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a b s t r a c t

A function f : (0,∞) → R is called strongly completely monotonic if it has derivatives
of all orders and (−1)nxn+1f (n)(x) is nonnegative and decreasing on (0,∞) for all n ≥ 0.
In this paper, we prove the function

gn (x) = lnΓ
(
x +

1
2

)
− x ln x + x −

1
2
ln (2π)+

n∑
k=1

(
1 − 21−2k

)
B2k

2k (2k − 1) x2k−1

is strongly completely monotonic on (0,∞). Using the same technique, we give an
alternative proof of a known result. Moreover, two conjectures are proposed.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

A function f is said to be completely monotonic on an interval I , if f has derivatives of all orders on I and satisfies

(−1)nf (n)(x) ≥ 0 for all x ∈ I and n = 0, 1, 2, . . . . (1.1)

If the inequality (1.1) is strict, then f is said to be strictly completely monotonic on I (see [1,2]). The classical Bernstein–
Widder theorem (see [2,3]) states that a function f is completely monotonic on (0,∞) if and only if it is a Laplace
transform

f (x) =

∫
∞

0
e−xtdα (t) ,

where α (t) is non-decreasing and the above integral converges for 0 < x < ∞.
There have many results involving completely monotonic functions related to certain special functions, for example, [4–

11].
In particular, by making use of Euler’s summation formula [12, p.806, Eq. (23.1.30)], Alzer [13] proved the following

result.

Theorem 1.1. For given integer n ≥ 0, let

κ1(x) = lnΓ (x)−

(
x −

1
2

)
ln x + x −

1
2
ln (2π) , (1.2)
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and the function x ↦→ fn (x) be defined on (0,∞) by

fn (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
κ1(x) −

n∑
k=1

B2k

2k (2k − 1) x2k−1 , if n ≥ 1

κ1(x), if n = 0

, (1.3)

where Bn denotes the Bernoulli number. Then both of the functions x ↦→ f2n (x) and x ↦→ −f2n+1 (x) are strictly completely
monotonic on (0,∞).

Very recently, Chen and Paris [14] established another result as follows.

Theorem 1.2 ([14]). For given integer n ≥ 0, let

κ2(x) = ln
Γ (x + 1)
Γ (x + 1/2)

−
1
2
ln x, (1.4)

and the function x ↦→ hn (x) be defined on (0,∞) by

hn (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
κ2(x) −

n∑
k=1

(
1 − 2−2k

)
B2k

k (2k − 1) x2k−1 , if n ≥ 1

κ2(x), if n = 0

, (1.5)

where Bn denotes the Bernoulli number. Then both of the functions x ↦→ h2n (x) and x ↦→ −h2n+1 (x) are strictly completely
monotonic on (0,∞).

Yang [15] has proven

Theorem 1.3. For any integer n ≥ 0, let

κ3(x) = lnΓ
(
x +

1
2

)
− x ln x + x −

1
2
ln (2π) , (1.6)

and the function x ↦→ gn (x) be defined on (0,∞) by

gn (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
κ3(x) +

n∑
k=1

(
1 − 21−2k

)
B2k

2k (2k − 1) x2k−1 , if n ≥ 1

κ3(x), if n = 0

, (1.7)

where Bn denotes the Bernoulli number. Then (i) gn (x) can be represented in the integral form

gn (x) =

∫
∞

0
Qn

(
t
2

)
e−xt

2t
dt, (1.8)

where

Qn (t) =
1

sinh t
+

n∑
k=0

2
(
22k−1

− 1
)
B2k

(2k)!
t2k−1

; (1.9)

(ii) both of the functions x ↦→ g2n+1 and x ↦→ −g2n are strictly completely monotonic on (0,∞).

In 1989, Trimble and Wells [16] introduced the concept of the strongly completely monotonic functions as follows.

Definition 1. A function f : (0,∞) → R is called strongly completely monotonic if it has derivatives of all orders and
(−1)nxn+1f (n)(x) is nonnegative and decreasing on (0,∞) for all n = 0, 1, 2, . . ..

As remarked in [17], it is clear that being strongly completely monotonic is stronger than being completely monotonic.
And the strongly completely monotonic functions are connected to the important question of superadditivity [16].

By Definition 1, we easily see that a function f (x) is strongly completely monotonic on (0,∞) if and only if the
function xf (x) is completely monotonic on (0,∞). In [16] the authors gave another characterization of strongly completely
monotonic functions.

Proposition 1.1 ([16]). The function f (x) is strongly completely monotonic if and only if

f (x) =

∫
∞

0
e−xtp (t) dt

where p(t) is nonnegative and increasing and the integral converges for all x > 0.
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In 2009, Koumandos and Pedersen [17, Definition 1.5] introduced the notion of completely monotonic functions of
order r .

