q

∂ u∂ v

∣∣∣
(u,v)=(0,0)

, Qvv =
∂ 2Q

∂ v2

∣∣∣
(u,v)=(0,0)

.

The coefficients of Taylor’s developments of the weight functions P and Q are determined
using an interactive approach by combining the program realized in Mathematica (two parts)
and the annihilation of coefficients standing at ε of lower power.

PART I (Mathematica)

fxx=1+C1*e+C2*e^2+C3*e^3+ C4*e^4+C5*e^5+C6*e^6+ C7*e^7+C8*e^8;

fx=fam/m!*e^m*fxx; fx1=D[fx,e]; newt=Series[fx/fx1,{e,0,8}];
ey=e-m*newt; fyy=1+C1*ey+C2*ey^2+3*ey^3+C4*ey^4;

yx=fyy*Series[1/fxx,{e,0,8}];
yxm=Series[yx^1/m,{e,0,8}];
u=yxm*ey/e;

P=P0+P1*u+P2/2*u^2+P3/6*u^3+P4/24*u^4;

ez=Series[ey-m*u*P*newt//FullSimplify,{e,0,8}]

This programm gives the following OUTCOME:

εz =

8∑

r=2

Srε
r

=
(C1 − C1P0)ε

2

m

+
(−2C2m(−1 + P0) + C2

1 (−1 +m(−1 + P0) + 3P0 − P1))ε
3

m2

+
1

2m3

(
−6C3m

2(−1 + P0) + 2C1C2m(−4 + 3m(−1 + P0) + 11P0 − 4P1)

+C3
1 (2− 13P0 + 10P1 +m(4− 2m(−1 + P0)− 11P0 + 4P1)− P2)

)
ε4 +

8∑

r=5

Ur +O
(
e9
)
.



10

To annihilate coefficients by ε2 and ε3, from the condition S2 = 0 and S3 = 0 we find

P0 = 1, P1 = 2, P2 arbitrary, (20)

yielding

εz =
−2mC1C2 + C3

1 (9 +m− P2)

2m3
ε4 +O

(
ε5
)
. (21)

The part II of the program uses previously found entries and serves for finding additional
conditions which provide optimal order eight.

PART II - CONTINUATION (Mathematica)

fzz=1+C1*ez+C2*ez^2; fyy=1+C1*ey+C2*ey^2+ C3*ey^3+C4*ey^4;

zy=fzz*Series[1/fyy{e,0,8}]; zym=Series[zy^(1/m),{e,0,8}];
v=zym*ez/ey;

Q=Q00+Qu0*u+Q0v*v+Quu/2*u^2+Qvv/2*v^2+Quv*u*v;

e1=Series[ez-m*u*v*Q*newt,{e,0,8}]//FullSimplify
The error ε̂ = x̂− α (= e1) is given in the form

ε1 =

8∑

r=4

Trε
r +O

(
ε9
)

From the conditions T4 = 0, T5 = 0, T6 = 0, T7 = 0, we find the coefficients

Q00 = 1, Qu0 = 2, Q0v = 1, Quv = 4, P2 is arbitrary, P3 = 24− 6P2, Quu = P2 + 2. (22)

In addition, we obtain

T8 = − 1

48m7

{
C1

[
C2
1 (m− P2 + 9)− 2mC2

]

×
[
C4
1

(
−14m2 + 3Qtt(m− P2 + 9)2 + 6mP2 − 204m + 150P2 − P4 − 1054

)

−12mC2
1C2

(
Qtt(m− P2 + 9)− 4m+ P2 − 34

)
− 24m2C1C3 + 12m2C2

2 (Qtt − 2)
]}

,

so that we can write
ε̂ = T8ε

8 +O(ε9),

that is,
xk+1 − α = Φ(xk)− α = O(ε8k), εk = xk − α.

In this way we have proved the following assertion.

Theorem 2. If the initial approximation x0 is sufficiently close to the zero α of f and the
conditions (20) and (22) are valid, then the order of the three-point family (18) is eight.

Note that T8 tends to the asymptotic error constant of the family (18) when ε → 0.
According to Theorem 2, it follows that the three-point family (18) is optimal.

The simplest forms of the weight functions P and Q are their truncated Taylor series

P (u) = 1 + 2u+ β u2 + (4− 2β)u3, Q(u, v) = 1 + 2u+ v+ 4uv + (β + 1)u2, β is arbitrary.

