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Abstract 

In order to solve a linear system Ax = b, Hadjidimos et al. (1992) defined a class of modified AOR (MAOR) method, 
whose special case implies the MSOR method. In this paper, some sufficient and/or necessary conditions for convergence 
of the MAOR and MSOR methods will be achieved, when A is a two-cyclic matrix and when A is a Hermitian positive- 
definite matrix, an H-, L- or M-matrix, and a strictly or irreducibly diagonally dominant matrix. The convergence results 
on the MSOR method are better than some known theorems. The optimum parameters and the optimum spectral radii of 
the MAOR and MSOR methods are obtained, which also answers the open problem given by Hadjidimos et al. 
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I. Introduction 

Let us consider a system of n equations 

Ax=b, (1.1) 

where A E C "×", b, x E C" with b known and x unknown. 
For A satisfying Property A, in particular, for A with the form 

( D1 - H )  (1.2) 
A = - K  D2 ' 

where D1 and D2 are square nonsingular diagonal matrices, Young [17, Ch. 8] proposed the mod- 
ified SOR (MSOR) method, where one relaxation factor o91 is used for the "red" equations, which 
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correspond to D1, and the other relaxation factor o92 is used for "black" equations, which correspond 
to D2. 

Clearly, the MSOR method is better than the SOR method and, therefore, the Gauss-Seidel method. 
In [ 17, 9, 10, 2, 6, 7] some convergence theorems are proved, when A is positive definite, strictly 

diagonally dominant, an H-, L-, M-, or a Stieltjes matrix. In [16,5,4] the optimum spectral radius 
of the MSOR method was obtained. 

In [3] a class of MAOR method was proposed whenever the matrix A is a GCO(p,q)-matrix. 
Some convergence conditions for two-cyclic matrix were given. 

In this paper, we assume always the coefficient matrix A of  (1.1) having the form (1.2), i.e., 
A is a two-cyclic matrix. We shall investigate the convergence of  the MAOR and MSOR methods. 
Some sufficient and/or necessary conditions for convergence will be achieved, when A is a Hermitian 
positive-definite matrix, an H-, L- or M-matrix, a strictly or irreducibly diagonally dominant matrix. 
The convergence results on the MSOR method are better than some known theorems. The optimum 
parameters and the optimum spectral radii of  the MAOR and MSOR methods are obtained. 

For convenience we shall now briefly explain some of the terminology used in the next sections. 
We write B/> C (B > C) if bij ~> cij (b~j > cij) holds for all entries of  B = (bij) and C = (c~j), calling B 
nonnegative if B/> 0. The matrix [B[ = ([b~jl) is called the absolute value of B. These definitions can 
be applied immediately to vectors by identifying them with n x 1 matrices. We denote the spectral 
radius of B by p(B). 

Definition 1.1. A matrix B = ( b ; j ) E  ~n×n is called 
(a) an L-matrix if 

bii>O, i =  1 . . . .  ,n, 

bij<~O, i ¢ j ,  i , j =  1, . . . ,n;  

(b) an M-matrix if (1.4) holds, B is nonsingular and B -1/>0. 

(1.3) 

(1.4) 

Young [17, Theorem 2-7.3] has shown that a Stieltjes matrix is also an M-matrix, and it is proved 
in [17, Section 2.7] that an M-matrix is an L-matrix. 

Definition 1.2. A matrix B -- (bij) E C n×n is called 
(a) an H-matrix if the comparison matrix m(B) defined by 

mii : [bii[, i =  1, . . . ,n ,  

m,j= - Ib,jl, i ¢ j ,  i , j =  1 . . . .  ,n; 

is an M-matrix. 
(b) strictly generalized diagonally dominant by rows (or columns) if there is a nonsingular positive 

diagonal matrix P such that AP (or PA) is strictly diagonally dominant by rows (or columns). 

Clearly, an M-matrix is also an H-matrix. By [1, Theorem 6-2.3] it is easy to prove that 
a matrix B is an H-matrix if and only if it is strictly generalized diagonally dominant by rows 
or by columns. Hence, if B is strictly or irreducibly diagonally dominant (by rows or columns), then 
it is an H-matrix. 
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2. MAOR method 

In [3] a class of  MAOR method was defined whenever the matrix A is a GCO(p,q)-matrix. For 
the two-cyclic matrix A given in (1.2), let 

A = D -  CL - Cu 

be an usual splitting of  A, where 

D: (Ol 0 ) (O 0) (00 H0 ) 
D2 ' CL = 0 ' Cv  = • 

Then the Jacobi iteration matrix can be defined by 

J = D - I ( c L  + C v ) = L  + U (2.1) 

with 

Q O O) D-  1 ( O D I U M )  
L = D - 1 C L =  D 2 1 K  0 ' U =  C v =  0 

The modified AOR (MAOR) method is defined as follows: 

X k+l : ¢.~[2, F xk -Jr ~2. F,b, k = 0, 1, . . . ,  (2.2) 

where, for ~2 = diag(0)lll,0)zI2), COl, 0)2 ¢ 0 ,  and F = diag(pll,7Iz), the MAOR iteration matrix ~ e , r  
is defined by 

5f~,r = (D - F C L ) - I [ ( I  - (2)D + (f2 - F)CL + f2Cv] 

= ( I  - F L ) - ' [ I  - (2 + ([2 - r ) L  + ~2U] 

and 

c~,r,b = (D  - FCL)- lg2b  = ( I  - F L ) - l D - l f 2 b .  