Definition 2. Let r ≥ 0. A function f defined on (0,∞) is said to be completely monotonic of order r if xr f (x) is completely
monotonic.

From this definition we see that completely monotonic functions of order 0 are the classical completely monotonic
functions, order 1 are the strongly completely monotonic functions. Moreover, Koumandos and Pedersen [17, Definition
1.5] proved a more stronger result.

Theorem 1.4. For any n ∈ N, let fn (x) be defined by (1.3). Then the function (−1)n xnfn (x) is completely monotonic on
(0,∞). Or equivalently, both of the functions x2nf2n (x) and −x2n−1f2n−1 (x) are completely monotonic on (0,∞).

As a consequence of Theorem 1.4, the following corollary is immediate.

Corollary 1.1. For any n ∈ N, let fn (x) be defined by (1.3). Then both of the functions f2n (x) and −f2n−1 (x) are strongly
completely monotonic on (0,∞).

Motivated by the results mentioned above, the first aim of this paper is to establish a more stronger assertion than
Theorem 1.3. More precisely, we have

Theorem 1.5. For given integer n ≥ 0, let the function x ↦→ gn (x) be defined on (0,∞) by (1.7). Then both of the functions
g2n+1 (x) and −g2n (x) are strictly strongly completely monotonic on (0,∞).

The second aim of this paper is to give an alternative proof of Corollary 1.1.

2. Lemmas

To prove our main results, we need some lemmas. The first lemma below comes from [15, Lemma 1], which will be
used to prove Propositions 3.1 and 4.1. From the proof of this lemma in [15, Lemma 1], it can be seen that RA may not be
equal to RB, and Rc is out of its own, so the lemma can be rewritten as follows.

Lemma 2.1. Let A (t) =
∑

∞

k=0 akt
k, B (t) =

∑
∞

k=0 bkt
k and C (t) =

∑
∞

k=0 ckt
k be real power series with radii of

convergence RA, RB, and Rc , respectively, and B (t) > 0 for t ∈ (0, RB). Also assume that A (t) /B (t) converges to C (t) for
|t| < Rc ≤ R = min (RA, RB). Let n be a nonnegative integer, for k ≥ 2n + 1,

E1 = bkc0 − ak,
E2,j = bk−2j+1c2j−1 + bk−2jc2j, 1 ≤ j ≤ n,

dk,2n =

2n∑
i=0

bk−ici − ak = (bkc0 − ak)+

2n∑
i=1

bk−ici

= (bkc0 − ak)+ (bk−1c1 + bk−2c2)+ (bk−3c3 + bk−4c4)+ · · · +
(
bk−(2n−1)c2n−1 + bk−2nc2n

)
= (bkc0 − ak)+

(
bk−1c1 + bk−3c3 + · · · + bk−(2n−1)c2n−1

)
+ (bk−2c2 + bk−4c4 + · · · + bk−2nc2n)

= (bkc0 − ak)+

n∑
j=1

(
bk−2j+1c2j−1 + bk−2jc2j

)
= E1 +

n∑
j=1

E2,j;

for k ≥ 2n + 2,

O1 = bkc0 + bk−1c1 − ak,
O2,j = bk−2jc2j + bk−2j−1c2j+1, 1 ≤ j ≤ n,

dk,2n+1 =

2n+1∑
i=0

bk−ici − ak = bkc0 + bk−1c1 − ak +

2n+1∑
i=2

bk−ici

= (bkc0 + bk−1c1 − ak)+

n∑
j=1

(
bk−2jc2j + bk−2j−1c2j+1

)
= O1 +

n∑
j=1

O2,j.
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Then (i) if dk,2n < 0 and dk,2n+1 > 0, the double inequality

2n∑
k=0

cktk <
A (t)
B (t)

<

2n+1∑
k=0

cktk (2.1)

holds for all t ∈ (0, R);
(ii) if dk,2n > 0 and dk,2n+1 < 0, the double inequality

2n+1∑
k=0

cktk <
A (t)
B (t)

<

2n∑
k=0

cktk (2.2)

holds for all t ∈ (0, R).

Remark 2.1. From the proof of [15, Lemma 1], we clearly see that
∑k

i=0 bk−ici = ak.

The following lemma is due to Qi [18], which will be used in proofs of Propositions 3.1 and 4.1.

