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Abstract

In this paper cubature formulae are obtained for evaluating integrals on the hyperoctahedron, which are exact for any
polynomial of degree not exceeding 9, and are invariant with respect to the group of all orthogonal transformations of
the hyperoctahedron into itself. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let Gn denote the hyperoctahedron in Rn:

Gn =

{
x = (x1; x2; : : : ; xn) ∈ Rn

∣∣∣∣∣
n∑

i=1

|xi|61

}
: (1)

The hyperoctahedron (1) is the polyhedron in Rn, with vertices at 2n points in Rn:

(±1; 0; : : : ; 0); (0;±1; 0; : : : ; 0); : : : ; (0; : : : ; 0;±1):

The group of all orthogonal transformations of (1) into itself will be denoted by GnG. It is known
(see [2, p. 232]) that the order of the group GnG is equal to n!2n.

Let Cn denote the hypercube in Rn:

Cn = {x = (x1; x2; : : : ; xn) ∈ Rn | − 16xi61; i = 1; 2; : : : ; n}:
The group of all orthogonal transformations of the hypercube Cn into itself will be denoted by

CnG. The group CnG is congruent with the group GnG (see [2, p. 232]).
Cubature formulae of the hyperoctahedron Gn which are exact for all polynomials of degree not

exceeding m for m65 are given by Stroud [8], cubature formulae of the octahedron G3 for m=7 are
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Table 1

n 3 4 5 6 7 8

N0 43 91 171 295 477 733
N 53 145 293 529 885 1409
N1 53 145 341 705 1317 2273
N2 — — 292 656 1428 2944
N3 — 177 373 689 — —
N4 — 249 1053 — — —

obtained by Mysovskikh [3], cubature formulae of the Gn for m= 5; 7; 9 are obtained in [6,7]. Three
cubature formulae of the Gn for m= 9 are obtained in [4]: the Crst formula exists for 56n616; the
second formula exists for n = 4; 5; 6; the third formula exists for n = 4; 5.

In this paper, Sobolev’s theorem [5] is used to construct cubature formulae for integrals of the
hyperoctahedron Gn, which are exact for all polynomials of degree not exceeding 9 and invariant
with respect to the group GnG. The cubature formulae obtained in this paper exist for 36n68.

Let us compare the number of nodes of the formulae obtained in this paper, the number of nodes
of formulae obtained in [4,7] and the lower bound for the number of nodes of cubature formulae of
the 9th degree of accuracy for central symmetric regions.

The lower bound for the number of nodes of cubature formulae for central symmetric regions has
been obtained by Moller [1]. That is Theorem 2 given in [2, p. 220]. According to this theorem,
the lower bound for the number of nodes for cubature formulae of the 9th degree of accuracy for
central symmetric regions is equal to

N0 = (n4 + 6n3 + 23n2 + 18n + 12)=12:

Let N denote the number of nodes for the cubature formulae obtained in this paper; N1 the number
of nodes for the formulae obtained in [7]; N2; N3; N4 the number of nodes for the Crst, second and
third formulae from [4], respectively.

The number of nodes N0; N; N1; N2; N3; N4 at n = 3(1)8 are given in Table 1.
Table 1 shows that at n = 3 the number of nodes in the obtained formulae in this paper exceeds

the lower bound by 10 units: at n = 3 and n = 4; N = N1; at n = 5; N = 293; N2 = 292; while in all
other cases the number of nodes for the formulae obtained in this paper is less than those for the
cubature formulae in [4,7].

In Sections 2 and 3 we derive the parameters of the cubature formulae for n¿4 and n = 3,
respectively. Numerical results are presented in Section 4.

2. Cubature formula for n¿4

It is known (see [2, p. 232]) that the symmetric polynomials of x2
1 ; x

2
2 ; : : : ; x

2
n,

�2 =
n∑

i=1

x2
i ; �4 =

∑
i¡j

x2
i x

2
j ; : : : ; �2n = x2

1x
2
2 : : : x2

n; (2)

form a set of basis invariant forms of GnG.
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From Theorem 13 (see [2, p. 231]) it follows that any polynomial that is invariant with respect
to the group GnG is a polynomial of the polynomials (2), since the group GnG is generated by
reFections (see [2, p. 231]).

