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Abstract

This paper deals with delay Lur’e control systems with multiple nonlinearities and time-varying structured un-
certainties. First, some sufficient, and necessary and sufficient conditions for the existence of a Lyapunov functional
in the extended Lur’e form with a negative definite derivative that guarantees delay-independent robust absolute
stability are presented. Then, some new less conservative delay-dependent absolute stability criteria are derived
that employ free weighting matrices to express the relationships between the terms in the Leibniz—Newton formula.
All the criteria are based on linear matrix inequalities. Finally, a numerical example is presented to illustrate the
effectiveness of the method.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of the absolute stability of Lur’e control systems has been widely studied for several
decades (s€8,9,14,16,21). Since time delays are frequently encountered in such systems and are often
a source of instability, a considerable number of studies have also been done on the stability of delay
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Lur’e control systems (e.§1,2,7,10,17). They have resulted in the establishment of some necessary and
sufficient conditions for the existence of a Lyapunov functional with a negative definite derivative in the
extended Lur’e form that guarantees the absolute stability of such syStera®wever, it is known that

the necessary and sufficient condition§ihcannot be extended to deal with systems with time-varying
structured uncertaintiefl 0] employed linear matrix inequalities (LMIs) to express the necessary and
sufficient conditions given ifY]. The advantage of this method is that it is easy to extend to systems with
time-varying structured uncertainties.

On the other hand, a number of interesting new ideas have been proposed recently to improve the
delay-dependent stability criteria for linear delay systé¢#rs5,12,13,15,18,20[The most effective of
these methods was first presented 1 and then extended to a more general settinflLBY. However,
their methods still require improvement in several places. One is that they treated the terms of the
Leibniz—Newton formula as though they were independent of each other and did not fully consider
the relationships between them. Recertlyl,] presented a new method of obtaining delay-dependent
stability criteria for neutral systems. The most interesting feature of this method is that it uses free
weighting matrices to express those relationships.

This paper discusses the problem of the existence of a Lyapunov functional in the extended Lur'e
form with a negative definite derivative that guarantees the robust absolute stability of a delay Lur'e
control system with multiple nonlinearities in a bounded sector. Some necessary and sufficient conditions
for its existence are derived by extending the delay-independent criteria giy&d] ito a system with
time-varying structured uncertainties. The method presenfédjis also employed to derive some delay-
dependent stability conditions for delay Lur’e control systems. These methods have two big advantages.
One is that the free parameters in the Lyapunov functional can easily be selected by solving a group
of LMIs in both delay-independent and delay-dependent criteria. The other is that the relationships
between the terms in the Leibniz—Newton formula are taken into account in the delay-dependent criteria.
A numerical example is presented to illustrate how much of an improvement the necessary and sufficient
conditions are over the sufficient condition obtained by direct application of the S-procedure. The benefit
of delay-dependent criteria is also demonstrated in the example.

2. Notation and preliminaries

Consider the following delay Lur'e control system with time-varying structured uncertainties and
multiple nonlinearities:

(1) = (A + AA()x(@) + (B + AB@)x(t — 1)
2 +(D + AD®)) f(6(2)), (1)
a(t) = CTx(1),

wherex () = (x1(1), x2(t), . .., x,(t))" is the state vector; >0; A = @i nxns B = bij)yxn; D =
dij)nxm=d1,d2, ... ,dy); C=(cij)pxm=(c1,C2, ..., cn);djandc;(j=1, 2, ..., m)arethgth column

of D andC, respectivelyg(t) = (o1(1), a2(¢), ..., o) T and (o)) = (f1(o1(2)), fa(o2(1)), ...,
S (o (1)))" is a nonlinear function. The nonlinearitigs(-) satisfy

fi() € K;[0,kj1={fj(c))|fj(0)=0; 0<6jfj(Gj)<kj<7§, c; #0}, j=12,....m, (2)
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forO<k; <+o00, j=1,2,...,m. Forsimplicity, f;(c;(¢)) is abbreviated tgf; (¢;) in some places in
this paper.
The uncertainties are assumed to be of the following form:

[AA(t) AB(t) AD(t)] = HF (1)[Eq Ep Eql, 3

whereH, E,, E;, andE; are known real constant matrices with appropriate dimensiBgsis thejth
column of E;; and F(¢) is an unknown real time-varying matrix with Lebesgue measurable elements
satisfying (| - | means the Euclidean norm)

IF@I<1, Vi (4)
The nominal system of’; is given by

o | %) = Ax(t) + Bx(t — 1) + Df (a(1)),
E {a(t) =CTx(1). ®)

Constructing a Lyapunov functional in the extended Lur’e form yields

V) = xT () Px() + /
t

xT(s)Qx(s)-l—ZZ ij/o ' fj(o;)do;, (6)
T =1

whereP = PT>0,0=0">0andi;>0(j =1,2,...,m) need to be determined.
j

Definition 1. The functionalV (x;) of (6) is said to be a Lyapunov functional of system (or of the
nominal systeny’p), with a negative definite derivative if

V(x)lyy <0 (resp V(x)ls, <0) )
forany f;(:) e K;[0,k;]1 (j =1,2,...,m, (x(t), x(t — 1)) # 0).

If condition (7) holds,#1 is robustly absolutely stable and the nominal systégris absolutely stable
in the sector bounded by = diag(ks, k2, . .., kn).
The following lemmas are employed to derive the main results of this study.

Lemma 2 (He and Wu[10]). Equation(7) holds for the nominal systerfo, i.e., ¢ is absolutely
stable in the sector bounded W = diag(ky, ko, .. ., kn), if there existP = PT>0, 0 = QT >0,
T =diag(t1, 12, ..., ty)>0and A = diag(/1, 22, . . ., 4 ) >0 such that the LMI

ATP+PA+Q PB PD+ATCA+CKT
Q= { BTP -0 BTCA } <0 (8)
D'P+ ACTA+TKCY AC'B AC'™D+D'CA-2T

holds. This condition is also a necessary condition wihea 1.

This lemma was derived by directly applying the S-procedure to the nonlinearities, and the condition
is only sufficient whemn > 1.
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In contrast, letting: = diag(«1, a2, .. ., o) and
D;’:{odcxi =0, fori>j; s €{0,k;}fori<j, (i=212....m)}, j=L12 ...,m, 9)
for 2/~ elements, and assuming that
A(x) ;== A+ DaC", P(a) := P + CAaC" (10)
yields the following lemma, which provides a necessary and sufficient condition.
Lemma 3 (He and Wy10]). Assumingn >1, for the nominal systenry the necessary and sufficient

condition for the existence of the Lyapunov functioviak,), Eq. (6),satisfying inequality7), i.e., o
is absolutely stable in the sector bounded®y= diag(ks, k2, . . ., k), is that for any« € D;” (j =

1,2,...,m), there exist,>0, P = PT>0,0=0">0and >0 (i =1,2,...,m), such that the
following LMIs hold.

D11(0) P()B @13 j(a) +1,kjc;
Gj(x) = BTP(x) -0 2;BTc; <0, j=12....m, (11)
4513,4,' (o) + takjc}- )LjC}B 2/1J'Cj dj — 2ty

where
®11(0) = AT (@) P (%) + P(0)A(2) + O,
@13 () = P(o)d; + 4; AT (2)c;.

The following lemma is used to deal with the time-varying structured uncertainties in the system.

Lemma 4(Xie[19]). Forgiven matrice®? =Q", H, E andR=R" > Owith appropriate dimensions
Q+HFE+E'FTH' <0,

holds for all F satisfyings"T F < R if and only if there exists > 0 such that
O+c¢HH +¢ *ETRE <O0.

3. Delay-independent robust absolute stability

First, for the system with time-varying structured uncertaintiég, the following sufficient condition
is derived from Lemma 2 by applying the S-procedure directly to the nonlinearities and handling the
uncertainties by means of Lemma 4.