It is easy to show that the MAOR iteration method is independent of  ~ so that we can denote the 
iteration matrix by ~o~,,o~,~, i.e., the MAOR method can be defined by 

xk+| ~- ~0)1,¢02.),X k "JI- ~boll,o)2,y,b , k = 0, 1, . . . ,  (2.3) 

where the iteration matrix 5%,o~2, y is defined by 

Lf~,,~,,7 = ( I  - y L ) - 1 [ I  - E2 + (0)2 - 7)L + 0)1U] 

f (1 - COl)I1 0 ) l D 1 1 H  
(2.4) 

(0)2 - 70)l)D2-1K (1 - 0)1)12 + y 0 ) 1 D ~ I K D ~ I H )  

and 

q~,o,~o.,,,~,b = (I -- 7L)-ID -1 f2b. 
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When the parameter y equals 092 the MAOR method reduces to the MSOR method [17, Ch. 8] 
and the iteration matrix is denoted by £f, o1,o~2, i.e., 

~q~o,,o~2 = ( I  - O32L)-1[I - f2 + O3~U] 

= (  (1--O91)11 O31D11H "~ 

\(~2(1 - O31)D~1K (1 - c02)I2 + O31O32D~1KD(1HJ " 

It is easy to prove that if y ~ 0 then the MAOR method is an extrapolated MSOR (EMSOR) 
method with extrapolation parameter ~02/? and overrelaxation factors 0~7/c02 and 7, i.e., 

O32 
£*a~,l,o,:,r = (1 - ~ )  / + ~ -  £a(,~.,/o,2),,. (2.5) 

In addition, the MAOR method is also a special case of  the method given in [8] by 

x k + * = ( I - a f 2 L ) - l [ I - f 2 + ( 1 - ~ ) ( 2 L + f 2 U ] x k + ( I - = f 2 L ) - ' O - l f 2 b ,  k = 0 , 1  . . . .  , (2.6) 

where I ) =  diag(o51,... ,o5,) and ~ a real parameter. In fact, if we set ~- -12  and ao92 = V then (2.6) 
reduces to (2.3) with (2.4). 

3. Convergence 

In this section we discuss the convergence of  the MSOR and MAOR methods. 

3.1. Hermi t i an  matr ices  

We assume that A is a Hermitian matrix with positive diagonal elements. In this case K H =  H 
and, therefore, C~ = Cu. Consequently, the matrix 

J = D-1/2(CL + Cu )D-1/2 = D1/2 jD - 1/2 

is also a Hermitian matrix. Hence, with J the Jacobi iteration matrix J has only real eigenvalues. 
We denote the eigenvalues of  J by 

#,~< "'" ~<#1, 

and let 

f~ = p ( J ) .  

Then it follows by [17, Theorem 5-4.7] that 

ft = Pl = - P , .  

Under the assumptions above we define a set J(o31,o3> ~) by 

0<O31 <2,  0<o32<2,  
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and either 7 is arbitrary whenever/7 = 0 or 

~o2 [ { 1  1 ) ] ~o2 [ { 1 1 }  ] 
(D 2 -- - -  2 min , - 1 < 7 < o92 + - -  2 min - 1 , 

0)2 # (D1 ' 

whenever/7 # 0. 
Now we describe convergence theorems. 

Theorem 3.1. Let A be a Hermitian matrix with positive diaoonal elements. 
(a) I f  (~ol, ~o2, 7) E J(o~l, o9z, 7), then the MAOR method converges if  and only if  A is positive 

definite. 
(b) I f  0<col <2, 0<co2<2, then the MSOR method converoes if  and only if  A is positive 

definite. 

Proof. We write 

09212 -7K D2 ' 

N ( 7 , 9 ) :  ((D~I1 0 ) - l  ( ( 1 _ o 1 ) O  1 
~o212 \ (~o: - 7)K 

Then 

and 

~ao~,,~o~, ~ ----- [m(7 , 9)]-IN(7, 9)  

 oln 
( 1 - 0.) 2 ) D 2  J " 

(3.1) 

A = M(7, 9)  - N(7, 9)  

hold. Furthermore, we have 

[ M ( 7 , 9 ) ] . + N ( 7 , f 2 ) = ( ( ~ - l ) D 1  (1 - ~ ) H )  
(1 - ( 4  - 1)D  

=ol/2 [((-~1 -- 1)I1 0 ) ( ~ )  ] 0 ( 2  _ 1)12 + 1 -- DI/2JD -1/2 D 1/2. 