Since the cubature formula must be exact for all polynomials of degree not exceeding 9, according
to the Sobolev’s theorem ([5] or [2, Theorem 12, p. 230]), for n¿4 it must be exact for 12 invariant
polynomials

1; �2; �2
2; �

3
2; �

4
2; �4; �2�4; �2

4; �
2
2�4; �6; �2�6; �8; (3)

where the polynomials �2k ; k = 1; 2; 3; 4, are deCned by (2).
Accordingly, the nodes of the cubature formula are selected such that the cubature sum depends

on 12 parameters at least.
The nodes of the cubature formula are taken as the following seven orbits:

(1) GnG(0; 0; : : : ; 0); (2) GnG(a1; 0; : : : ; 0); (3) GnG(a2; 0; : : : ; 0);

(4) GnG(b1; b2; 0; : : : ; 0); (5) GnG(c1; c1; c1; 0; : : : ; 0);

(6) GnG(c2; c2; c2; 0; : : : ; 0); (7) GnG(d; d; : : : ; d);

where a1 �= 0; a2 �= 0; a2
1 �= a2

2; b1 �= 0; b2 �= 0; b2
1 �= b2

2; c1 �= 0; c2 �= 0; c2
1 �= c2

2; d �= 0.
The Crst orbit contains only one node �=(0; 0; : : : ; 0). For the other orbits only one node is written

here, the other nodes being obtained from it by all possible permutations and changes of the sign
of the coordinates.

The cubature formula can be written in the form∫
Gn

f(x) dx � Ef(0; 0; : : : ; 0) + A1

2n∑
1

f(a1; 0; : : : ; 0)

+ A2

2n∑
1

f(a2; 0; : : : ; 0) + B
8C2

n∑
1

f(b1; b2; 0; : : : ; 0)

+ C1

8C3
n∑

1

f(c1; c1; c1; 0; : : : ; 0) + C2

8C3
n∑

1

f(c2; c2; c2; 0; : : : ; 0)

+ D
2n∑
1

f(d; d; ; : : : ; d); (4)

where the sum is accomplished for all points of the corresponding orbit. The number of nodes is
N = 2n + (8n3 − 12n2 + 16n + 3)=3; n¿4.

The cubature sum depends on 14 parameters. The parameters c2 �= 0 and d �= 0 are assigned
arbitrarily. The remaining 12 parameters E; A1; A2; B; C1; C2; D; a1; a2; b1; b2; c1 are calculated.

The requirement that formula (4) is exact for polynomials (3) yields the nonlinear system of 12
equations with 12 unknowns E; A1; A2; B; C1; C2; D; a1; a2; b1; b2; c1:

(1): E + 2nA1 + 2nA2 + 8C2
nB + 8C3

nC1 + 8C3
nC2 + 2nD = 2n=n!;
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(�2): 2nA1a2
1 + 2nA2a2

2 + 8C2
nB(b2

1 + b2
2) + 24C3

nC1c2
1 + 24C3

nC2c2
2 + n2nDd2

= n2n+1=(n + 2)!;

(�2
2): 2nA1a4

1 + 2nA2a4
2 + 8C2

nB(b2
1 + b2

2)2 + 72C3
nC1c4

1 + 72C4
nC2c4

2 + n22nDd4

= n(n + 5)2n+2=(n + 4)!;

(�3
2): 2nA1a6

1 + 2nA2a6
2 + 8C2

nB(b2
1 + b2

2)3 + 216C3
nC1c6

1 + 216C3
nC2c6

2 + n32nDd6

= n(n2 + 15n + 74)2n+3=(n + 6)!;

(�4
2): 2nA1a8

1 + 2nA2a8
2 + 8C2

nB(b2
1 + b2

2)4 + 648C3
nC1c8

1 + 648C3
nC2c8

2 + n42nDd8

= n(n3 + 30n2 + 371n + 2118)2n+4=(n + 8)!;