Theorem 5. Systeny”1 is robustly absolutely stable in the sector bounded&by: diag(k1, ko, . . ., k)
if there existP = PT >0, 0 = Q" >0, A =diag(i1, 22, ..., Am) =0, T = diag(r1, 12, . . ., t,,) >0 and
¢ >0 such that the LMI

P11 PB + eEaTrEb P13 PH
B'P+¢EJE, —Q+¢EJE, B'CA+¢EJE; O 0 12
v, ACTB + ¢EJ Ey V33 ACTH | = (12)

H'P 0 H'CA —el
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holds where
P11=A"P+ PA+ Q+<EE,,
Y13=PD+ ATCA+CKT +¢E]E,,
W33=AC'D+ D'CA—2T +¢E} E,.

Proof. Replacingd, BandDin(8)withA+HF (t)E,, B+ HF (t)E, andD+ H F (t) E4, respectively,
shows that (8) forr’; is equivalent to the following condition

-
PH E%_
Q+ { 0 } F()[E, Ey Eq1+ | E} | FT()[HTP 0 HTCA] <O. (13)
ACTH Ej

By Lemma 4, a necessary and sufficient condition guaranteeing (13) is that there ex®ich that
PH CE]

Q+g_1|: 0 } [HTPOH'CAl+¢| E] |[E, Ep Eq]<O. (14)
ACTH | E)

Applying the Schur complemefi] shows that (14) is equivalent to (12).00

This theorem is conservative with regard to the robust absolute stability of sygiemwhich has
multiple nonlinearities, since it is just a sufficient condition. The following theorem derived from Lemma
3 gives a necessary and sufficient condition.

Theorem 6. A necessary and sufficient condition for the existence of a Lyapunov functignal Eq.
(6) satisfying inequality(7), that ensures the robust absolute stabilitys6f in the sector bounded by
K = diag(ky, ko, ..., ky) is that for anya € D;.” (j =12, ...,m), there existt, >0, P = P >0,

0=0"7>0,2,>0G=12...,m)ande, >0, such that the following LMIs hold.
q?%l(oc) Oro0)  G13j(0) P@H

A Dpp(0) Do) P23 () 0
b13; () Byg;(0) 3z AjclH
HTP(x) 0 LjHTe;  —eyl

<0, j=12...,m, (15)

$11(2) = D12(2) + &, E,, (1) Eq(20),

$12(0) = P(2) B + &4 E, () Ep,

d13(0) = P13 j (@) + tukjcj + e, Ey (@) Eaj,

Po(e) = —Q + e, E} Ep,

(,1\52371'(06) = /ljBTCj + EaEl;rEdj,

b33, (2) = 24jcdj — 2ty + &4 E g Eqj.

Eq(0) = (Eq + EqoCT)(Ey + EqaCT)
and ®11(x) and @13 j () are defined irf(11).
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Proof. For the sake of simplicity, let
A=A+ AA(t), B=B+AB(t), D=D + AD(t), A(a) = A + DaC", (16)

and&j be thejth column of D. It is clear from Lemma 3 that the conditions (11) {6k are equivalent
to the statement that there ex®t= PT>0,0 = Q">0,/,>0 (i =1, 2, ..., m) andz, such that the
following LMIs
B11(0) P(WB ®13(2) + t,kjc;
Gi(a) = BTP(x) -0 2jBTc; <0, j=12....m (17)
1a () + kel 2;cTB 245cTd; - 2,

hold for anya« € D;.”, j=12,...,m,where

D11(0) = AT (@) P(2) + P(2)A(2) + O,
®13j(0) = P(o)d; + 4; AT (9)c;.