Assume that the eigenvalues of the Hermitian matrix 

j l = ( ( ~  - 1)el 0 ) ( ~ )  
0 ( & -  1)12 + 1 -  D1/2jD -1/2 

(O 2 
are {vl . . . . .  v.}. By [15, Ch. 2, Section 44] we obtain 

v ~ > m i n {  2 1 } +  min ( (1  ~2)  } j=l,2 (Dj l<~j<~n ]~j , i 1, . . . ,n .  

Because (¢01,¢n2,7)E J(~ol,co2,7) it follows that v;>0, i =  1,...,n. This shows that the matrix ,/1 
and, therefore, [M(7, 9)] n + N(7, 9)  is positive definite. Now the statement (a) follows directly by 
[11, Corollary 2.10] or [1, Corollary 7-5.44]. 

The statement (b) is a special case of (a). 
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The above convergence theorem on the MAOR method depends on the eigenvalues of the Jacobi 
iteration matrix. Now we present a sufficient condition for convergence, which only depends on the 
values of the parameters 091,092 and 7. 

Theorem 3.2. Let A be a Hermitian positive-definite matrix. Then the M A O R  method converges 
i f  the parameters 091, 092 and 7 satisfy either 

or 

0 < 091 --.< 092 --.< "}' ~ 2, 0 9 2 < 2  (3.2) 

20) 2 
0 <092 ~ 0 9 1 < 2 ,  092 --.< 7 ~ - (3.3) 

(2) 1 

Proof. Let M(7,f2) and N(7,O) be defined by (3.1). Then 

M(7, y 2 ) . + N ( ~ , f 2 ) = ( ( ~ - 1 ) D I  ( 1 - ~ ) H ' ~  
\ ( 1 -  ~ )K  ( ~  - 1)D2/ 

We denote the eigenvalues of A and M(7, f2) ~/+ N(7, f2) by {ql,..., q,} and {Vl ... . .  v,}, respec- 
tively. If 091,092 and 7 satisfy either (3.2) or (3.3), then 

( 7 )  ( m i n {  2 } • )  vii> ~-2-1  min q j +  - min ajj 
l<<.j<~n ~k j=1'2 ~ ~22 l<<.j<<.n 

~ > ( m i n I ~ - ~ j / - 1  ) min ~/j>0, i = l  .... n, 
~kj= 1,2 1 <~j<~n 

since 0 < mini ~s~<n r/j ~< mini <<.j<~n ajj. 
This shows that the matrix [M(7, f2)] H + N(~, f2) is positive definite and the convergence of the 

MAOR method follows directly by [1 1, Corollary 2.10] or [1, Corollary 7-5.44]. 

3.2. H-matrices and strictly or irreducibly diagonally dominant matrices 

First, we consider the case when p( lJI)< 1 holds. 

Theorem 3.3. Let  p(lJI) < 1. Then the following inequalities hoM: 
(a) 

p(~f,e,o,,,o2,~,) ~< max{[1 - 09; I + 09,p(IJI)} < 1, 
i=1,2 

whenever 0<o9, <2/[1 + p(tJ[)], 0<092 <2/[1 + P(IJI)] and 0~<7~<092; or 

~'°92 max [ 092 09, 09;p(iji)} < 1 - - -  + - + 1, 
;=1'211 7 

whenever 0<092 ~<~<2/[1 + p(IJI)] and 0<o91 <2092/{7[1 + p(IJI)]}. 

(3.4) 

( 3 . 5 )  
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(b) 

p(Se~,,,¢o2) ~< max{J1 - coil + 0),p(IJI)} < 1, 
t=1,2  

whenever 0<0) ,  <2/ [1  + p([J[)] ,  0<0)2 <2/ [1  + p(IJI)] .  

ProoL We first assume that 

2 2 
0 < 0 ) 1 <  1 + P ( [ J [ ) '  0 < 0 ) 2 <  1 + P ( [ J I ) '  0~<7"<0)2" 

Let 

(3.6) 

Assume that p(T)>~ 1 holds. Then 

0)2  - -  ~ -~- 7p(T) 1<<. <<.p(T) 
(2) 2 

is true, and, therefore, 

min {0)i-lp(T) - [1 - 0)i-11} ~< 
i =  1,2 gO 2 

This shows that there exists /, i = 1 or 2, such that 

0)7~p(T) - I1 - 0)i-1[ ~< p(T)p(lJ[). 