(�4): 8C2
nBb2

1b
2
2 + 24C3

nC1c4
1 + 72C3

nC2c4
2 + n(n− 1)2n−1Dd4

= n(n− 1)2n+1=(n + 4)!; (5)

(�2�4): 8C2
nB(b2

1 + b2
2)b2

1b
2
2 + 72C3

nC1c6
1 + 72C3

nC2c6
2 + n2(n− 1)2n−1Dd6

= n(n− 1)(n + 10)2n+2=(n + 6)!;

(�2
4): 8C2

nBb4
1b

4
2 + 72C3

nC1c8
1 + 72C3

nC2c8
2 + n2(n− 1)22n−2Dd8

= n(n− 1)(n2 + 19n + 30)2n+2=(n + 8)!;

(�2
2�4): 8C2

nB(b2
1 + b2

2)2b2
1b

2
2 + 216C3

nC1c8
1 + 216C3

nC2c8
2 + n3(n− 1)2n−1Dd8

= n(n− 1)(n2 + 25n + 198)2n+3=(n + 8)!;

(�6): 8C3
nC1c6

1 + 8C3
nC2c6

2 + n(n− 1)(n− 2)2n−1Dd6=3

= n(n− 1)(n− 2)2n+2=[3(n + 6)!];

(�2�6): 24C3
nC1c8

1 + 24C3
nC2c8

2 + n2(n− 1)(n− 2)2n−1Dd8=3

= n(n− 1)(n− 2)(n + 15)2n+3=[3(n + 8)!];

(�8): 2nC4
nDd8 = n(n− 1)(n− 2)(n− 3)2n+1=[3(n + 8)!]:

System (5) can be solved as follows:
From the equation (�8) we Cnd D.
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From the equations (�2�6) we Cnd

C1c8
1 + C2c8

2 = 5:2n+1=(n + 8)!: (6)

From the equations (�6) we Cnd

C1c6
1 + C2c6

2 = 2n=(n + 6)! − 2n+1=[(n + 8)!d2]: (7)

Introducing the notations

u = b2
1 + b2

2; v = b2
1b

2
2 (8)

from the equations (�2�4); (�2
4) and (�2

2�4) we obtain a nonlinear system of three equations with
three unknowns B; u; v, on solving this system and we Cnd b2

1 and b2
2 using (8).

From the equation (�4) we Cnd

C1c4
1 + C2c4

2 = 2n−1{1=(n + 4)! − (S2
1 =S2 + 4)=[(n + 8)!d4]}=(n− 2); (9)

where

S1 = (8 − n)S + 2(n− 3); S2 = 72 − 5n; S = (n + 7)(n + 8)d2: (10)

From Eqs. (6), (7) and (9) we Cnd C1; C2 and c1 (c2 �= 0 and d �= 0 are assigned arbitrarily).
Introducing the notations

A∗
1 = A1a2

1; A∗
2 = A2a2

2 (11)

from the equations (�2); (�2
2); (�3

2) and (�4
2) we obtain the nonlinear system

A∗
1 + A∗

2 = X1;

A∗
1a

2
1 + A∗

2a
2
2 = X2;

A∗
1a

4
1 + A∗

2a
4
2 = X3;

A∗
1a

6
1 + A∗

2a
6
2 = X4;

(12)

of four equations with four unknowns A∗
1 ; A∗

2 ; a2
1; a2

2, where

X1 = 2n=(n + 2)! − 2(n− 1)[Bu + (n− 2)(C1c2
1 + C2c2

2)] − 2n−1Dd2;

X2 = 2n{(13 − n)=(n + 4)! + [3(n− 1)S2
1 =S2 + 4(n− 3)

− 4(n− 1)S2
1 =(5S3)]=[(n + 8)!d4]};

X3 = 2n+1[(130 + 57n− 7n2)S + 14n2 − 54n + 36

− 8(n− 1)S1S2=(5S3)]=[(n + 8)!d2];

X4 = 2n+2(261414 − 62679n + 2810n2 − 25n3)=[5(n + 8)!S3];

(13)

S3 = 9 − n: (14)