Lemma 2.2 ([18]). For k ∈ N, Bernoulli numbers B2k satisfy

22k−1
− 1

22k+1 − 1
(2k + 1) (2k + 2)

π2 <
|B2k+2|

|B2k|
<

(
22k

− 1
)(

22k+2 − 1
) (2k + 1) (2k + 2)

π2 . (2.3)

In particular, letting k = 2j − 1, 2j, we have⏐⏐B4j
⏐⏐⏐⏐B4j−2
⏐⏐ > 24j−3

− 1
24j−1 − 1

4j (4j − 1)
π2 , (2.4)

(4j + 1) (4j + 2)
π2

24j
− 1

24j+2 − 1
>

⏐⏐B4j+2
⏐⏐⏐⏐B4j
⏐⏐ >

24j−1
− 1

24j+1 − 1
(4j + 2) (4j + 1)

π2 . (2.5)

Lemma 2.3 is a powerful tool to deal with the monotonicity of the ratio between two power series. An improvement
of Lemma 2.3 has been presented in [19, Theorem 2.1.].

Lemma 2.3 ([20, Theorem 2.1.]). Let A (t) =
∑

∞

k=0 akt
k and B (t) =

∑
∞

k=0 bkt
k be two real power series converging on (−r, r)

(r > 0) with bk > 0 for all k. If the sequence {ak/bk} is increasing (decreasing) for all k, then the function t ↦→ A (t) /B (t) is
also increasing (decreasing) on (0, r).

The following lemma is called the monotonicity rules for the ratio of two Laplace transforms, which was established
in [21, Lemma 4], [22, Theorem 4] (see also [23]).

Lemma 2.4. Let the functions A, B be defined on (0,∞) such that their Laplace transforms exist with B (t) ̸= 0 for all t > 0
Then the function

x ↦→ U (x) =

∫
∞

0 A (t) e−xtdt∫
∞

0 B (t) e−xtdt

is decreasing (increasing) on (0,∞) if A/B is increasing (decreasing) on (0,∞) with

U (0) = lim
x→0

U (x) = lim
t→∞

A (t)
B (t)

and U (∞) = lim
x→∞

U (x) = lim
t→0

A (t)
B (t)

provide the indicated limits exist.

Lemma 2.5 ([24]). The two given sequences {an}n≥0 and {bn}n≥0 satisfy the conditions

bn > 0;
∞∑
n=0

bntn converges for all values of t; lim
n→∞

an
bn

= s.

Then
∑

∞

n=0 ant
n converges too for all values of t and in addition

lim
t→∞

∑
∞

n=0 ant
n∑

∞

n=0 bntn
= s.
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3. Proof of Theorem 1.5

We first prove the following proposition.

Proposition 3.1. Let integer n,m ≥ 0, and

R(t,m) =

m∑
k=0

2 (2k − 2)
(
22k−1

− 1
)
B2k

(2k)!
t2k−1

=

m∑
k=0

(−1)k−1 2 (2k − 2)
(
22k−1

− 1
)
|B2k|

(2k)!
t2k−1.

Then the double inequality

R(t, 2n) <
sinh t + t cosh t

sinh2 t
< R(t, 2n + 1) (3.1)

holds for all t > 0.

Proof. Let

Z(t,m) =
t
2
R(t,m) =

m∑
k=0

(−1)k−1 (2k − 2)
(
22k−1

− 1
)
|B2k|

(2k)!
t2k

=

∞∑
k=0

(2k − 2)
(
22k−1

− 1
)
B2k

(2k)!
t2k.

Then inequalities (3.1) can be written as

Z(t, 2n) <
(sinh t + t cosh t) /t
(cosh 2t − 1) /t2

< Z(t, 2n + 1).

Let

A (t) =
sinh t

t
+ cosh t =

∞∑
k=0

2k + 2
(2k + 1)!

t2k :=

∞∑
k=0

akt2k, |t| < ∞

B (t) =
cosh 2t − 1

t2
=

∞∑
k=0

22k+2

(2k + 2)!
t2k :=

∞∑
k=0

bkt2k, |t| < ∞

C (t) =
A (t)
B (t)

=

∞∑
k=0

(2k − 2)
(
22k−1

− 1
)
B2k

(2k)!
t2k :=

∞∑
k=0

ckt2k, |t| < π.

(1) We prove

dk,2n =

2n∑
i=1

bk−ici = (bkc0 − ak)+

n∑
j=1

(
bk−2j+1c2j−1 + bk−2jc2j

)
< 0

for k ≥ 2n + 1 by distinguishing two cases.
Case 1.1: k = 2n + 1. Since

∑k
i=0 bk−ici = ak, we see that

dk,2n =

2n∑
i=0

bk−ici − ak =

2n∑
i=0

b2n+1−ici − a2n+1

=

2n∑
i=0

b2n+1−ici −
2n+1∑
i=0

b2n+1−ici

=

2n∑
i=0

b2n+1−ici −

(
2n∑
i=0

b2n+1−ici + b0c2n+1

)

= −b0c2n+1 = −2
4n
(
24n+1

− 1
)
B4n+2

(4n + 2)!
< 0.