Case 1: 0)i ~< 1. In this case it follows that 

0)71p(T) - 0)71 + 1 <<.p(T)p(lJI)<p(T), 

and also 

(0)i - ~ -  1 ) [ p ( Y ) -  1 ]<0 ,  

which contradicts 0)i -~ - 1 >/0 and p ( T ) -  1 >10. 

0)z - ~ + ~'P(T)p(IL I + ]Ul)~p(T)p( ldl) .  

(3.9) 

T = ( I  - ylzl)- ' [ ]I  - g21 + (0)z - ~')lZ[ + (3)IIU]]. (3.7) 

Then T is nonnegative and, hence, by [13, Theorem 2.7] there exists an eigenvector x>~O, x # 0 ,  

such that 

Tx = p( T)x 

holds, i.e., 

[[I - f2l + (0)2 -T) lZ[  + COllU[]x=p(T)(I -7lZl)x. 

Multiplying by f2 -1, it follows 

[p(T)O-l -- ,I-- f2-l,]x= ( (1)2- 7-0)~ TP(T),L[ + ,UI) x. 

As [(0)2 - ~ + ~,p(T))/0)2] ILl + I f l />0,  it follows by [12, Theorem 11] that 

(0)2 - ,  + , p ( ~ )  ) 
min{0)71p(T) - 11 - 0)~-ll}~<p ILl + IUI • (3.8) 
i =  1,2 0) 2 
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Case 2: 0)i > 1. Now from (3.9), we have 

0 ) z i p ( T )  -I- 0)~-1 _ 1 <~p(T)p(ldl). 

As mi <2/ [1  + p(]J])], it implies 

1 
~[1 + p(lJI)][1 + p(T)]  - 1 <p(T)p(lJ]), 

and also 

[1 - p(]JI)][p(T) - 1] <0 ,  

which contradicts 1 - p ( l J [ ) > 0  and p ( T ) -  1 >10. 
Now we can conclude that 

p(T) < 1 

holds. Hence, we obtain 

1 - ~ + ~ p ( r ) ~ <  1 
0)2 0)2 

and (3.8) implies 

min{0) ; lp (T ) -  11 -0),7'1} ~<p(tL] + ]Ul)=p(lJ]). 
i=1,2 

Consequently, 

p(T)<<, max{l l  - 0);] + 0)~p(ldl)}. 
i=1,2 

On the other hand, it is easy to see that 

and [13, Theorem 2.8] ensures 

P(5~,o,,o~2,~)~P(T). 

Notice that if  0)~ ~< 1, we have 

] 1 - 0)il + 0)~P(IJI) = 1 - 0), + co;p(ldl) < 1. 

(3.10) 

(3.11) 

(3.12) 
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While if 0), > 1, we have 

[1 - 0)il + 0),p(IJI) = - 1  + 0), + 0),p(lJI) 

= 0),[1 + p ( l J I ) ] -  1 
2 

< 1 + p(lJI) [1 + p(lJI)] - 1 
1 1 

= 1. (3.13) 

Summarizing (3.10)-(3.13) it has shown (3.4). Inequality (3.6) is a special case of (3.4). 
Using extrapolated principle it follows from (2.5) and (3.6) that 

(Do 
p(.L~'o,,,,o~,r) ~< 1 - 7 

602 

- - - m a x  + p(lJI),ll-yl+Tp(lJI) 
7 0)2 2 

= 1 - ~  +max{i=l,2 0)27 0)` +0)'P([J])} 

whenever 

0 <  0`)2 - - <  

7 

2 
1 + p(L~'~,~/o~),r)' 

(3.14) 

(3.15) 

and 

2 2 0 <  oj17 < 0 < 7 <  (3.16) 
0)2 1 + P([JI)' 1 + p(lJ[) '  

Since p(~(,o,r/o~2),~)<l it implies (0)2,7) to satisfy (3.15) if 0<0)2~<7. Now, from (3.14) and 
(3.16) we obtain 

P(Aa~'"°'2'r) < (1 - ~ )  +0)z-7 = 1, 

and it completes the proof of (3.5). 

From [14, Theorem 1] we know that ifA is an H-matrix then p( l J [ )<  1 holds. Hence, by Theorem 
3.3, we have the following convergence theorem. 

T h e o r e m  3.4. I f  A is an H-matrix then the convergence results o f  Theorem 3.3 are valid 

Since a strictly or irreducibly diagonally dominant matrix is also an H-matrix, Theorem 3.4 is 
valid for these kinds of matrices. 

Furthermore, for these matrices, [[JIl~ can take the place of p(lJI) in Theorem 3.4. In order to 
describe convergence theorems, we denote 

o-= I]JIl~, a, = IIO~-~n[[~, 02 = IIO~-~gllo,,. 
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If A is strictly or irreducibly diagonally dominant by rows then 

p(IJI) ~< max{0-1,0-2} = 0-< 1. 

