
Journal of Computational and Applied Mathematics 176 (2005) 371–380

www.elsevier.com/locate/cam

Robust stability for delay Lur’e control systems with
multiple nonlinearities

Yong Hea,∗, Min Wua, Jin-Hua Sheb, Guo-Ping Liuc
aSchool of Information Science and Engineering, Central South University, Changsha 410083, China

bSchool of Bionics, Tokyo University of Technology, Tokyo, 192-0982, Japan
cSchool of Electronics, University of Glamorgan, Pontypridd CF37 1DL, UK

Received 4 December 2003

Abstract

This paper deals with delay Lur’e control systems with multiple nonlinearities and time-varying structured un-
certainties. First, some sufficient, and necessary and sufficient conditions for the existence of a Lyapunov functional
in the extended Lur’e form with a negative definite derivative that guarantees delay-independent robust absolute
stability are presented. Then, some new less conservative delay-dependent absolute stability criteria are derived
that employ free weighting matrices to express the relationships between the terms in the Leibniz–Newton formula.
All the criteria are based on linear matrix inequalities. Finally, a numerical example is presented to illustrate the
effectiveness of the method.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of the absolute stability of Lur’e control systems has been widely studied for several
decades (see[8,9,14,16,21]). Since time delays are frequently encountered in such systems and are often
a source of instability, a considerable number of studies have also been done on the stability of delay
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Lur’e control systems (e.g.[1,2,7,10,17]). They have resulted in the establishment of some necessary and
sufficient conditions for the existence of a Lyapunov functional with a negative definite derivative in the
extended Lur’e form that guarantees the absolute stability of such systems[7]. However, it is known that
the necessary and sufficient conditions in[7] cannot be extended to deal with systems with time-varying
structured uncertainties.[10] employed linear matrix inequalities (LMIs) to express the necessary and
sufficient conditions given in[7]. The advantage of this method is that it is easy to extend to systems with
time-varying structured uncertainties.
On the other hand, a number of interesting new ideas have been proposed recently to improve the

delay-dependent stability criteria for linear delay systems[4–6,12,13,15,18,20]. The most effective of
these methods was first presented by[15] and then extended to a more general setting by[13]. However,
their methods still require improvement in several places. One is that they treated the terms of the
Leibniz–Newton formula as though they were independent of each other and did not fully consider
the relationships between them. Recently,[11] presented a new method of obtaining delay-dependent
stability criteria for neutral systems. The most interesting feature of this method is that it uses free
weighting matrices to express those relationships.
This paper discusses the problem of the existence of a Lyapunov functional in the extended Lur’e

form with a negative definite derivative that guarantees the robust absolute stability of a delay Lur’e
control systemwith multiple nonlinearities in a bounded sector. Some necessary and sufficient conditions
for its existence are derived by extending the delay-independent criteria given in[10] to a system with
time-varyingstructureduncertainties.Themethodpresented in[11] is alsoemployed toderive somedelay-
dependent stability conditions for delay Lur’e control systems. These methods have two big advantages.
One is that the free parameters in the Lyapunov functional can easily be selected by solving a group
of LMIs in both delay-independent and delay-dependent criteria. The other is that the relationships
between the terms in the Leibniz–Newton formula are taken into account in the delay-dependent criteria.
A numerical example is presented to illustrate how much of an improvement the necessary and sufficient
conditions are over the sufficient condition obtained by direct application of the S-procedure. The benefit
of delay-dependent criteria is also demonstrated in the example.

2. Notation and preliminaries

Consider the following delay Lur’e control system with time-varying structured uncertainties and
multiple nonlinearities:

S1 :
{
ẋ(t)= (A+ �A(t))x(t)+ (B + �B(t))x(t − �)

+(D + �D(t))f (�(t)),
�(t)= CTx(t),

(1)

wherex(t) = (x1(t), x2(t), . . . , xn(t))T is the state vector;�>0; A = (aij )n×n; B = (bij )n×n; D =
(dij )n×m=(d1, d2, . . . , dm);C=(cij )n×m=(c1, c2, . . . , cm);dj andcj (j=1,2, . . . , m)are thejth column
of D andC, respectively;�(t) = (�1(t), �2(t), . . . , �m(t))T; andf (�(t)) = (f1(�1(t)), f2(�2(t)), . . . ,
fm(�m(t)))

