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Abstract

The aim of this paper is smoothing triangular surface meshes using a di.usion process while preserving
or enhancing several important features. These features include sharp feature, detail structure, homogeneity of
the mesh, interpolation of some vertices and approximation of the initial mesh. We realize these goals using a
uni3ed partial di.erential equation model, so that the numerical solving process of the equation is signi3cantly
simpli3ed.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Heat equation; Fairing; Feature preserving; Loop’s subdivision

1. Introduction

The aim of this paper is smoothing and denoizing triangular surface meshes by solving a partial
di.erential equation (PDE), which is a generalization of the heat equation customized to surfaces.
The heat equation has been successfully used in the image processing for about two decades. The
literature on this PDE based approach to image processing is large [7,15,16,22]. It is well known
that the solution of heat equation 9t�−B�=0, based on the Laplacian �, at time � for a given initial
image �0 is the same as taking a convolution of the Gauss 3lter G�(x) = (1=2	�2) exp(−|x|2=(2�2))
with standard deviation � =

√
2� and image �0. Taking the convolution of G� and image �0 is

performing a weighted averaging process to �0. When the standard deviation � become larger, the
averaging is taken over a larger area. This explains the 3ltering e.ect of the heat equation to noisy
images. The generalization of the heat equation for a surface formulation has recently been proposed
[2,3] and shown to be very e.ective even for higher-order methods [1] and for two-manifold in
high-dimensional space. The counterpart of the Laplacian � is the Laplace–Beltrami operator [5]
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Fig. 1. The top 3gure is the initial geometry mesh. The second 3gure is the faired mesh after 4 fairing iterations with
identity adaptor and timestep �=0:0001. The last one is the faired mesh after 4 fairing iterations with nonidentity adaptor
a(x) and �= 0:0016.

�M for a surface M . Hence, the heat equation is generalized to

9tx − �Mx = 0 (1.1)

for surface point x, which is also known as mean curvature Kow. Using this generalized heat equation
to smooth surface has shown to be e.ective. However, the smoothing e.ect is strong such that some
undesirable features may occur.

Over/under-fairing. Unlike the 2D images, where the grids are often structured, the discretized
triangular surfaces are often un-structured. Certain regions of the surface meshes are often very dense,
with a wide spectrum of noise distribution. Applying a single Gauss-like 3lter to such surface meshes
would have the following side-e.ects: (1) the lower frequency noise is not 3ltered (under-fairing)
if the evolution period of time is suitable for removing high frequency noise, (2) detailed features
are removed unfortunately, as higher-frequency noise (over-fairing) if the evolution period of time
is suitable for removing low-frequency noisy components. Fig. 1 illustrates this under-fairing and
over-fairing e.ects. The top 3gure is the input mesh, the next one is the evolution result by Eq. (1.1).
It can be seen that the large features (see the tails of the crocodiles) are not fair enough but the
detailed features are already over-faired (see the snout of the crocodiles). Hence, a phenomena that
often appears for the triangular surface mesh denoizing is that whenever the desirable smoothing
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results are achieved for larger features, the smaller features are lost. Prior work has attempted to
solve the over-fairing problem by using an anisotropic di.usion tensor in the di.usion equation
[1,2]. However, this is far from satisfactory. One of the aims of this paper is to overcome the
under-fairing and over-fairing dilemma in solving the di.usion equation by involving an adaptor in
Eq. (1.1).

Singularities. It is known that mean curvature Kow (1.1) moves the vertices of the mesh in
the normal direction of the surface. Such a motion could cause very tiny even collapsed triangles.
These tiny and collapsed triangles make the sti.ness matrix of the 3nite element discretization
ill-conditioned or even singular. Hence, to avoid generating tiny and collapsed triangles is crucial
for producing high quality mesh. Our second goal of this paper is to homogenize the mesh during
smoothing process by introducing a homogenizer in the equation.

No steady-solution. Under mean curvature motion, the evolved surface shrink to the origin
according to the following Eqs. [2,19]:

d
dt
Area(M (t)) =−

∫
M (t)

H 2 dx;
d
dt
Volume(M (t)) =−

∫
M (t)

H dx; (1.2)

where Area(M (t)) and Volume(M (t)) represent the area of M (t) and volume enclosed by M (t),
respectively, H is the mean curvature. Hence, the evolution equation has no steady-solution before
the surface degenerating to zero. Such a feature of the motion makes the question “when to stop
the di.usion process or what is the stopping criteria” hard to answer. We shall modify the di.usion
model, so that a steady-solution exists.