Finding a list of particular weight functions P and Q is a routine work and it is left to the
interested reader as exercise.
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4.3 Eighth-order family (12) derived by Schröder’s approach

The presented Schröder’s f1/m-approach can also be applied for the derivation of the method
(12). Let us start from the following three-point method for simple zeros





yk = xk −
f(xk)

f ′(xk)
,

zk = yk − ukH(uk)
f(xk)

f ′(xk)

xk+1 = zk − ukP (uk)G(vk)L(wk)
f(xk)

f ′(xk)

(k = 0, 1, . . .), (23)

where

uk =
f(yk)

f(xk)
, vk =

f(zk)

f(yk)
, wk =

f(zk)

f(xk)
.

This method has the order 8 under the conditions

H(0) = 1, H ′(0) = 2, P ′(0) = 2P (0), P ′′(0) = P (0)(2 +H ′′(0)),

L′(0) = 2L(0), P ′′′(0) = P (0)(H ′′′(0) + 6H ′′(0)− 24), (24)

G(0) = 0, G′(0) =
1

L(0)P (0)
, G′′(0) =

2

L(0)P (0)
.

The denotation of weight functions in (23) and (24) is adjusted to the denotation used in [8].

Applying Schröder’s f1/m-approach and (15) we obtain the family of three-point methods
for finding multiple zeros





yk = xk −m
f(xk)

f ′(xk)
,

zk = yk −mukH(uk)
f(xk)

f ′(xk)
,

xk+1 = zk −mukP (uk)G
∗(vk)L(wk)

f(xk)

f ′(xk)

(k = 0, 1, . . .), (25)

which is equivalent to (12) setting mG∗(v) = G(v) (compare (12) and (25)).

Remark 6. Among other methods, the first author of this paper presented the family of
methods (23) in his lecture under the title Multipoint methods for solving nonlinear equations
at International conference Computational Methods in Applied Mathematics (Berlin, 2012).
However, due to the similarity to the iterative formula (4.91) in the book [14, p 151], the
author did not publish (23). Other possible sources of (23) are not known to the authors.

4.4 A modification of the family (12)

Since

w =
(f(z)
f(x)

)1/m
=

(f(y)
f(x)

)1/m(f(z)
f(y)

)1/m
= u · v,

the weight function L(w) can be omitted in (12). Then we can construct in an easy way the
following family of three-point methods for finding multiple zeros involving two parametric
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functions 



yk = xk −m
f(xk)

f ′(xk)
,

zk = yk −mukH(uk)
f(xk)

f ′(xk)
,

xk+1 = zk −mukvk(1 + 2ukvk)P (uk)G(vk)
f(xk)

f ′(xk)
.

(26)

Making suitable changes in the above program in Mathematica (see § 4.2), we prove that the
method (26) is of order eight under the following conditions:

H(0) = 1, H ′(0) = 2, H ′′(0) = m+ 9,

P (0) = 1, P ′(0) = 2, P ′′(0) = m+ 11, P ′′′(0) = 30 + 6m+H ′′′(0),

G(0) = 1, H ′(0) = 1.

4.5 Fourth order methods for multiple zeros

Chun constructed in [15] the following two-point family of iterative methods for finding
simple zeros 




yk = xk −
f(xk)

f ′(xk)
,

xk+1 = yk −
f(yk)

h(uk)f ′(xk)
, uk =

f(yk)

f(xk)
,

(27)

where h(u) is the weight function. The method (27) is of fourth order under the condition
h(0) = 1, h′(0) = −1, |h′′(0)| < +∞. To generate suitable two-point methods, sometimes it is
necessary to develop the function h into Taylor’s or geometric series.

A slightly more direct approach without altering the weight function, based on Chun’s idea,
was given in [16] in the form





yk = xk −
f(xk)

f ′(xk)
,

xk+1 = yk − p(uk)
f(yk)

f ′(xk)
, uk =

f(yk)

f(xk)
.

(28)

The family (28) possesses the optimal order four if p(0) = 1, p′(0) = 2 and |p′′(0)| < +∞.

Proceeding in the same way as in the case of the family of three-point methods (16) and
using (15), we obtain from (28) the fourth order two-point family of iterative methods for
finding multiple zeros





yk = xk −m
f(xk)

f ′(xk)
,

xk+1 = yk −mukP (uk)
f(xk)

f ′(xk)
, uk =

( f(yk)
f(xk)

)1/m
,

(29)

where P (u) is the weight function which satisfies

P (0) = 1, P ′(0) = 2, (30)

that is, its truncated Taylor series is

P (u) = 1 + 2u.
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This result is expected since the iterative formula (29) coincides with the first two steps of the
family (18). Explicit expression of ε̂ = x̂− α (regarding (29)) is given by (21) (for εz).