ReplacingA(«x), B andd; in (17) with A(w) + HF(t)E.(«), B + HF (1)E; andd; + HF (t)Eqj,
respectively, allows us to writ€ ; («) as

) P(o)H
Gj(@)=Gj(x)+ { 0 } F(D)[Eq(x) Ep Egjl
;ch;rH
E](2)
+| E} |FTOH"P@ 0i;H ¢;l, j=1,2,...,m, (18)

b
Edj

whereG ; () is defined in (11). By Lemma 4 and the Schur complemégt;x) < 0 if and only if LMIs
(15) are true. O

4. Delay-dependent conditions

Since the criteria given in the previous section do not include any information on the delay, they are
delay-independent criteria. Even though is robustly absolutely stable far= 0, it is not robustly
absolutely stable for alt > 0. Continuity shows that’1 is robustly absolutely stable only for a small
7. S0, the delay-independent criteria that guarantee the stabilitss dbr any = > 0 turn out to be very
conservative. Criteria that include information on the delay (i.e., delay-dependent criteria) have been
widely investigated as a way of overcoming the conservatism. In particular, many papers have been
devoted to the study of delay-dependent criteria for linear systems. In this study, we extended the method
presented ifill] to a delay Lur’e control system with multiple nonlinearities and obtained the following
theorem. It takes the relationships between the terms of the Leibniz—Newton formula into account for
a delay Lur’e control system, thus enabling new delay-dependent criteria that ensure robust absolute
stability to be derived.
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Theorem 7. For agiven scalar > 0,systeny is absolutely stable if there exiBt=PT > 0,0=0" > 0,
X11 Xi12 Xi3

Z:ZT>0,X:XT:|:XIZ X22 ng} >0, A=diag(/1, /2, ..., m) =0, T =diag(r1, 12, . . . , ;) >0

Xl; X3 Xas
and any matricesV; (i = L. 2, 3} such that the following LMI£19) and (20) hold.

r%l I's TI'1i3+CKT A'Z

r I'oo I'>3 tBZ
12 0 19
I,+TKCT Il TIsz—2 D'z |~ (19)

tZA tZB tZD —1Z

X11 X12 X13 M1
X], X2 X2 N2
X3 Xj3 Xz N3
N{ N] N} Z

>0, (20)

where

ri1=A"P+ PA+ Q+ N1+ NJ 4 tX11,
a=PB+ N, — N1 +1X12,
r3=PD+ATCA+ Nj +1X13,
Ip2=—Q — N2 — Nj + X2,

I'oz= B'CA— Nér + 1X03,
I'33=AC'D+ D"CA+ tX33.

Proof. Choose a Lyapunov functional candidate to be
0 pt
Vi(x) = V(x) + / / %1 (s)Zx(s) ds do, (21)
—t Jt+40

whereV (x,) is defined in (6) and& = ZT >0 needs to be determined.
Using the Leibniz—Newton formula yields

t
x(t)—x(t—r)—/ x(s)ds =0. (22)
t—1
Then, for any constant matricdg (i = 1, 2, 3) with appropriate dimensions, the following is true.
t
2xT (N1 +xT(t — )N2 + £ (a(t)) N3] [X(t) —x(t—1)— / x(s) dS] =0. (23)
—r

On the other hand, for any constant maiwith appropriate dimensions, the following is also true.

x(t—1) | | 1(X12—X12)T  ©(X22— X22)  ©(X23— X23) | | x(t —71)
fle®) ] Le(X13— X137 t(X23— X23)7 (X33 — X33)1 L f(a())

[ x(t) }T[uxn—xm 1(X12 — X12) r(X13—X13)M x(1) }
=0. (24)
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Calculating the derivative o¥;(x,) along the solutions of’y and adding the terms on the left sides of
(23) and (24) to it yields

t
Va(x)l g = ETOTER) — f (T, )L, 5) ds, (25)
1—1

where

=" xTt—0 fH. (e s)=[ET@) T )],
ri+tA"ZA T12+tATZB T'13+tATZD
r= [r}z +1B'ZA T2+1B'ZB T+ rBTZDj| ,
I{3+tD"ZA T)+tD'ZB TI33+:tD'ZD
i (i, j=1,2,3;i<j<3) are defined in (19) and is defined in (20).
In addition, the conditions (2) are equivalent to

Filaj)(fi(0j@) —kjc]x())<0, j=1,2,....m (26)
and it is easy to show that
DI @), x(t —1)) #0 and(2)} = {&(1)[&(r) #0 and(2)}. (27)