1.1. Previous work

For the PDE-based surface fairing or smoothing, several methods have been proposed [1–4]
recently. Desbrun et al. [3,4] also use Laplacian, which is discretized as the umbrella operator
in the spatial direction. In the time direction discretization, they propose to use the semi-implicit
Euler method to obtain a stable numerical scheme. Clarenz et al. [2] generalize the Laplacian to the
Laplace–Beltrami operator �M , and use linear 3nite elements to discretize the equation. In the paper
[1], the problem is reformulated for two-dimensional Riemannian manifold embedded in Rk aiming
at smoothing geometric surfaces and functions on surfaces simultaneously. The C1 higher-order 3nite
element space used is de3ned by the Loop’s subdivision (box spline). One of the shortcomings of
all these proposed methods that we address here is their nonadaptivity. Hence they quite often su.er
from under-fairing or over-fairing problems and singularity problem.
Another approach for smoothing and denoizing of polyhedral surface is minimizing some energy

functionals. In this approach, one constructs an optimization problem that minimizes certain objective
functions associated with geometric surface characteristics [6,8,9,14,18,23], such as thin plate energy,
membrane energy [10], total curvature [11,24], or sum of distances [13]. Using local interpolation or
3tting, or replacing di.erential operators with divided di.erence operators, the optimization problems
are discretized to arrive at 3nite dimensional linear or nonlinear systems. Approximate solutions
are then obtained by solving the constructed systems. Such an approach is usually computational
expensive and lacks local shape control.



298 G. Xu / Journal of Computational and Applied Mathematics 163 (2004) 295–309

1.2. Our approach

For a feature-adaptive or error-adaptive mesh, the ideal evolution strategy would be to correlate
the evolution speed relative to the mesh density. In short, we desire the lower-frequency errors use a
faster evolution rate and the higher-frequency errors succumbs to a slower evolution rate. To achieve
this goal, the discretization in the time direction could be mesh adaptive, using a timestep �a(x)
where a(x) depends on the position x of the surface. The part of the surface that is coarse uses
larger �a(x). We have observed that the adaptive discretization in the time direction is equivalent
to introducing an adaptor in the PDE while using a uniform time step discretization. Hence in this
paper, we do not involve variable time step, but introduce an adaptor. The last 3gure of Fig. 1
shows the improvement of adaptive evolution over the nonadaptive evolution. We also introduce a
homogenizer in the equation for avoiding singularities and a right-handed side for interpolating and
approximating the initial mesh.
The remaining of the paper is organized as follows: Section 2 introduces the used terminologies

and some basic facts in the di.erential geometry. Section 3 summarizes the di.usion PDE model
used, followed by the discretization Section 4. In the spatial direction, the discretization is realized
using the C1 smooth 3nite element space de3ned by the limit function of Loop’s subdivision (box
spline), while the discretization in the time direction is realized by semi-implicit Euler scheme. The
implementation details are given in Section 5. Section 6 concludes the paper.

2. Preliminaries

In this section, we introduce some terminologies and basic facts in the di.erential geometry (see
also paper by [1] for the higher-dimensional case).

Tangent Space of Di9erential Manifold. Let M ⊂ R3 be a two-dimensional manifold, and {U�; x�}
be the di.erentiable structure. The mapping x� with x∈ x�(U�) is called a parameterization of M
at x. Denoting the coordinate U� as (�1; �2), then the tangent space TxM at x∈M is spanned by
{9=9�1; 9=9�2}. For a given point x∈ x�(U�) ⊂ M , the tangent vector components 9=9�1 and 9=9�2
depend upon �, unlike TxM . The set TM = {(x; v); x∈M; v∈TxM} is called a tangent bundle.