System (12) can be solved as follows.
Let us Cnd the coeGcients p and q of the quadratic equation

t2 + pt + q = 0 (15)

with roots a2
1 and a2

2.
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Pre-multiplying the Crst equation of system (12) by q, the second equation by p and adding the
Crst three equations of system (12), we obtain

qX1 + pX2 + X3 = A∗
1(a4

1 + pa2
1 + q) + A∗

2(a4
2 + pa2

2 + q) = 0;

since a2
1 and a2

2 are the roots of Eq. (15).
Pre-multiplying the second equation of system (12) by q, the third equation by p and adding the

second, the third and the fourth equations of system (12), we obtain

qX2 + pX3 + X4 = A∗
1a

2
1(a4

1 + pa2
1 + q) + A∗

2a
2
2(a4

2 + pa2
2 + q) = 0:

Thus we obtain the linear system

qX1 + pX2 + X3 = 0;

qX2 + pX3 + X4 = 0;
(16)

of two equations with two unknowns p and q. We solve system (16) and Cnd p and q. Then we
solve Eq. (15) and Cnd its roots a2

1 and a2
2.

Afterwards, from the Crst two equations of system (12) we Cnd unknowns A∗
1 and A∗

2 . Then using
(11) we Cnd the coeGcients A1 and A2.

From the Crst equation of system (5) we Cnd the coeGcient E.
The solution of system (5) for n¿4 is

A1 = [X2 − a2
2X1]=[a2

1(a2
1 − a2

2)]; a2
1 = (−r1 +

√
r0)=(2r);

A2 = [a2
1X1 − X2]=[a2

2(a2
1 − a2

2)]; a2
2 = (−r1 +

√
r0)=(2r);

B = 2n+1S1=[(n + 8)!uvd2]; b2
1 = 2d2(S2 + 3

√
3S2)=S1;

D = 16=[(n + 8)!d8]; b2
2 = 2d2(S2 − 3

√
3S2)=S1;

C1 = 2n−3q4
2=[(n + 8)!q2

1q3d8]; c2
1 = 2q1d2=q2;

C2 = 2n−1{1=(n + 4)! − [S2
1 =S2 + 4 + (n− 2)q2

2=q3]=[(n + 8)!d4]}=[(n− 2)c4
2];

E = 2n=n! − 2n(A1 + A2) − 4n(n− 1)B − 4n(n− 1)(n− 2)(C1 + C2)=3 − 2nD;

c2 �= 0 and d �= 0 are assigned arbitrarily, where

u = 4S2d2=S1; v = 20S2S3d4=S2
1 ; q1 = 10d2 + (2 − S)c2

2;

q2 = 2(S − 2)d2 + c2
2[S2

1 =S2 + 4 − (n− 5)(n + 6)Sd2]=(n− 2);

q3 = 2q1d2 − q2c2
2; r1 = X1X4 − X2X3; r2 = X 2

3 − X2X4;

r = X 2
2 − X1X3; r0 = r2

1 − 4rr2:

X1 − X4 are found from (13); S1; S2; S are found from (10); S3 is found from (14).
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3. Cubature formula for n = 3

When n = 3 in (3) the number of invariant polynomials of degree not exceeding nine is 11,
since the polynomial �8 is not a basis one. In this case in system (5) the equation (�8) does not
participate. To reduce the number of parameters by one, let us suppose that D = 0. The cubature
sum in formula (4) depends on 12 parameters. The parameter c2 �= 0 is assigned arbitrary. The
remaining 11 parameters are calculated. System (5) in this case has 11 equations with 11 unknowns
E; A1; A2; B; C1; C2; a1; a2; b1; b2; c1. The number of nodes is N = 53.