Case 1.2: k ≥ 2n + 2. We first check that dk,2n < 0 if n = 1. A simple computation yields

dk,2 = (bkc0 − ak)+ (bk−1c1 + bk−2c2)
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=
22k+2

(2k + 2)!
−

2k + 2
(2k + 1)!

−
7

360
22k−2

(2k − 2)!

=
22k−2

(2k + 2)!

(
16 −

7
360

(2k + 2) (2k + 1) (2k) (2k − 1)
)

−
(2k + 2)
(2k + 1)!

< 0.

We next show that dk,2n < 0 for n ≥ 2. To this end, we write dk,2n as

dk,2n = (bkc0 − ak)+ (bk−1c1 + bk−2c2)+

n∑
j=2

(
bk−2j+1c2j−1 + bk−2jc2j

)
: = dk,2 +

n∑
j=2

E2,j.

It has been shown that dk,2 < 0 for k ≥ 4, and it suffices to show that E2,j = bk−2j+1c2j−1 + bk−2jc2j < 0 for 2 ≤ j ≤ n.
Using inequality (2.4) we have

E2,j⏐⏐B4j−2
⏐⏐ =

bk−2j+1c2j−1 + bk−2jc2j⏐⏐B4j−2
⏐⏐

=
(4j − 4) 22k−4j+4

(
24j−3

− 1
)

(2k − 4j + 4)! (4j − 2)!
−
(4j − 2) 22k−4j+2

(
24j−1

− 1
)

(2k − 4j + 2)! (4j)!

⏐⏐B4j
⏐⏐⏐⏐B4j−2
⏐⏐

<
(4j − 4) 22k−4j+4

(
24j−3

− 1
)

(2k − 4j + 4)! (4j − 2)!

−
(4j − 2) 22k−4j+2

(
24j−1

− 1
)

(2k − 4j + 2)! (4j)!
24j−3

− 1
24j−1 − 1

4j (4j − 1)
π2

=

(
24j−3

− 1
)
22k−4j+4

(2k − 4j + 4)! (4j − 2)!
F1 (k, j) ,

where

F1 (k, j) = 4j − 4 −
(4j − 2) (2k − 4j + 4) (2k − 4j + 3)

4π2 .

Due to k ≥ 2n + 2 and 2 ≤ j ≤ n, we see that 2k − 4j ≥ 4, which yields

F1 (k, j) ≤ 4j − 4 −
(4j − 2) (4 + 4) (4 + 3)

4π2 = −
14 − π2

π2 4j −
4
(
π2

− 7
)

π2 < 0.

This leads to dk,2n < 0 for k ≥ 2n + 2 and n ≥ 2, which proves dk,2n < 0 for k ≥ 2n + 2. Cases 1.1 and 1.2 result in
dk,2n < 0 for k ≥ 2n + 1.

(2) We now prove

dk,2n+1 = (bkc0 + bk−1c1 − ak)+

n∑
j=1

(
bk−2jc2j + bk−2j−1c2j+1

)
> 0

for k ≥ 2n + 2. Similarly, we distinguish two cases to prove it.
Case 2.1. k = 2n + 2. Since

∑k
i=0 bk−ici = ak, we see that

dk,2n+1 =

2n+1∑
i=0

bk−ici − ak = −b0c2n+2 = −2
(4n + 2)

(
24n+3

− 1
)

(4n + 4)!
B4n+4 > 0.

Case 2.2. k ≥ 2n + 3. We have

O1 = bkc0 + bk−1c1 − ak =
22k+2

(2k + 2)!
−

2k + 2
(2k + 1)!

=
22k+2

− (2k + 2)2

(2k + 2)!
> 0

for k ≥ 2n + 3. Using inequality (2.5) we have

O2,j⏐⏐B4j
⏐⏐ =

bk−2jc2j + bk−2j−1c2j+1⏐⏐B4j
⏐⏐
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= −
(4j − 2) 22k−4j+2

(
24j−1

− 1
)

(2k − 4j + 2)! (4j)!
+

4j22k−4j
(
24j+1

− 1
)

(2k − 4j)! (4j + 2)!

⏐⏐B4j+2
⏐⏐⏐⏐B4j
⏐⏐

> −
(4j − 2) 22k−4j+2

(
24j−1

− 1
)

(2k − 4j + 2)! (4j)!

+
4j22k−4j

(
24j+1

− 1
)

(2k − 4j)! (4j + 2)!
24j−1

− 1
24j+1 − 1

(4j + 2) (4j + 1)
π2

=

(
24j−1

− 1
)
22k−4j+2

(4j)! (2k − 4j + 2)!
F2 (k, j) ,

where

F2 (k, j) =
(2k − 4j + 2) (2k − 4j + 1) j

π2 − (4j − 2) .