For irreducibly diagonally dominant matrices the parameters 091,092 can equal 2/[1 + a]. 

Theorem 3.5. Let A be irreducibly diagonally dom&ant by rows. Then the followin9 inequalities 
hoM: 

(a) p(~o,,,o,~,~,) < maxg=~.2{I 1 - (Di[ ~- 09i0"} ~ 1, 
whenever 0<7-..<092-..<2/[1 + 0"] and 0<091 ~<2/[1 + 0"] or 

P(~o,.o,2.7)< - + m a x  +0990" ~<1, 
g=l,2 7 

whenever 0<092...<7...<2/[1 + 0"] and 0 < 0 9  1 -..< 2092/[7(1 + 0")]. 
(b) p(£,eo,,,o,2) < maxg= 1.2{ll - 09il + 09i0"}--. < 1, 

whenever 0 <09l ~<2/[1 + 0"], 0 <092 ~<2/[1 + a]. 

Proof. Assume that T is defined by (3.7) and 0 < 7...<o92--.<2/[1 q-0"] and 0<091 ~<2/[1 + 0"]. Since 
A is also an H-matrix, the proof of Theorem 3.3 is valid and, hence, the inequalities 

p ( T ) < l  and 0 ~ < 1 - ~ +  7---p(T)<l 
0)2 092 

hold. If p ( T ) =  0, then P(~*%.,o,2,~)= 0<1 ,  and the inequality (a) is true. Now we consider the 
case p (T )>0 .  With A the matrices J and { 1 -  7/092 + [7/092]p(T)}ILI + IUI are irreducible. By [13, 
Theorem 2.1] it follows that 

p ( [ 1 - - - - 7  + 092 -~2P(T)I ]L t+IUI )<p( ]L[+IUI )=p( [ J [ )<~0""  

From (3.8) we can derive the first inequality in (a), and (b) is its special case. 
Similar to the proof of Theorem 3.3, using extrapolated principle we can prove the second in- 

equality in (a). 

Remark 3.1. This result improves the one by [9, Theorem 5]. 

For strictly diagonally dominant matrix we have the following convergence theorem. 

Theorem 3.6. Let A be strictly diagonally dominant by rows. Then the following inequalities hold. 
(a) P(~o,,~o2,7)~ max/=l,2{I 1 - cogl + 09i0"i) < 1, 

whenever 0<091 <2/[1 + 0"1], 0<092<2/[1 + 0"2] and 0~y~<092; or 

092 max[  092 } 
- -  - -  - -  ( 'O i  "~-  0 9 i 0 " i  < 1, p(~o,,,o,2,y)~< 1 7 -  + g=1,2/I 7 

whenever 0 < 09 2 ~ 7 < 2/[ 1 + 0"2] and 0 < 09t < 2092/[7(1 + 0"1 )]. 
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(b) p(Aeo,,,o,2) ~< maxi=l,2{ll - 09,1 + 09,a,} < 1, 
whenever 0<o9l  <2 / [1  + 0-1], 0<092 <2 / [1  + 0"2]. 

Proof .  Assume that 0<091 <2 / [1  + 0"1], 0 < 0 9 2 < 2 / [ 1  + o2] and 0~<7~<092. From (2.4) we obtain 

~<max{IX - 09, + 09,0"i, 11 - 0921 + 109~ - 709,10"= + ~09,0"10"2}. 

If  092 >i 709~ then 

1092 - 709110-2 + 70910-10"2 = 0920-2 - ])0910"2 -~- 70910-10"2 40920"2 

as 0-1 < 1. 
If  092 < 7091 then 

[092 - -  709110"2 -{- 70910-10-2 = 70910-2 - -  0920-2 ql_ 70910-10-2 

= 7091(1 + al)0-2 - -  0920"2 

~< 270-2 - 0920"2 40920"2, 

since 7~<092 and 091 <2/ [1  + 0-1]. 
This has shown that 

I 1 - 0921 + 1092 - 709110-2 + 70910-,0-2"--<11 - 0921 + 0920-2 

and, hence, 

p(£4o, ,,,, ~)~< max{l l  - 09,1 + 09,0-*}. 
' "' /=1,2 

In addition, clearly, 

11 - 09il + 09i0"t < 1, i = 1,2. 

Hence, the first inequality in (a) holds, and (b)  is its special case. 
By (b)  and using extrapolated principle we can prove the second inequality in (a). 

Remark 3.2. On the M S O R  method this theorem presents the same convergence region as 
[6, Corollary 3.1], which is better than the one in [10, Theorem 2]. 

3.3. M-matrices 

We have known that an M-matr ix  is also an H-matrix,  hence, the statement in Theorem 3.3 is 
valid for M-matrix. Here we shall prove that A being M-matr ix is also a necessary condition for 
convergence, whenever  A is an L-matrix. 