The solution of system (5) for n = 3 is

A1 = [X2 − a2
2X1]=[a2

1(a2
1 − a2

2)]; a2
1 = (−r1 +

√
r0)=(2r);

A2 = [a2
1X1 − X2]=[a2

2(a2
1 − a2

2)]; a2
2 = (−r1 −√

r0)=(2r);

B = 4159375=176849568; b2
1 = (57 + 9

√
19)=275;

E = 4=3 − 6(A1 + A2) − 24B − 8(C1 + C2); b2
2 = (57 − 9

√
19)=275;

C1 = 33275p4
3=[517104(57p2)2p1]; c2

1 = 57p2=(55p3);

C2 = 103=(5040p1c4
2);

c2 �= 0 is assigned arbitrarily, where

X1 = 53651=1939140 − (3025c2
2p

3
3 + 3011823p2)=(36843660p1p2c2

2);

X2 = 787=129276; X3 = 43=11340; X4 = 1361=519750;

p1 = 342 − 6270c2
2 + 37235c4

2; p2 = 6 − 55c2
2; p3 = 57 − 677c2

2;

r1 = X1X4 − X2X3; r2 = X 2
3 − X2X4; r = X 2

2 − X1X3; r0 = r2
1 − 4rr2:

4. Numerical results for n¿3

A FORTRAN 77 program written to compute the parameters of formula (4) can be used for any
n¿3 if the formula exists, or to establish that the formula does not exist and why.

The program can verify whether the nodes are inside Gn. Since c2 �= 0 and d �= 0 are assigned
arbitrary, we can derive an inCnite set of cubature formulae and one may seek such values for c2

and d for which the derived nodes are inside Gn.
The following results are obtained. Cubature formula (4) exists for n = 3(1)8. Formula (4) does

not exist for n¿9: for n=9 because v=0, for n=10(1)14 because v¡ 0, for n¿15 because S2 ¡ 0.
When n = 3 part of the nodes are outside Gn. When n = 4(1)8, the nodes are inside Gn.

The results for n = 3; 4; 5 are given in Table 2
The results for n = 6; 7; 8 are given in Table 3.



142 S.B. Stoyanova / Journal of Computational and Applied Mathematics 137 (2001) 135–143

Table 2

n 3 4 5

A1 0:179782431451 × 10−1 0:620689093680 × 10−3 0:575962925232 × 10−4

A2 0:139237829260 × 10−2 −0:338096394200 × 10−1 −0:252604877899 × 10−2

B 0:235192827839 × 10−1 0:607433086066 × 10−2 0:151337761639 × 10−2

E −0:443720294588 × 10−1 0:994050840334 × 10−1 −0:436835515636 × 10−2

C1 0:672918191342 × 10−2 0:210281781392 × 10−2 0:320806647448 × 10−3

C2 0:803981740056 × 10−1 0:137153046172 × 10−1 0:146083397384 × 10−2

D 0 0:218908663353 × 10−2 0:100369023980 × 10−2

a1 0.714878539296 0.908849824455 0.936458919599
a2 0.999987794166 0.176636990487 0.540867961584
b1 0.591546787489 0.565274863579 0.539375702833
b2 0.254200418483 0.227800131770 0.200149360944
c1 0.365780280376 0.333126341417 0.330676365177
c2 0.20478 0.18 0.21
d — 0.25 0.2

Table 3

n 6 7 8

A1 0:144750236730 × 10−3 0:911527738458 × 10−6 0:112516107581 × 10−3

A2 −0:235143202827 × 10−2 −0:956174737892 × 10−3 −0:634971759510 × 10−3

B 0:548644846870 × 10−3 0:130505764960 × 10−3 0:501164522329 × 10−4

E 0:533462068168 × 10−3 −0:153545569892 × 10−2 0:386427901528 × 10−3

C1 0:616068293224 × 10−4 0:128267764358 × 10−4 0:201254287658 × 10−5

C2 −0:418131127131 × 10−4 0:149188740687 × 10−4 −0:243318625860 × 10−5

D 0:716113000584 × 10−3 0:829079326830 × 10−4 0:128298117716 × 10−4

a1 0.721212771173 0.953724427128 0.530146493517
a2 0.528425602429 0.475814078165 0.466180649956
b1 0.489881494755 0.471137304790 0.438013544716
b2 0.162483534886 0.132093111795 0.090244859386
c1 0.323820004530 0.305634136000 0.297264803732
c2 0.2 0.14 0.14
d 0.15 0.14 0.125
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