In view of k ≥ 2n + 3 and 1 ≤ j ≤ n, we see that 2k − 4j ≥ 6, which indicates that

F2 (k, j) >
(6 + 2) (6 + 1) j

π2 − (4j − 2) =

(
56
π2 − 4

)
j + 2 > 0.

This proves O2,j > 0 for k ≥ 2n + 3 and 1 ≤ j ≤ n, and so dk,2n+1 > 0 for k ≥ 2n + 2.

By (i) of Lemma 2.1 we obtain that the double inequality (3.1) holds for all t > 0.
We are now in a position to prove Theorem 1.5.

Proof of Theorem 1.5. By (1.8) gn (x) can be expressed as

gn (x) =
1
4

∫
∞

0
qn

(
t
2

)
e−xtdt,

where

qn (t) =
1
t
Qn (t) =

1
t sinh t

+

n∑
k=0

2
(
22k−1

− 1
)
B2k

(2k)!
t2k−2. (3.2)

It suffices to prove q2n+1 (t) and −q2n (t) are nonnegative and increasing on (0,∞). Differentiation yields

t2q′

n (t) = −
sinh t + t cosh t

sinh2 t
+

n∑
k=0

2 (2k − 2)
(
22k−1

− 1
)
B2k

(2k)!
t2k−1.

Proposition 3.1 indicates that q′

2n+1 (t) > 0 for t ∈ (0,∞), which gives q2n+1 (t) > limt→0 q2n+1 (t) = 0. Analogously, we
have −q′

2n (t) > 0 for t ∈ (0,∞), so −q2n (t) > − limt→0 q2n (t) = 0. By Proposition 1.1 the desired results follow, which
completes the proof.

4. An alternative proof of Corollary 1.1

We begin with the following proposition.

Proposition 4.1. Let integer n,m ≥ 0, and

S(t,m) = −

m∑
k=0

(k − 1) 22k+2B2k

(2k)!
t2k−1

=

m∑
k=0

(−1)k
(k − 1) 22k+2 |B2k|

(2k)!
t2k−1.

Then the double inequality

S(t, 2n + 1) <
2t + sinh (2t)

sinh2 t
< S(t, 2n) (4.1)

holds for all t > 0.

Proof. Let

V (t,m) =
t
2
S(t,m) = −

t
2

m∑
k=0

(k − 1) 22k+2B2k

(2k)!
t2k−1

= −

∞∑
k=0

(2k − 2) 22kB2k

(2k)!
t2k.
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Then inequalities (4.1) can be written as

V (t, 2n + 1) <
1 + (sinh 2t) /(2t)
(cosh 2t − 1) /

(
2t2
) < V (t, 2n).

Let

A (t) = 1 +
sinh 2t

2t
= 2 +

∞∑
k=1

22k

(2k + 1)!
t2k,

B (t) =
cosh 2t − 1

2t2
=

∞∑
k=0

22k+1

(2k + 2)!
t2k,

C (t) = −

∞∑
k=0

(2k − 2) 22kB2k

(2k)!
t2k.

(1) We prove

dk,2n =

2n∑
i=1

bk−ici − ak = (bkc0 − ak)+

n∑
j=1

(
bk−2j+1c2j−1 + bk−2jc2j

)
> 0

for k ≥ 2n + 1 by distinguishing two cases.
Case 1.1: k = 2n + 1. Since

∑k
i=0 bk−ici = ak, we see that

dk,2n =

2n∑
i=0

bk−ici − ak = −b0c2n+1 =
4n24n+2

(4n + 2)!
B4n+2 > 0.

Case 1.2: k ≥ 2n + 2. We first check that dk,2n < 0 if n = 1. A simple computation yields then

dk,2 = (bkc0 − ak)+ (bk−1c1 + bk−2c2)

=
22k+2

(2k + 2)!
−

22k

(2k + 1)!
+

2
45

22k−3

(2k − 2)!

=
22k+2

(2k + 2)!
+
(2k + 1) k (2k − 1)− 90

90
22k

(2k + 1)!
> 0

for k ≥ 2n + 2 = 4. We next show that dk,2n < 0 for n ≥ 2. To this end, we write dk,2n as

dk,2n = (bkc0 − ak)+ (bk−1c1 + bk−2c2)+

n∑
j=2

(
bk−2j+1c2j−1 + bk−2jc2j

)
: = dk,2 +

n∑
j=2

E2,j.

It has been shown that dk,2 > 0 for k ≥ 4, and it suffices to show that E2,j = bk−2j+1c2j−1 + bk−2jc2j > 0 for 2 ≤ j ≤ n.
Using inequality (2.4) we have

E2,j⏐⏐B4j−2
⏐⏐ =

bk−2j+1c2j−1 + bk−2jc2j⏐⏐B4j−2
⏐⏐

=
22k+1 (4j − 2)

(2k − 4j + 2)! (4j)!