Now, using (26) and (27) and applying the S-procedure shows that, if therelexidiag(t1, 12, . . ., 1) >0
such that

t
' rer) — / (T (e, s)ML(t, 5) ds
11—

=2 i fi(o; () (fi(o(t) — kjc]x(1) <O, (28)

j=1

then Vd(xt)L(/)O <0 foré() # 0and(x(r), x(t — 1)) # 0 under the condition (2). Thus’g is absolutely
stable. Equation (28) gives (19) and (20)J

From Theorem 7, a stability criterion for a system with time-varying structured uncertainties is easily
obtained by using Lemma 4.

Theorem 8. For a given scalart >0, %1 is robustly absolutely stable if there exit= PT >0,
X11 X12 Xi3
0=0">0,Z2=2">0, X =X" = | X, Xz Xo3|>0, 4 =diagi1, 2, ..., /n)>0, T =
xI, xI, X
. . 1 33 .
diag(ty, 12, . .., 1) =0, any matricesN; (i =3.L, 2, %§ and a scalare > 0 such that the following LMI
and(20) hold.

r11+eEaTrEa I+ ¢ETE, 1:“13 tA'Z PH
,+eE/E, T'p+eEE, T B'Z 0O

tZA tZB tZD —1Z tZH

H'P 0 H'CA tH'Z —¢I
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where

I3=T13+ CKT +¢E} E,,
f23=F23+8EZEd,
I'33=1I33—2T + SEJEd,

andr;; (i, j =1,2,3;i<j<3) are defined in(19).
5. A numerical example

Example 9. Consider systen¥’1 with
-1 0 -05 -01 0 -1
A:[l —2]’ B:[O.l —0.5]’ D:[—l o] =1
andAA(r), AB(t) andAD(t) being
IAA@®)[1<0.2,  [[AB(#)[|<0.05 [[AD(7)[<0.05.

This can be transformed into (3) and (4) with

10 02 0 005 0 005 0
H=[0 1]’ E":[O 0.2]’ Eb:[o 0.05]’ Ed:[o 0.05]

Sincem = 2, assuming = 1 andkp = 2.23 gives
D? = {diag0, 0)}, D3 = {diag(0, 0), diag(k1, 0)}.
Solving LMI (19) yields

p_ 164678 —9.3711 0
© [ —9.3711 290463 |’

21 =0.3889 1, =285416

9.2568 —6.1537
—6.1537 274173 |’

Thus,.#1 is robustly absolutely stable.

However, LMI (12) in Theorem 5 is not true wheén=1 andk,=2.09. This means that itis conservative
to directly apply the S-procedure to check the stability of an uncertain system with multiple nonlinearities.
In contrast, the LMIs (15) in Theorem 6 do hold. While Theorem 5 only provides a sufficient condition
for the stability of.#’1, Theorem 6 provides a necessary and sufficient condition. This example clearly
illustrates that Theorem 6 is a big improvement over Theorem 5.

Forki1 =1 andk, = 3, LMIs (15) in Theorem 6 are not true. That means that no Lyapunov functional
in the extended Lur’e form that guarantees the delay-independent robust absolute stalzilityast be
found. In contrast, Theorem 8 shows tlatis robustly absolutely stable fork 1.5789. This demonstrates
that the delay-dependent criterion, Theorem 8, is less conservative than the delay-independent criterion,
Theorem 6.



380 Y. He et al. / Journal of Computational and Applied Mathematics 176 (2005) 371—-380
6. Conclusion

This paper has presented some sufficient, and necessary and sufficient conditions for the existence of
a Lyapunov functional in the extended Lur’e form with a negative definite derivative that guarantees the
delay-independent absolute, or robust absolute, stability of delay Lur’e control systems with multiple
nonlinearities. The existence problem has been converted to the simple problem of solving a set of LMIs.
In order to overcome the conservatism, some delay-dependent criteria have been derived for absolute,
or robust absolute, stability. A numerical example demonstrated that the delay-dependent criteria thus
obtained are less conservative than the delay-independent criteria.
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