Riemannian Manifold. To de3ne integration on M , a Riemannian metric (inner product) is re-
quired. A di.erentiable manifold with a given Riemannian metric is called a Riemannian Manifold.
A Riemannian metric 〈; 〉x of M is a symmetric, bilinear and positive-de3nite form on the tangent
space TxM . Since M is a sub-manifold of Euclidean space R3, we use the induced metric

〈u; v〉x = uTv; u; v∈TxM:

Integration. Let f be a function on M , and let {��}� be a 3nite partition of unity on M with
support �� ⊂ U�. Then de3ne∫

M
f dx :=

∑
�

∫
U�

��f(x�)
√
det(gij) d�1 d�2; (2.1)
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where gij = 〈9=9�i; 9=9�j〉x. Then we can de3ne the inner product of two functions on M and two
vector 3elds on TM as

(f; g)M =
∫
M
fg dx; f; g∈C0(M); (�;  )TM =

∫
M
〈�;  〉 dx; �;  ∈TM: (2.2)

Gradient. Suppose f∈C1(M). The gradient ∇Mf∈TxM of f is de3ned by the following
conditions:

tTi ∇Mf =
9(f ◦ x)
9�i

; i = 1; 2; (2.3)

where ti = 9x=9�i are the tangent vectors. Note that ∇Mf is invariant under the surface local repa-
rameterization. From (2.3), we have

∇Mf = [t1; t2]G−1
[
9(f ◦ x)
9�1

;
9(f ◦ x)
9�2

]T
; (2.4)

where

G−1 =
1

detG

[
g22 −g12

−g21 g11

]
; G =

[
g11 g12

g21 g22

]
;

and G is known as the 3rst fundamental form.
Divergence. The divergence divM  for a vector 3eld  ∈TM is de3ned as the dual operator of

the gradient [17]:

(divM v; �)M =−(v;∇M�)TM ; ∀�∈C∞
0 (M); (2.5)

where C∞
0 (M) is a subspace of C∞(M), whose elements have compact support.

3. Geometric di�usion equations

Recently, people have solved the following nonlinear system of parabolic di.erential equations
[1,2] for surface fairing:

9tx(t)− �M (t)x(t)) = 0; (3.1)

where �M (t) =divM (t) ◦∇M (t) is the Laplace–Beltrami operator on M (t); M (t) is the solution surface
at time t and x(t) is a point on the surface. ∇M (t) is the gradient operator on the surface, and divM (t)
is the divergent operator acting on a vector 3eld on the surface.

3.1. Anisotropic di9usion

To enhance sharp features, a di9usion tensor D, acting on the gradient, has been introduced [1,2].

9tx(t)− divM (t)(D(x)∇M (t)x(t)) = 0: (3.2)

The di.usion tensor D(x) is a symmetric and positive de3nite operator from TxM to TxM . Here
TxM is the tangent space of M at x. The detailed discussion for choosing the di.usion tensor can be
found in [1,2]. We omit the discussion on choosing D(x) in this paper and use an identity di.usion
tensor. The aim to mention this di.usion tensor is to show that this tensor could be incorporated in
our uni3ed PDE model.
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3.2. Adaptive di9usion

We already know that Eq. (3.1) describes the mean curvature motion. Its regularization e.ect
could be seen from Eq. (1.2). From these equations, we see that the evolution speed depends on
the mean curvature of the surface but not on the density of the mesh. Hence if the mesh is spatially
adaptive, the dense parts that have detailed structures and hence have larger curvatures are very
possibly over-faired. Therefore, we introduce an adaptor a(x) in this model for achieving adaptive
fairing e.ect. Then (3.1) becomes

9tx(t)− a(x) divM (t)(∇M (t)x(t)) = 0; (3.3)

where a(x) is a smooth function which is adaptive to the mesh density (see Section 5 for the
de3nition of a(x)).

3.3. Homogenization of the mesh

To homogenize the mesh while smoothing, we introduce a homogenizer h(x) in the equation

9tx(t)− a(x) divM (t)(h(x)∇M (t)x(t)) = 0: (3.4)

It is easy to derive that

divM (h∇Mf) = (∇Mf)T∇Mh+ h�Mf; (3.5)

where f; h are smooth functions on M . From (2.4), (3.5) and the fact that �Mx = 2H (x)n(x), we
could rewrite (3.4) as

9tx(t) = a(x)[∇h(x) + 2h(x)H (x)n(x)]: (3.6)

Eq. (3.6) implies that the motion of the surface M (t) can be decomposed into two parts, one is the
tangential displacement caused by ∇h(x), and the other is the normal displacement (mean curvature
motion) caused by 2h(x)H (x)n(x).
We shall de3ne h(x) such that it is adaptive to the density of the mesh in the sense that it takes

smaller values at denser regions of the mesh. Consider a case where a small triangle is surrounded
by large triangles. In such a case, function h(x) is small on the triangle and larger elsewhere.
This implies that the gradient of h(x) on the small triangle points to the outside direction, and the
tangential displacement makes the small triangle become enlarged. If the density of the mesh is
even, then h(x) is nearly a constant. Then the tangential displacement is minor. Hence, h(x) has
homogenizing e.ect. Such an e.ect is nice and important, as it avoids producing collapsed or tiny
triangles in the faired meshes.