⏐⏐B4j
⏐⏐⏐⏐B4j−2
⏐⏐ −

22k+1 (4j − 4)
(2k − 4j + 4)! (4j − 2)!

>
22k+1 (4j − 2)

(2k − 4j + 2)! (4j)!
24j−3

− 1
24j−1 − 1

4j (4j − 1)
π2

−
22k+1 (4j − 4)

(2k − 4j + 4)! (4j − 2)!

=
22k+1

(2k − 4j + 4)! (4j − 2)!
(
24j−1 − 1

)F3 (k, j) ,
where

F3 (k, j) = (2k − 4j + 4) (2k − 4j + 3) (4j − 2)
(
24j−3

− 1
) 1
π2 −

(
24j−1

− 1
)
(4j − 4) .
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In view of k ≥ 2n + 2 and 2 ≤ j ≤ n, we see that 2k − 4j ≥ 4, which together with π2 < 79/8 yields

F3 (k, j) ≥ 8 × 7 (4j − 2)
(
24j−3

− 1
) 1
79/8

−
(
24j−1

− 1
)
(4j − 4)

=
2
79

[(
(23 + 33j) 24j

− 738j + 290
)]
> 0.

This leads to dk,2n < 0 for k ≥ 2n + 2 and n ≥ 2, which proves dk,2n < 0 for k ≥ 2n + 2. Cases 1.1 and 1.2 result in
dk,2n < 0 for k ≥ 2n + 1.

(2) We now prove

dk,2n+1 = (bkc0 + bk−1c1 − ak)+

n∑
j=1

(
bk−2jc2j + bk−2j−1c2j+1

)
< 0

for k ≥ 2n + 2. Similarly, we distinguish two cases to prove it.
Case 2.1. k = 2n + 2. Since

∑k
i=0 bk−ici = ak, we see that

dk,2n+1 =

2n+1∑
i=0

bk−ici − ak = −b0c2n+2 =
(4n + 2) 24n+4B4n+4

(4n + 4)!
< 0.

Case 2.2. k ≥ 2n + 3. We have

O1 = bkc0 + bk−1c1 − ak =
22k+2

(2k + 2)!
−

22k

(2k + 1)!

= − (k − 1)
22k+1

(2k + 2)!
< 0

for k ≥ 2n + 3. Using inequality (2.5) we have
O2,j⏐⏐B4j
⏐⏐ =

bk−2jc2j + bk−2j−1c2j+1⏐⏐B4j
⏐⏐

=
22k+1 (4j − 2)

(2k − 4j + 2)! (4j)!
−

22k+14j
(2k − 4j)! (4j + 2)!

⏐⏐B4j+2
⏐⏐⏐⏐B4j
⏐⏐

<
22k+1 (4j − 2)

(2k − 4j + 2)! (4j)!

−
22k+14j

(2k − 4j)! (4j + 2)!
24j−1

− 1
24j+1 − 1

(4j + 2) (4j + 1)
π2

=
22k+1(

24j+1 − 1
)
(4j)! (2k − 4j + 2)!

F4 (k, j) ,

where

F4 (k, j) = (4j − 2)
(
24j+1

− 1
)
− (2k − 4j + 2) (2k − 4j + 1)

4j
(
24j−1

− 1
)

π2 .

Since k ≥ 2n + 3 and 1 ≤ j ≤ n, we see that 2k − 4j ≥ 6, which together with π2 < 79/8 indicates that

F4 (k, j) < (4j − 2)
(
24j+1

− 1
)
− 8 × 7

4j
(
24j−1

− 1
)

79/8

= −
2
79

[
(158 + 132j) 24j

− 738j − 79
]
< 0.

This proves O2,j > 0 for k ≥ 2n + 3 and 1 ≤ j ≤ n, and so dk,2n+1 > 0 for k ≥ 2n + 2.
By (ii) of Lemma 2.1 we can obtain that the double inequality (4.1) holds for all t > 0.
By means of Proposition 4.1, we easily give an alternative proof of Corollary 1.1.

Proof of Corollary 1.1. As shown in [15, Eq. (3.10)], fn (x) can be written as

fn (x) =

∫
∞

0
Pn

(
t
2

)
e−xt

2t
dt =

1
4

∫
∞

0
pn

(
t
2

)
e−xtdt, (4.2)

where

pn (t) =
Pn (t)

t
=

coth t
t

−

n∑
k=0

22kB2k

(2k)!
t2k−2. (4.3)
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Then it suffices to prove p2n (t) and −p2n+1 (t) are nonnegative and increasing on (0,∞). Differentiation leads us to

2t2p′

n (t) = −
2t + sinh (2t)

sinh2 t
−

n∑
k=0

(k − 1) 22k+2B2k

(2k)!
t2k−1.