Several examples of functions that satisfy (30) are listed below.

P (u) =
1 + βu

1 + (β − 2)u
(of King’s type, see [17]), P (u) =

(
1 +

2u

r

)r
,

P (u) =
1 + γu2

1− 2u
, P (u) =

1

1− 2u+ au2
, P (u) =

u2 + (c− 2)u− 1

cu− 1
.

where r ∈ Q and γ, a, c ∈ R are arbitrary parameters.

4.6 Equivalence of methods

Some words about the equivalence of the methods presented in Section 2 and 3, and the
methods derived by Schröder’s approach in Section 4.

Equivalence 1. In Section 2 it was shown that the simplified methods (2) and (4) (as-
suming slight simplifications by taking λ = 0 in (2) and γ = 0 in (4)) are special cases of the
method (1) proposed by Zhou et al. [1]. Comparing iterative methods (1) and (29) it is evident
that both formulas are equivalent, which is easily obtained taking uP (u) ≡ G(u). Moreover,
the family (29) requires only two conditions P (0) = 1, P ′(0) = 2 compared to three conditions
G(0) = 0, G′(0) = 1, G′′(0) = 4. It is important to note that the derivation of the family (1)
and latter convergence analysis are more complicated than for the family (29). Furthermore,
the derivation of (29), based on Schröder’s approach, is entirely natural and crystal clear.

Equivalence 2. The family (14), obtained by natural choice a1 = 1, a2 = 0 in the family
(9) (proposed in [6]), is equivalent to the family (18), which is evident setting S(u) ≡ mP (u) and
R(u, v) ≡ mQ(u, v). The family (9) (and, consequently, (14)) was presented without derivation
and motivation, while the family (18) was derived on an easy and obvious way using Schröder’s
approach.

Remark 7. Apart from the family (6), other optimal multipoint methods for finding a
simple zero (some of them are presented in the book [14]) can be transformed by introducing
F (x) = f(x)1/m to multipoint methods for approximating a multiple zero keeping optimal
order of convergence. This subject is left to readers. However, the authors of this paper do
not expect new papers in this direction since such methods are pretty expensive. This is the
subject of the next section.

5 Root-ratio methods are not competitive

In Section 4 we have demonstrated a general procedure for constructing multipoint methods
for multiple zeros using basic iterative formulas for simple zeros and Schröder’s f1/m-approach.
We observe that all previously presented methods deal with real or complex values of the forms

( f(yk)
f(xk)

)1/m
,

( f(zk)

f(xk)

)1/m
,

(f(zk)
f(yk)

)1/m
.

Computer algebra systems and computer arithmetics of digital computers often meet the
problem of finding the m-th root for arbitrary m. In the case of specific values of m they find



14

the principal value of the m-root z1/m (m is natural number given as numerical entry) among
m values of the sought root in the form

z1/m = |z|1/m
(
cos θ

m + i sin θ
m

)
, θ = Arg z ∈ (−π, π). (31)

From (31) it is clear that the computation of the m-root consumes a lot of CPU time. The
following test, implemented on PC with Intel-i7 processor and clock speed 2.8 GHz, has given

CPU times (expressed in µsec) for different values of m in calculation of
(
(a+ ib)/(c+ id)

)1/m
.

For the authenticity of the test, one million experiments have been performed taking random
numbers for a, b, c, d in each cycle to eliminate the use of possibly memorized data from previous
cycles. In the real case we set b = 0, d = 0. The experiments were realized in computer algebra
system Mathematica in multi-precision arithmetic with 34 significant decimal digits, which
corresponds to quadruple-precision of IEEE 754 floating-point arithmetic. The average CPU
times for one evaluation are given in Table 1.

m 1 2 3 4 5 6 7

CPU (in µsec), real case 5.25 22.7 32.24 31.86 32.25 32.03 33.1

CPU (in µsec), complex case 13.77 54.82 64.42 64.07 65.83 68.05 66.3

Table 1: CPU times in the calculation of the m-th root of real and complex numbers

In our experiments we observed that the CPU times for m ≥ 3 almost do not change in the
real as well as the complex case (see Table 1). In this way we are able to find reliable ratio of
computation times for m ≥ 3 (multiple zeros) and m = 1 (simple zeros):

Real case:
CPU(m≥3)

CPU(m=1)
≈ 6.2, Complex case:

CPU(m≥3)

CPU(m=1)
≈ 4.8. (32)

Remark 8. For comparison purpose, we performed one million calculations of the value of
a polynomial of degree 20 with real coefficients and complex argument, both chosen randomly
in each cycles (Horner’s scheme was used). Average CPU times for one evaluation was 116
µsec, which is only two times slower than CPU time in calculation of m-th root in the case of
complex numbers (see Table 1).