T is a nonlinear function. The nonlinearitiesfj (·) satisfy

fj (·) ∈ Kj [0, kj ] = {fj (�j )|fj (0)= 0; 0��jfj (�j )�kj�2j , �j �= 0}, j = 1,2, . . . , m, (2)
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for 0<kj <+ ∞, j = 1,2, . . . , m. For simplicity,fj (�j (t)) is abbreviated tofj (�j ) in some places in
this paper.
The uncertainties are assumed to be of the following form:

[�A(t) �B(t) �D(t)] =HF(t)[Ea Eb Ed ], (3)

whereH,Ea,Eb, andEd are known real constant matrices with appropriate dimensions;Edj is thejth
column ofEd ; andF(t) is an unknown real time-varying matrix with Lebesgue measurable elements
satisfying (‖ · ‖ means the Euclidean norm)

‖F(t)‖�1, ∀t. (4)

The nominal system ofS1 is given by

S0 :
{
ẋ(t)= Ax(t)+ Bx(t − �)+Df (�(t)),
�(t)= CTx(t). (5)

Constructing a Lyapunov functional in the extended Lur’e form yields

V (xt )= xT(t)P x(t)+
∫ t

t−�
xT(s)Qx(s)+ 2

m∑
j=1

�j

∫ �j

0
fj (�j )d�j , (6)

whereP = P T>0,Q=QT>0 and�j �0 (j = 1,2, . . . , m) need to be determined.

Definition 1. The functionalV (xt ) of (6) is said to be a Lyapunov functional of systemS1 (or of the
nominal systemS0), with a negative definite derivative if

V̇ (xt )|S1<0 (resp. V̇ (xt )|S0<0) (7)

for anyfj (·) ∈ Kj [0, kj ] (j = 1,2, . . . , m, (x(t), x(t − �)) �= 0).

If condition (7) holds,S1 is robustly absolutely stable and the nominal systemS0 is absolutely stable
in the sector bounded byK = diag(k1, k2, . . . , km).
The following lemmas are employed to derive the main results of this study.

Lemma 2 (He and Wu[10] ). Equation (7) holds for the nominal systemS0, i.e., S0 is absolutely
stable in the sector bounded byK = diag(k1, k2, . . . , km), if there existP = P T>0, Q = QT>0,
T = diag(t1, t2, . . . , tm)�0 and� = diag(�1, �2, . . . , �m)�0 such that the LMI

� =
[

ATP + PA+Q PB PD + ATC� + CKT
BTP −Q BTC�

DTP + �CTA+ TKCT �CTB �CTD +DTC� − 2T

]
<0 (8)

holds. This condition is also a necessary condition whenm= 1.

This lemma was derived by directly applying the S-procedure to the nonlinearities, and the condition
is only sufficient whenm>1.
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In contrast, letting� = diag(�1, �2, . . . , �m) and

Dmj = {�|�i = 0, for i�j ; �i ∈ {0, ki} for i < j, (i = 1,2, . . . , m)}, j = 1,2, . . . , m, (9)

for 2j−1 elements, and assuming that

A(�) := A+D�CT, P (�) := P + C��CT (10)

yields the following lemma, which provides a necessary and sufficient condition.

Lemma 3 (He and Wu[10] ). Assumingm�1, for the nominal systemS0 the necessary and sufficient
condition for the existence of the Lyapunov functionalV (xt ), Eq. (6),satisfying inequality(7), i.e.,S0
is absolutely stable in the sector bounded byK = diag(k1, k2, . . . , km), is that, for any � ∈ Dmj (j =
1,2, . . . , m), there existt��0, P = P T>0, Q = QT>0 and �i�0 (i = 1,2, . . . , m), such that the
following LMIs hold.

Gj(�)=
[

�11(�) P (�)B �13,j (�)+ t�kj cj
BTP(�) −Q �jBTcj

�13,j (�)+ t�kj cTj �j cTj B 2�j cTj dj − 2t�

]
<0, j = 1,2, . . . , m, (11)

where

�11(�)= AT(�)P (�)+ P(�)A(�)+Q,
�13,j (�)= P(�)dj + �jA

T(�)cj .