3.4. Approximation

A term r ∈R3 on the right-handed side of the equation, which represents an external force, is
imposed. Hence the model becomes

9tx(t)− a(x) divM (t)(h(x)∇M (t)x(t)) = r(x(t)): (3.7)

The function r is chosen in the following form:

r(x(t)) = !A(x(0)− x(t)); !A¿ 0: (3.8)
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Fig. 2. The left is the input. The remaining two 3gures are the steady-solutions for !A = 20:0 and !A = 6:0, respectively.
The net outside each of the surface meshes consists of all the edges of the initial mesh.

This term is used to approximate the initial mesh in the smoothing process, so that the smoothed
surfaces do not evolve too much from the initial surface M (0). !A is a user speci3ed parameter,
where the subscript A stands for approximation. If a(x) = h(x) = 1, then (3.7) becomes 9tx(t) =
2H (x)n(x) +!A(x(0)− x(t)). Hence the equation described is a motion that is decomposed into the
mean curvature motion, caused by 2H (x)n(x) and in the normal direction, and a motion towards the
original surface, caused by !A(x(0)− x(t)) and in the direction of x(0)− x(t). The magnitude of !A

determines which part of two motions dominates composite motion. Fig. 2 shows the e.ect of !A.
The left 3gure shows the input mesh. The 3gures in the middle and right show the stable states of
the evolution for !A = 20:0 and !A = 6:0, respectively. Here we choose �= 0:05.

3.5. Interpolation

Adding a term in external force r(x(t)), we could even interpolate approximately some vertices
of the initial mesh. Hence the 3nal model we use is

9tx(t)− a(x) divM (t)(h(x)∇M (t)x(t)) = r(x(t));

M (0) =M; (3.9)

where

r(x(t)) = !(x)(x(0)− x(t)); !(x) = !I (x) + !A;

!I (x)¿ 0 is a smooth function which is large at the interpolation vertices, and zeros at other vertices,
the subscript I of !I (x) stands for interpolation.
Since 9tx(t)→ 0 as t → ∞, the steady-solution Ms =M (∞) satis3es the following equation:

−a(x) divMs(h(x)∇Msx) = r(x); (3.10)

where x is a surface point on Ms.
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3.6. Variational form

Using (2.5), the 3nal di.usion problem (3.9) could be reformulated into the following variational
form:

Find a smooth x(t) such that

(a(x)−19tx(t); %)M (t) + (h(x)∇M (t)x(t);∇M (t)%)TM (t) = (a(x)−1r(x(t); %))M (t);

M (0) =M; (3.11)

for any %∈C∞
0 (M (t)). Similarly, the variational form of (3.10) is as follows:

Find a smooth x such that

(h(x)∇Msx;∇Ms%)TMs = (a(x)
−1r(x); %)Ms ; (3.12)

for any %∈C∞
0 (Ms). These variational forms are the starting point for the discretization.

4. Discretization

4.1. Temporal discretization

We discretize Eq. (3.11) in the time direction 3rst and then in the spatial direction. Given an
initial value x(0), we wish to have a solution x(t) of (3.11) at t = �. Using a semi-implicit Euler
scheme, we have the following time direction discretization:

Find a smooth x(�) such that(
x(�)− x(0)
�a(x(0))

; %
)
M (0)

+ (h(x(0))∇M (0)x(�);∇M (0)%)TM (0) = (a(x(0))−1r(x(�)); %)M (0) (4.1)

for any %∈C∞
0 (M (0)). If we want to go further along the time direction, we could treat the solution

at t = � as the initial value and repeat the same process. Hence, we consider only one time step
in our analysis. Note that if we use a variable timestep �a(x(0)) to discretize the equation 9tx(t)−
divM (t)(h(x)∇M (t)x(t)) = 0 in the time direction, we will arrive at the same equation as (4.1). This
is the reason we do not use variable timestep in the time discretization but introduce an adaptor in
the PDE.