By Proposition 4.1 we find that p′

2n (t) > 0 for t ∈ (0,∞), which gives p2n (t) > limt→0 p2n (t) = 0. Likewise, we have
−p2n+1 (t) > 0 for t ∈ (0,∞), so −p2n+1 (t) > − limt→0 p2n+1 (t) = 0. From Proposition 1.1 the desired assertion follow,
which ends the proof.

5. Remarks and conjectures

Remark 5.1. As shown in [15, Eq. (3.12)], hn (x) has the following integral representation:

hn (x) = fn (x)− gn (x) =

∫
∞

0
Wn

(
t
4

)
e−xt

2t
dt =

1
8

∫
∞

0
wn

(
t
4

)
e−xtdt, (5.1)

where

wn (t) =
Wn (t)

t
=

tanh t
t

−

n∑
k=0

2k
(
22k

− 1
)
B2k

(2k)!
t2k−2. (5.2)

It is easy to check that

pn (t)− qn (t) =
coth t

t
−

n∑
k=0

22kB2k

(2k)!
t2k−2

−
1

t sinh t
−

n∑
k=0

2
(
22k−1

− 1
)
B2k

(2k)!
t2k−2

=
1
2

(
tanh (t/2)

t/2
−

n∑
k=0

22k
(
22k

− 1
)
B2k

(2k)!

(
t
2

)2k−2
)

=
1
2
wn

(
t
2

)
.

It has been shown in the proofs of Theorem 1.5 and Corollary 1.1 that all p′

2n (t) , p2n (t) − q′

2n (t) ,−q′

2n (t) are positive
for t ∈ (0,∞), which yields

1
2
w2n

(
t
2

)
= p2n (t)+ [−q2n (t)] > 0,

1
2
w′

2n

(
t
2

)
= p′

2n (t)+
[
−q′

2n (t)
]
> 0

for t > 0. Similarly, we easily obtain −w2n+1 (t/2) ,−w′

2n+1 (t/2) > 0 for t > 0. It then follows from Proposition 1.1 that
h2n (x) and −h2n+1 (x) are strictly strongly completely monotonic on (0,∞). This can be stated as a theorem.

Theorem 5.1. For given integer n ≥ 0, let the function x ↦→ hn (x) be defined on (0,∞) by (1.5). Then both the functions
x ↦→ h2n (x) and x ↦→ −h2n+1 (x) are strictly strongly completely monotonic on (0,∞).

In 2012, Guo and Qi [25] further introduced the concept of completely monotonic degrees of nonnegative functions
on (0,∞), which was slightly modified in [26] as follows.

Definition 3. Let f (x) be a completely monotonic function on (0,∞) and denote f (∞) = limx→∞ f (x). If for some r ∈ R
the function xr [f (x) − f (∞)] is completely monotonic on (0,∞) but xr+ε[f (x) − f (∞)] is not for any positive number
ε > 0, then we say that the number r is the completely monotonic degree of f (x) with respect to x ∈ (0,∞), and denote
r by degxcm [f (x)]; if for all r ∈ R each and every xr [f (x)− f (∞)] is completely monotonic on (0,∞), then we say that the
completely monotonic degree of f (x) with respect to x ∈ (0,∞) is ∞, and denote by degxcm [f (x)] = ∞.

From this definition and Theorem 1.4 we pose the following open problem.

Conjecture 5.1. For given integer n ≥ 0, let the function x ↦→ fn (x) be defined on (0,∞) by (1.3). Then we have

r = degxcm
[
(−1)n fn (x)

]
=

⎧⎨⎩0, if n = 0

2n − 1, if n ≥ 1
.

Remark 5.2. We claim that Conjecture 5.1 holds for n = 1. In fact, Theorem 1.4 implies that

r = degxcm [−f1 (x)] ≥ 1.
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On the other hand, we have[
−xr1f (x)

]′
= −xr−1f1 (x)

(
r −

−xf ′

1 (x)
f1 (x)

)
≤ 0,

which indicates that

r ≤ inf
x>0

(
−xf ′

1 (x)
f1 (x)

)
.

If we prove the function x ↦→ −xf ′

1 (x) /f1 (x) is increasing from (0,∞) onto (1, 3), then

r = degxcm [−f1 (x)] ≤ 1,

and then r = degxcm [−f1 (x)] = 1. Now, using the integral representation (4.2) we obtain

f1 (x) =
1
4

∫
∞

0
p1

(
t
2

)
e−xtdt,

where

p1 (t) =
coth t

t
−

1
t2

−
1
3
.