The following lemma is used to deal with the time-varying structured uncertainties in the system.

Lemma 4(Xie[19] ). For givenmatricesQ=QT, H, E andR=RT>0with appropriate dimensions,

Q+HFE + ETF THT<0,

holds for all F satisfyingF TF �R if and only if there existsε >0 such that

Q+ εHHT + ε−1ETRE<0.

3. Delay-independent robust absolute stability

First, for the system with time-varying structured uncertainties,S1, the following sufficient condition
is derived from Lemma 2 by applying the S-procedure directly to the nonlinearities and handling the
uncertainties by means of Lemma 4.

Theorem 5. SystemS1 is robustly absolutely stable in the sector bounded byK = diag(k1, k2, . . . , km)
if there existP = P T>0,Q = QT>0, � = diag(�1, �2, . . . , �m)�0, T = diag(t1, t2, . . . , tm)�0 and
ε�0 such that the LMI


�11 PB + εETa Eb �13 PH

BTP + εETb Ea −Q+ εETb Eb BTC� + εETb Ed 0
�T
13 �CTB + εETd Eb �33 �CTH

HTP 0 HTC� −εI


<0 (12)
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holds, where

�11= ATP + PA+Q+ εETa Ea,
�13= PD + ATC� + CKT + εETa Ed,
�33= �CTD +DTC� − 2T + εETd Ed.

Proof. ReplacingA, B andD in (8) withA+HF(t)Ea,B+HF(t)Eb andD+HF(t)Ed , respectively,
shows that (8) forS1 is equivalent to the following condition

� +
[
PH

0
�CTH

]
F(t)[Ea Eb Ed ] +


ETaETb
ETd


F T(t)[HTP 0 HTC�]<0. (13)

By Lemma 4, a necessary and sufficient condition guaranteeing (13) is that there existsε >0 such that

� + ε−1
[
PH

0
�CTH

]
[HTP 0 HTC�] + ε


ETaETb
ETd


 [Ea Eb Ed ]<0. (14)

Applying the Schur complement[3] shows that (14) is equivalent to (12).�

This theorem is conservative with regard to the robust absolute stability of systemS1, which has
multiple nonlinearities, since it is just a sufficient condition. The following theorem derived from Lemma
3 gives a necessary and sufficient condition.

Theorem 6. A necessary and sufficient condition for the existence of a Lyapunov functionalV (xt ), Eq.
(6) satisfying inequality(7), that ensures the robust absolute stability ofS1 in the sector bounded by
K = diag(k1, k2, . . . , km) is that, for any � ∈ Dmj (j = 1,2, . . . , m), there existt��0, P = P T>0,
Q=QT>0, �i�0 (i = 1,2, . . . , m) andε��0, such that the following LMIs hold.

Ĝj (�)=




�̂11(�) �̂12(�) �̂13,j (�) P (�)H

�̂
T
12(�) �̂22(�) �̂23,j (�) 0

�̂
T
13,j (�) �̂

T
23,j (�) �̂33,j (�) �j cTj H

HTP(�) 0 �jHTcj −ε�I


<0, j = 1,2, . . . , m, (15)

where

�̂11(�)= �11(�)+ ε�ETa (�)Ea(�),
�̂12(�)= P(�)B + ε�ETa (�)Eb,
�̂13,j (�)= �13,j (�)+ t�kj cj + ε�ETa (�)Edj ,
�̂22(�)= −Q+ ε�ETb Eb,
�̂23,j (�)= �jB

Tcj + ε�ETb Edj ,
�̂33,j (�)= 2�j c

T
j dj − 2t� + ε�ETdjEdj ,

Ea(�)= (Ea + Ed�CT)T(Ea + Ed�CT)
and�11(�) and�13,j (�) are defined in(11).
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Proof. For the sake of simplicity, let

Ā= A+ �A(t), B̄ = B + �B(t), D̄ =D + �D(t), Ā(�)= Ā+ D̄�CT, (16)

andd̄j be thejth column ofD̄. It is clear from Lemma 3 that the conditions (11) forS1 are equivalent
to the statement that there existP = P T>0,Q =QT>0, �i�0 (i = 1,2, . . . , m) andt� such that the
following LMIs

Ḡj (�)=



�̄11(�) P (�)B̄ �̄13,j (�)+ t�kj cj
B̄TP(�) −Q �j B̄Tcj

�̄
T
13,j (�)+ t�kj cTj �j cTj B̄ 2�j cTj d̄j − 2t�


<0, j = 1,2, . . . , m (17)

hold for any� ∈ Dmj , j = 1,2, . . . , m, where

�̄11(�)= ĀT(�)P (�)+ P(�)Ā(�)+Q,
�̄13,j (�)= P(�)d̄j + �j Ā

T(�)cj .