4.2. Spatial discretization

The function in our 3nite element space is locally parameterized as the image of the unit triangle

T= {(�1; �2)∈R2 : �1¿ 0; �2¿ 0; �1 + �26 1}:
That is, (1−�1−�2; �1; �2) are the barycentric coordinates of the triangle. Using this parameterization,
our discretized representation of M is M =

⋃k
�=1 T�; QT�∩ QT'=∅ for � �= ', where QT� is the interior

of T�. Each triangular patch is parameterized locally as x� :T → T�; (�1; �2) �→ x�(�1; �2). Under
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this parameterization, tangents and gradients can be computed directly. The integration on surface
M is given by∫

M
f dx :=

∑
�

∫
T

f(x�(�1; �2))
√
det(gij) d�1 d�2:

The integration on triangle T is computed adaptively by numerical methods.
Let Md be the given initial triangular mesh, xi; i = 1; : : : ; m be its vertices. We shall use C1

smooth quartic Box spline basis functions to span our 3nite element space. The piecewise quartic
basis function at vertex xi, denoted by �i, is de3ned by the limit of Loop’s subdivision for the zero
control values everywhere except at xi where it is one (see paper [1] for a detailed description). For
simplicity, we call it the Loop’s basis.

4.2.1. Loop’s subdivision
In Loop’s subdivision scheme, the initial control mesh and the subsequent re3ned meshes consist

of triangles only. In the re3nement, each triangle is subdivided linearly into 4 sub-triangles. Then
the vertex position of the re3ned mesh is computed as the weighted average of the vertex position
of the unre3ned mesh. Consider a vertex xk0 at level k with neighbor vertices xki for i = 1; : : : ; n,
where n is the valence of vertex xk0. The coordinates of the newly generated vertices xk+1i on the
edges of the previous mesh are computed as

xk+1i =
3xk0 + 3x

k
i + xki−1 + xki+1
8

; i = 1; : : : ; n;

where index i is to be understood modulo n. The old vertices get new positions according to

xk+10 = (1− na)xk0 + a(xk1 + xk2 + · · ·+ xkn);

where

a=
1
n

[
5
8
−

(
3
8
+
1
4
cos

2	
n

)2]
:

Note that all newly generated vertices have a valence of 6, while the vertices inherited from the
original mesh at level zero may have a valence other than 6. We will refer to the former case as
ordinary and the latter case as extraordinary.
Let ej; j = 1; : : : ; mi be the two-ring neighborhood elements of xi. Then if ej is regular (meaning

its three vertices have valence 6), explicit Box-spline expressions exist [20,21] for �i on ej. Using
these explicit Box-spline expressions, we derive the BB-form expressions for the basis functions �i.
These expressions could be used to evaluate �i in forming linear system (4.3). If ei is irregular,
local subdivision is needed around ei until the parameter values of interest are interior to a regular
patch. An eRcient evaluation method, that we have implemented, is the one proposed in [20].
Compared with the linear 3nite element space, using the higher-order C1 smooth 3nite element

space spanned by Loop’s basis does have advantages. The basis functions of this space have compact
support (within 2-rings of the vertices). This support is bigger than the support (within 1-ring of
the vertices) of hat basis functions that are used for the linear discrete surface model. Such a
di.erence in the size of support of basis functions makes our evolution more eRcient than those
previously reported, due to the increased bandwidth of the a.ected frequencies. The reduction speed
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of high frequency noise in our approach is not that drastic, but still fast, while the reduction speed
of lower-frequency noise is not slow. Hence, the bandwidth of a.ected frequencies is wider. A
comparative result showing the superiority of the Loop’s basis function is given in paper [1].

4.2.2. Finite element discretization of (4.1)
Let VM (0) be the 3nite-dimensional space spanned by the Loop’s basis functions {�i}m

i=1. Then
VM (0) ⊂ C1(M (0)). For the given time step �, let x(k�) =

∑m
i=1 xi(k�)�i be the numerical solution

after kth iteration, and let % = �j. Then for obtaining the numerical solution at time t = k� + �,
Eq. (4.1) could be approximated by

m∑
i=1

xi(k�+ �)− xi(k�)
�

(
�i

a(x(k�))
; �j

)
M (k�)

+
m∑
i=1

xi(k�+ �)(h(x(k�))∇M (k�)�i;∇M (k�)�j)TM (k�)

=
m∑
i=1

(xi(0)− xi(k�+ �))
(
!(x(k�))�i

a(x(k�))
; �j

)
M (k�)

(4.2)

for j=1; : : : ; m, where xi(0) := xi is the ith vertex of the input mesh Md. Eq. (4.2) is a linear system
for unknown xi(k�+ �). Now (4.2) can be written in the following matrix form:

(M0 + �M1 + �L)X (k�+ �) =M0X (k�) + �M1X (0); (4.3)

where X (‘�) = [x1(‘�); : : : ; xm(‘�)]T, for ‘ = 0; 1; : : : , and

M0 = [(a−1�i; �j)M (k�)]mi; j=1; M1 = [(a−1!�i; �j)M (k�)]mi; j=1;

L= [(h∇M (k�)�i;∇M (k�)�j)TM (k�)]mi; j=1: (4.4)

Note that M0; M1 and L are symmetric. Since �1; �2; : : : ; �m are linearly independent and have
compact support, M0 and M1 are sparse and positive de3nite. Similarly, L is symmetric and
nonnegative de3nite. Hence, M0 + �M1 + �L is symmetric and positive de3nite.
The coeRcient matrix of system (4.3) is highly sparse. An iterative method for solving such a

system is desirable. We solve it by the conjugate gradient method with a diagonal preconditioning.

4.2.3. Finite element discretization of (3.12)
Eq. (3.12) is a nonlinear system. We solve it by an iterative process, i.e. we solve progressively

a sequence of linear equations.

Find a smooth x(k+1) such that

.k+1(h(x(k))∇M (k)x(k+1); ∇M (k)%)TM (k) = (a(x(k))−1r(x(k+1)); %)M (k) ; (4.5)

for any %∈C∞
0 (M

(k)) and k=0; 1; : : : ; n−1, where 0¡.1¡.2¡ · · ·¡.n=1 (say .k+1=(k+1)=n),
x(k+1) is a point on the solution surface M (k+1). M (0) is chosen to be the initial surface M and M (n)

is the required approximate solution of (3.12).
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Denote the numerical solution of (4.5) by x(k+1) =
∑m

i=1 x(k+1)i �i and put %= �j. Then Eq. (4.5)
could be approximated by

m∑
i=1

x(k+1)i .k+1(h(x(k))∇M (k)�i;∇M (k)�j)TM (k)

=
m∑
i=1

(x(0)i − x(k+1)i )(a(x(k))−1!(x(k))�i; �j)M (k) (4.6)

for j = 1; : : : ; m. Eq. (4.6) is a linear system for unknown x(k+1)i . It can be written in the following
matrix form:

(M1 + .k+1L)X (k+1) =M1X (0); (4.7)

where X (k+1) = [x(k+1)1 ; : : : ; x(k+1)m ]T, and

M1 = [(a−1!�i; �j)M (k) ]mi; j=1; L= [(h∇M (k)�i;∇M (k)�j)TM (k) ]mi; j=1: (4.8)

Again, M1 + .k+1L is symmetric, positive de3nite and highly sparse.

5. Implementation details

This section addresses several implementation issues of problem (3.11), including de3ning the
adaptor a(x), homogenizer h(x) and the interpolator !I (x).

5.1. DeBning the adaptor a(x)

Now we illustrate how a(x) is de3ned. At each vertex xi of the mesh Md, we 3rst compute a
value ai ¿ 0, which measures the density of the mesh around xi. We de3ne ai as the sum of the
areas of the triangles surrounding xi. To make the a′is relative to the density of the mesh but not the
geometric size, we always resize the mesh into the box [−3; 3]3. This value ai is used as control
value for de3ning adaptor:

a(x) =
m∑
i=1

ai�i: (5.1)

Hence, a(x) is a function in the 3nite element space VM (0). Note that since a(x) is not a constant
any more, it is involved in the integration in computing the sti.ness matrix M0 and M1. Since
a(x)∈VM (0), it is C2, except at the extraordinary vertices, where it is C1. However, a(x) may also
be noisy, since it is computed from the noisy data. To obtain a smoother a(x), we smooth repeatedly
the control value ai at the vertex xi by the following rule:

a(k+1)i = (1− nili)a
(k)
i + li

ni∑
j=1

a(k)j ; (5.2)
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where a(0)i = ai for i = 1; : : : ; m; a(k)j in the sum are the control values at the one-ring neighbor
vertices of xi; ni is the valence of xi; li and a(ni) are given as follows:

li =
1

ni + 3=8a(ni)
; a(ni) =

1
ni

[
5
8
−

(
3
8
+
1
4
cos

2	
ni

)2]
:

The smoothing rule (5.2) is in fact for computing the limit value of Loop’s subdivision (see paper
[12, pp. 41–42]) applying to the control values a(k)i at the vertices. In our examples, we apply this
rule three times. Experiments show that even more times of smoothing of ai are not harmful, but
the inKuence to the evolution results are minor. The smoothing e.ect of (5.2) could be seen by
rewriting it in the following form:

a(k+1)i − a(k)i

nili
=
1
ni

ni∑
j=1

(a(k)j − a(k)i ):

The left-handed side could be regarded as the result of applying the forward Euler method to the
function ai(t), the right-handed side is the umbrella operator [3]. Hence, (5.2) is a discretization of
the equation 9D=9t =BD. Since nili ¡ 1, the stability criterion for (5.2) is satis3ed.
Fig. 1 is used to illustrate the di.erence between the identity adaptor evolution and the nonidentity

adaptor evolution. The top 3gure shows the input mesh, the next one is the result of the identity
adaptor evolution. Comparing this to the bottom 3gure, which is the result of the nonidentity adaptor
evolution, many detailed features on the back and the snout of the crocodile are preserved by the
adaptive approach. Furthermore, the large features of the identity adaptor evolution (compare the
tails of the crocodiles) are less fairer than that of the nonidentity adaptor, even though the detailed
features are already over-faired.

5.2. DeBning the homogenizer h(x)

The homogenizer h(x) is de3ned in a similar way as a(x). We 3rst de3ne a number hi ¿ 0 for
vertex xi. Here hi is de3ned as the sum of all the areas of triangles around xi. Then we scale
and translate hi so that maxihi ∈ [0; 1] by (hi − hmin)=(hmax − hmin), where hmin = mini{hi} and
hmax = maxi{hi}. Then de3ne h(x) =

∑
i hi�i(x). Fig. 3 illustrates such an e.ect for a simple input

mesh on the left. Two fairing results, after 114 fairing iteration (�=0:01), are presented on the right
with a homogenizer h(x) and without the homogenizer, respectively.

5.3. DeBning the interpolator !I (x)

We de3ne !I (x) as !I (x) =
∑

i !i�i(x), where !i is de3ned by

!i =

{
W; xi is an interpolatory vertex;

0; otherwise;

where W ¿ 0 is large number. The larger of W , the closer of the surface to the interpolatory
vertices. The indices of the interpolating vertices can be speci3ed by users. The default choice in our
implementation is by the magnitude of curvature at the vertices. If one of the principal curvatures
of a vertex is larger than a speci3ed value, then we interpolate that points. Fig. 4 illustrates the
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Fig. 3. The left 3gure is the initial mesh. The right two 3gures are the faired meshes after 114 fairing iterations with
timestep � = 0:01 and with a homogenizer h(x) and without the homogenizer, respectively. The ratios of minimal and
maximal areas of the triangles are 0.831 and 0.000865, respectively.

Fig. 4. The left 3gure shows the initial noisy mesh with some vertices are speci3ed as interpolatory. The interpolatory
vertices are those which lie approximately on either the xz-plane or the yz-plane. The middle and right 3gures are the
faired meshes after 7 and 14 fairing iterations, respectively, with timestep �= 0:001 and with a nonzero !I (x).

interpolating e.ect for an input mesh on the left with some speci3ed interpolatory vertices. Fairing
results, after 7 and 14 iterations (� = 0:001), are presented in the middle and right, respectively,
with W =110:0. Fig. 5 shows the di.erence of the e.ects caused by nonzero !I (x) and zero !I (x),
for an input mesh on the left with a default choice of the interpolatory vertices. Fairing results,
after 3 iterations (�= 0:0025), are presented in the middle and right with W = 300:0 and W = 0:0,
respectively.

6. Conclusions

We have proposed a simple approach in solving the di.usion PDE by the 3nite element dis-
cretization in the spatial direction and the semi-implicit discretization in the time direction, aiming
at solving the under-fairing/over-smooth problem, the singularity problem and the nonsteady solution
problem. The implementation shows that the proposed scheme works very well. Currently we are
conducting theoretical research on how the parameter !A in (3.8) a.ect the error bound between the
faired surface and the initial surface.
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Fig. 5. The left 3gure represents the initial mesh with a default choice of the interpolatory vertices. The middle and right
3gures are the faired meshes after 3 fairing iterations with timestep � = 0:0025 and with a nonzero !I (x) and a zero
!I (x), respectively.
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