Then integration by parts yields

xf ′

1 (x) = −
1
4
x
∫

∞

0
tp1

(
t
2

)
e−xtdt =

1
4

[
tp1

(
t
2

)
e−xt

]∞

t=0

−
1
4

∫
∞

0

[
tp1

(
t
2

)]′

e−xtdt = −
1
4

∫
∞

0

[
tp1

(
t
2

)]′

e−xtdt,

and then
−xf ′

1 (x)
f1 (x)

=

∫
∞

0
d
ds [sp1 (s)] e

−xtdt∫
∞

0 p1 (s) e−xtdt
,

where s = t/2. Direct computations give
d
ds [sp1 (s)]
p1 (s)

=

(
coth s −

1
s −

s
3

)′
coth s

s −
1
s2

−
1
3

=
3s2 cosh2 s − 2s2 sinh2 s − 3 sinh2 s

(sinh s)
(
3 sinh s − 3s cosh s + s2 sinh s

) ,
=

s2 cosh 2s − 3 cosh 2s + 5s2 + 3
s2 cosh 2s + 3 cosh 2s − 3s sinh 2s − s2 − 3

=

∑
∞

n=3
(2n+3)(n−2)

(2n)! (2s)2n∑
∞

n=3
(2n−3)(n−2)

(2n)! (2s)2n

: =

∑
∞

n=3 an (2s)
2n∑

∞

n=3 bn (2s)
2n .

Clearly, the sequence {an/bn}n≥3 is strictly decreasing in view of

an
bn

=
(2n + 3) (n − 2)

(2n)!

/
(2n − 3) (n − 2)

(2n)!
=

2n + 3
2n − 3

,

so is the ratio d
ds [sp1 (s)] /p1 (s) on (0,∞) by Lemma 2.3. Using the monotonicity rule for ratio of Laplace transforms given

in Lemma 2.4, we deduce that x ↦→ −xf ′

1 (x) /f1 (x) is strictly increasing on (0,∞) with

lim
x→0

−xf ′

1 (x)
f1 (x)

= lim
s→∞

[sp1 (s)]′

p1 (s)
= lim

n→∞

an
bn

= lim
n→∞

2n + 3
2n − 3

= 1,

lim
x→∞

−xf ′

1 (x)
f1 (x)

= lim
s→0

[sp1 (s)]′

p1 (s)
=

a3
b3

=

[
2n + 3
2n − 3

]
n=3

= 3,

where the first limit holds due to Lemma 2.5. Consequently, r = degxcm [−f1 (x)] = 1.

Remark 5.3. By the same method and technique, we can prove that the function x ↦→ −xg ′

1 (x) /g1 (x) is increasing from
(0,∞) onto (1, 3), which implies that

r = degxcm [g1 (x)] ≤ 1.

This together with Theorem 1.5 yields

r = degxcm [g1 (x)] = 1.

The assertion allows us to pose the second conjecture.
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Conjecture 5.2. For given integer n ≥ 0, let the function x ↦→ gn (x) be defined on (0,∞) by (1.7). Then we have

r = degxcm
[
(−1)n−1 gn (x)

]
=

⎧⎨⎩0, if n = 0

2n − 1, if n ≥ 1
.

Moreover, the increasing property of x ↦→ −xf ′

1 (x) /f1 (x) on (0,∞) implies the following assertion.

Proposition 5.1. Both of the functions

x ↦→ xf ′

1 (x)+ f1 (x) = lnΓ (x)+ xψ (x)+ x +
1
2

−

(
2x −

1
2

)
ln x −

1
2
ln (2π)

x ↦→ −3f1 (x)− xf ′

1 (x)

= −3 lnΓ (x)− xψ (x)− 3x +
1
6x

−
1
2

+

(
4x −

3
2

)
ln x +

3
2
ln (2π)

are strictly completely monotonic on (0,∞). In particular, the double inequality√
2π
x

x2x exp
[
−xψ (x)− x +

1
2

]
< Γ (x) <

√
2π
x

x4x/3 exp
(

−
1
3
xψ (x)− x +

1
18x

−
1
6

)
holds for x > 0.

Analogously, the increasing property of x ↦→ −xg ′

1 (x) /g1 (x) on (0,∞) indicates the following assertion.

Proposition 5.2. Both of the functions

x ↦→ −xg ′

1 (x)− g1 (x)

= − lnΓ
(
x +

1
2

)
− xψ

(
x +

1
2

)
− x + 2x ln x +

1
2
ln (2π)

x ↦→ 3g1 (x)+ xg ′

1 (x)

= 3 lnΓ
(
x +

1
2

)
+ xψ

(
x +

1
2

)
+ 3x +

1
12x

− 4x ln x −
3
2
ln (2π)

are strictly completely monotonic on (0,∞). In particular, the double inequality
√
2πx4x/3 exp

[
−

x
3
ψ

(
x +

1
2

)
− x −

1
36x

]
< Γ

(
x +

1
2

)
<

√
2πx2x exp

[
−xψ

(
x +

1
2

)
− x

]
holds for x > 0.
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