We first give two lemmas. 
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Lemma 3.1 (Berman and Plemmons [1, Theorems 1-3.18, 1-3.35]). Let B>~O be 
matrix. Then 

Bx<<.~x for some x>~O, x#O 

implies x > 0 and 

p(B) <~ or. 

an irreducible 

Lemma 3.2. Let A be an irreducible L-matrix. Then for 0 < o91 ~ 1, 0 < O) 2 ~ 1, 0 ~< 7 ~< 0)2, we have 

min{P('~°l"°'2"r)--I + I } < ~ P ( {  7[p(~°''~2'~)-1] 09 i ~2 + l  L + U )  

+ 1 . (3.17) 
i=1,2 [. ogi 

Proof. For simplicity we denote p = p(~atOl,CO2,~). 

Since A is an L-matrix, L 1> 0, U ~> 0 and ~o,,,~2,y/> 0. Hence, there is x ~> 0, x # 0, such that 

~o~,,~,2,~x = px, 

i.e., 

[1 - -  ~-~ -~- (O92 - -  ~ ) L  -~- ( . 0 1 U ] x  = (I - 7L )px. 

Multiplying by f2 -1, it derives 

[(p - 1)12 -1 + I]x : (°92 - 7 + VP L + U] 
\ O92 / 

Hence, 

and 

X. 

[ m i n (  p - 1  ) ]  ( ° ~ 2 - Y + y p L  ) [ m a x (  p - I  ) ]  + 1  x~< + U  x~< + 1  x. (3.18) 
[. i=1,2 (D i 092 [i=1,2 (D i 

N o t i c e  t ha t  (.02 --  ~ -~ ~p ~ 0, it  implies 

+ 1  1>0 
i=1,2 09 i 

o92 - Y + 7Pt  + U~>O. 
092 

By (3.18) and [1, Theorem 2-1.11] we derive directly the first inequality in (3.17). If 092-]) -~-] )p=0,  

t h e n  092 =~2 and p = 0  so that the second inequality in (3.17) is trivial. If o92-~ + W # 0 ,  then with 
J the matrix [((-02 - ~  + TP)/Ogz]L+ U is irreducible. It follows from the second inequality in (3.18) 
and Lemma 3.1 we obtain the second inequality in (3.17). 

Using Lemma 3.2 we give the connection between the convergence of J and £~a,o,,o~2,7. 
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Theorem 3.7. Let A be an L-matrix. Then, for 0 <to1 6 1, 0 <w2 < 1, 0 < y <02, the following 
statements are true: 

(a) O<p(J)< 1 if and only if 1 - maxi=1,2wibp(~~,,,,,,)< 1, and in this case we have 

P(%o~,w?,y)G EF${ l - W + Wp(J)} < 1. 

(b) p(J)> 1 if and only if p(=Y0,,,,,y)2 1, and in this case we have 

P(zCO~,O>~,y) 2 pfi{ l - mi + mip(J)} 2 1. 

Proof. First we assume A is irreducible. If p(J) < 1, by [ 17, Theorem 2-7.21, A is an M-matrix. 
Theorem 3.3 implies 

Pc=%o,.w,,, )~~B:{l-Wi+Wip(J)}<l. 

Further, as 0 d y(p - 1 )/co2 + 1 < 1, by Lemma 3.2 it follows that 

o< Y(P-1) 
[ 

+ 1 p(J)< 
a2 1 IIlLi,,f COi + ” 

and, hence, 

Conversely, assume that p < 1 holds. If p(J) = 0, then the proof is completed. Now we consider 
the case when p(J) > 0 holds. In this case, as y(p - 1 )/a2 + 1~ 1, Lemma 3.2 derives the following 
inequality: 

Y(P - 1) 
+1 P(J)< 

a2 1 
(3.19) 

If y(p - 1 )/02 + 1 = 0, then p = 0 and, consequently, (p - 1 )/ maxi=i,2 Oi + 160, which contradicts 
(3.19). Hence y(p - 1)/02 + 1 #O, and from (3.19) it derives 

P(J)< ( mLill,iwi + l)/(“‘~~ ” + ‘)‘l* 

This shows (a). 
From (a) it follows immediately that p(J) 3 1 if and only if p 2 1. In this case y(p - 1 )/w2 + 13 1, 

and, hence, Lemma 3.2 derives that 

P(J)< EliEi,,f, + ” 

and also 

p>l+[p(J)-11 [~~~i]=~~{l-oi+Wip(J)}~l. 
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Up to now, we have proved the statement under the condition that A is irreducible. Now, we 
assume that A is reducible. We construct an irreducible L-matrix A~ by replacing all zero elements 
of  - K  and - H  by a small negative number -e .  Let 

J, = D  -A~,  

and let 5Y, o,,~o2,r(e) be the MAOR iteration matrix with respect to A~. 
Obviously, 

p(J~) --~ p(J),  p(L, eoa,~,2,~(e)) --~ p(L, eoa,,o~,r) as e --~ O. 