Remark 9. We emphasize that the ratio of CPU times strongly depends on the used
computing platform (usually the hardware or the operating system) and implemented software
(assuming the use of quadruple precision). It may differ from the values given by (32), but not
too much, the ratios are certainly higher than 3 if m ≥ 3. This fact can be observed from Table
11 in the paper [5]. We also mention that the execution CPU time of the square root operation
(m = 2) requires significantly lesser CPU time since this operation is realized by special (more
effective) algorithms, see the book Modern Computer Arithmetic by Brent and Zimmermann
[18].

Having in mind Remark 8 and 9 we conclude that root-ratio methods are expensive from
a computational point of view. From (32) and Remark 8 we can draw trustworthy conclusion
that root-ratio multipoint methods, such as (1), (2), (6), (9), (10), (12), (14), (25), (26) and
other non-listed methods (if there exist), are inefficient. As mentioned in Remark 7, further
work on the construction of root-ratio methods is pointless and does not make an advance in the
topic. Combining various weight functions in order to derive “new methods” is rather a kind
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of play and inevitably leads to minor modifications without a proper importance. This fact
was emphasized in [19] but the construction of modest modifications of original contributions
has continued. Different iterative formula does not mean automatically that a contribution to
the topic was achieved.

Is there a good alternative multi-method for multiple zeros which is efficient and convenient
for applications? The answer is yes, and it is very likely known to many authors who work
in the area of iterative processes. Li et al. proposed in [20] the following (optimal) two-point
method of order four:





yk = xk − 2m
m+2 · f(xk)

f ′(xk)
,

xk+1 = xk −
1
2m(m− 2)Amtk − m2

2

1−Rmtk
· f(xk)
f ′(xk)

, tk =
f ′(yk)
f ′(xk)

, Am =
(
m+2
m

)m
.

(33)

Zhou et al. [21] later proposed the generalization of the method (33) in the form





yk = xk − 2m
m+2 · f(xk)

f ′(xk)
,

xk+1 = xk − φ(tk) ·
f(xk)

f ′(xk)
, tk =

f ′(yk)
f ′(xk)

,

(34)

which has the order four under the specific conditions for the weight function φ. See, also, [22].
The notion of “convenient” is explained in Remark 11.

We conclude this paper with two remarks of general interest.

Remark 10. The presence of arbitrary parameters in any zero-finding iterative formula
makes sense only if these parameters improve characteristics of presented methods (such as ac-
celeration of convergence, wider domain of convergence, more accurate approximations, lower
computational cost, etc.). Otherwise, from an algorithmic point of view, free parameters should
be chosen so that an iterative formula is as simple as possible – numerical analysts and pro-
grammers will always choose the simpler formula in such a way that the best characteristics of
the employed methods are maintained. Inserting numerous useless parameters does not make
a method better or more general in the genuine sense. Unfortunately, many authors construct
“novel” iterative formulas by adding parameters in an artificial way or by varying different
weight functions. In essence, such methods are only modest modifications of existing meth-
ods and offer a little contribution to the topic. Discussions on choosing the parameters that
improve results to some extent can be found in the paper [9].

Remark 11. It should be emphasized that very high accuracy of solutions of nonlinear
equations, provided by root-solvers of order eight or more, is not needed for solving a huge
number of practical problems; fourth order methods (such as (33) and (34)) produce quite
satisfactory results in practice. The question “how many decimals of zero approximations do
we really need in practice?” is equivalent to the question “how many decimals of π do we really
need in practice”?” A pretty convincing answer can be found in the issue of NASA/JPL Edu,
March 16, 2016:

• For interplanetary navigation with spacecraft Voyager 1 (launched in 1977, distant from
Earth about 22 billion km), Jet Propulsion Labaratory (California Institute of California,
Pasadena, USA) and NASA use very accurate calculations involving π with most 15 decimal
digits! Not more! The distance error is about 5 cm!
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• The radius of the visible universe is about 46 billion light years. To express the circum-
ference of a circle with this radius via the diameter a hydrogen atom (the simplest atom) we
need at most 40 decimal digits of π!

Acknowledgement. This work was supported by the Serbian Ministry of Education and
Science under Grant 174022.
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