Since A, is an irreducible L-matrix, by the proof above, p(J~) and P(LPoa,~2,~(e)) satisfy (a) and (b). 
Putting e ~ 0 we obtain (a) and (b) hold for p(d)  and p(5¢o~,,,~2.~). This shows the statement to be 
true when A is reducible. 

Now, using [17, Theorem 2-7.2], Theorem 3.3, Theorem 3.7 we prove an equivalence theorem. 

Theorem 3.8. Let A be an L-matrix. Then the following statements are equivalent: 
(a) A is an M-matrix. 
(b) p ( J ) <  1. 
(c) The MAOR method is convergent, whenever 0<091 <2/[1 + p(J)] ,  0<092 <2/[1 + p(d)],  

0<7~<092. 
(d) The MSOR method is convergent, whenever 0 <o91 <2/[1 + p(d)],  0 <o  J2 <2/[1 + p(Y)]. 

Proof. The equivalence between (a) and (b) is proved by [17, Theorem 2-7.2]. I fA is an M-matrix 
then it is also an H-matrix. By Theorem 3.3 we derive (c). 

Conversely, we assume (c) to be true. If 091 and o92 satisfy 0 < 091 ~< 1, 0 < oj2 ~< 1 then, by Theorem 
3.7, we obtain (b). If either 091 or 092 is larger than 1 then 

2 
>1,  

1 + p(J)  

and, therefore, p ( J ) <  1. Hence, if (c) holds then (b) is true. 
We have proved (c) is equivalent to (a) and (b). (d) is a special case of (c). 

Remark 3.3. The result on the MSOR method here is better than the ones by [9, Theorem 3], where 
the parameters 091 and 092 only satisfy 0 <091 ~<092 ~< 1. 

Remark 3.4. In this section we assume that A has the form (1.2), where D1 and D2 are square 
nonsingular diagonal matrices. For general cases that the matrices D1 and D2 are only nonsingular 
we can prove that all the convergence theorems above are valid, but some additional conditions 
for Theorems 3.1, 3.7 and 3.8 are necessary. For Theorem 3.1 we shall assume that D is positive 
definite. For Theorems 3.7 and 3.8 the additional condition is D being an M-matrix. 
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4. Optimum choice of parameter factors 

In this section we study the optimum factors and the optimum spectral radii o f  the M S O R  and 

M A O R  methods. 
First the following lemma was obtained in [3]. 

Lemma 4.1. Let  the eigenvalues o f  ,L*a~,,.c~,~, and J be, respectively, {2} and {#}. Then it holds 

(2 + 0)1 - 1)(2 + 0)2 - 1) = 031(032 - 7 + 72)# 2, 

Le., 

22 - (2 - 0)1 - 0)2 -~ ]1031#2) 2 -3v (°31 - 1)(O)2 -- 1) + COI('~ - -  0 3 2 ) #  2 = 0.  

We denote the eigenvalues o f  the Jacobi iteration matrix by {#i, i = 1 , . . . ,  n}, and let 

/7 = max ]#it, # = min I~,1, 
l<~i<~n - -  l<~i<~n 

, mZb = 1 + 
/ 

In [ 16] the optimum virtual spectral radius of  the M S O R  method and the corresponding optimum 
parameter factors were derived. With the completely similar proof  we can prove the following 

theorem. 

Theorem 4.1. I f  the eioenvalues o f  J are real and /7< 1, then 

and unless (0)91, c02) = (0)1b, CO2b) or (031,032) = (0)2b, 0)lb ) we have 

N o w  we consider the M A O R  method. 

Theorem 4.2. I f  the eigenvalues o f  J are real and/7 < 1, then 

min P(~o,,~o2,~) = fl, 
031, ¢t)2, 7 

and the optimum parameter factors COlo, 0)2o, 7o are defined as follows: 
(a) For f i = # = O ,  

0)1o = 0)20 = 1, 70 arbitrary. 
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(b) For fi = # > O, 

1 
0)1o - -  

0)2o(1 - - / ~ 2 ) '  

(c) For f i>#~>O, 

~o = 0)20, 

and either 

or 

(0)10, 0)20) = (0)lb,  0)2b) 

Yo = CO2o(2 - 0)20) + ~-5(1 - 0)20) 2, 0)2o # 0 arbitrary. 

and 

with 

b(# 2) = 2 - 0)1 - 0)2 + ~0)1# 2 = 1 + c(#  2) - 0)1032(1 - # 2 )  

i.e., 

c(#  2) = (0)1 - 1)(o92 - 1) + 0)1(~ - -  092)# 2. 

Obviously, one and only one of  the three cases 

f i = # = O ,  f i = # > O ,  fi>#> O 

appears. 
Case I: fi = # = O. In this case we have fl = 0 and 

o. 

Clearly, p(-LP, o,,,o2,r)= 0 iff 

b(O) = 2 - 0 , )  1 - -  0 ) 2  = O ,  c ( O )  = (0)1 - -  1)(092 - -  1)  = O, 

031 = 0) 2 ~- 1. 

Case II: f i - -_~>0 .  Now, we have fl = 0. FtLrthermore, we have that P(~<o,,<o2,~)= 0 holds iff 

2 - 0 ) t  - 0)2 + y0)ifi2 = O, (0)1 - -  1)(0)2 - -  1)  + 0)1(7 - -  0)2)/.~2 = O. 

p(.Lao~,,,o2,~) = m a x  P (0 ) I ,  0)2, 7; # 2 ) ,  
l <~i <~n 

where p ( 0 ) 1 , 0 ) 2 , ~ ; #  2)  is the root radius of  

,~2 __ b ( # 2 ) ~  + e ( # 2 )  = 0 

(0)1o, 0)20) = (0)2b, 0)1b). 

Proof .  Similar to the proof  o f  [17, Theorem 8-3.3], by  [17, Theorem 8-2.1, Lemma 6-2.9] we can 
obtain 
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or  

Solving these equations we obtain 

1 
0)2 ~ 0 ,  0)1 = 0)2(1 __/72)' ~---- 0 )2(2- -  0)2) + 

Case III: /7>_/~>~0. In this case, we h a v e / 3 > 0 .  
If either [c(~_2)l >/32 or Ic(/72)1>/32 is true, then 

P(0)1,0)2, T; E 2 ) ~ ~ > / 3  

(1 - 0)2) 2 

/72 

p(0),, 0)2, ~;/72) ~ V/ic(/72)1 >/3 

and, hence, 

P(.Z~,,,o,2,~ ) > /3. 

NOW we consider the case when [c(/j2)l ~f12 and Ic(/72)14/32 are true. 
For 

4 
(D 1 O) 2 

( v / l - u 2 +  Ix/]-z-~-fi2) 2 

we get 

4(1 -- #2) 
b(/.~ 2) ---- 1 + c(p 2) - 0)10)2(1 -- 122)'~ ~ 1 +/32 - . ,  r-- \ - -  2 

which implies 

1 p(~,, 0)2, 7; ,u._2) ~ > 51b(~_2)1 ~>/3. 

If  

4 
(Ol (D2 

we can derive 

(1 --/3)2 
1 _/72 0)~0)2 ~< 

(1 - /3)( /3  -/32) (1 -/3)[/3 - c(/72)] ~< 
/3(1 --/7 2) fl(1 --/7 2) 

and, therefore, 

= -2/3,  

1 
1 + c(/72) - 0)10)2(1 - fi2)/>fl + _ac(/72), 

P 

(4.1) 

(4.2) 
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1 2 b(fi2)>~fl + -~c(fi )>~0. 

It follows that 

p(0),,0)2,~;~ ~) = b ( g ~ ) +  . [ b ( g ~ ) ]  ~ - 4 c ( ~ )  

/> B + ~cOi~) + ~ + -~c(~2)j - 4 c ( ~ )  

1 [/~ + + 
=$ [ 

From (4.1)-(4.3) we have shown that 

max{p(0)l, o)2, 7; fiz), p(c&, o)2, 7; -#2 )} ~> ft. 

Furthermore, by the proof above, it is easy to prove that the equality 

max{p(0)1,0)92, 7; fi2), p(~&, 0)2, 7;_#2)} = fl 

holds if and only if 

c(,u 2) --(0)1 - 1)(092 - 1) + 0)1 ( ' )  ) - -  0)2) / .2  2 = f 1 2  

C ( ]  ~ 2 )  = ( 0 ) 1  - -  1 )(0)2 - 1 ) + 0)1(7 - -  0 ) 2 ) / ] 2  = f12, 

4 
( '010)2 ~ 2 " 

Solving these equations we obtain 

Y = 0 ) 2  

and either 

O) 1 ~ UJlb , 0)-02 ~ (_D2b 

o r  

(D 1 z (D2b , (.02 ~ O)lb" 

Now, by the proof above, we obtain 

P(£¢~,,~2,~) >1 max{p(0)1,0)2, 7; fi2), P(0)1,0)2, 7; E 2)} ~> fl- 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 
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If 

then (4.4) holds. Hence (4.5) and either (4.6) or (4.7) are true. 
Conversely, when (4.5) and either (4.6) or (4.7) hold, the MAOR method reduces the MSOR 

method and by Theorem 4.1 we get 

= f t .  

Remark 4.1. We have shown that the optimum spectral radius of the MAOR method is equal /~. 
When /7 > # >~ 0 the optimum MAOR method is just the optimum MSOR method. The results here 
also answer partly the open problem in [3]. 
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