ReplacingĀ(�), B̄ and d̄j in (17) with A(�) + HF(t)Ea(�), B + HF(t)Eb and dj + HF(t)Edj ,
respectively, allows us to writēGj(�) as

Ḡj (�)=Gj(�)+
[
P(�)H
0

�j cTj H

]
F(t)[Ea(�) Eb Edj ]

+

ETa (�)ETb
ETdj


F T(t)[HTP(�) 0 �jH

Tcj ], j = 1,2, . . . , m, (18)

whereGj(�) is defined in (11). By Lemma 4 and the Schur complement,Ḡj (�)<0 if and only if LMIs
(15) are true. �

4. Delay-dependent conditions

Since the criteria given in the previous section do not include any information on the delay, they are
delay-independent criteria. Even thoughS1 is robustly absolutely stable for� = 0, it is not robustly
absolutely stable for all�>0. Continuity shows thatS1 is robustly absolutely stable only for a small
�. So, the delay-independent criteria that guarantee the stability ofS1 for any�>0 turn out to be very
conservative. Criteria that include information on the delay (i.e., delay-dependent criteria) have been
widely investigated as a way of overcoming the conservatism. In particular, many papers have been
devoted to the study of delay-dependent criteria for linear systems. In this study, we extended the method
presented in[11] to a delay Lur’e control system with multiple nonlinearities and obtained the following
theorem. It takes the relationships between the terms of the Leibniz–Newton formula into account for
a delay Lur’e control system, thus enabling new delay-dependent criteria that ensure robust absolute
stability to be derived.
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Theorem7. For agivenscalar�>0,systemS0 is absolutely stable if thereexistP=P T>0,Q=QT>0,
Z=ZT�0,X=XT=

[
X11 X12 X13
XT12 X22 X23

XT13 XT23 X33

]
�0,�=diag(�1, �2, . . . , �m)�0,T =diag(t1, t2, . . . , tm)�0

and any matricesNi (i = 1,2,3) such that the following LMIs(19)and(20)hold.


	11 	12 	13+ CKT �ATZ
	T12 	22 	23 �BTZ

	T13+ TKCT 	T23 	33− 2T �DTZ
�ZA �ZB �ZD −�Z


<0, (19)


 =


X11 X12 X13 N1
XT12 X22 X23 N2

XT13 XT23 X33 N3

NT1 NT2 NT3 Z


 �0, (20)

where

	11= ATP + PA+Q+N1 +NT1 + �X11,

	12= PB +NT2 −N1 + �X12,

	13= PD + ATC� +NT3 + �X13,

	22= −Q−N2 −NT2 + �X22,

	23= BTC� −NT3 + �X23,

	33= �CTD +DTC� + �X33.

Proof. Choose a Lyapunov functional candidate to be

Vd(xt )= V (xt )+
∫ 0

−�

∫ t

t+�
ẋT(s)Zẋ(s)ds d�, (21)

whereV (xt ) is defined in (6) andZ = ZT�0 needs to be determined.
Using the Leibniz–Newton formula yields

x(t)− x(t − �)−
∫ t

t−�
ẋ(s)ds = 0. (22)

Then, for any constant matricesNi (i = 1,2,3) with appropriate dimensions, the following is true.

2[xT(t)N1 + xT(t − �)N2 + f T(�(t))N3]
[
x(t)− x(t − �)−

∫ t

t−�
ẋ(s)ds

]
= 0. (23)

On the other hand, for any constant matrixXwith appropriate dimensions, the following is also true.

[
x(t)

x(t − �)
f (�(t))

]T [
�(X11−X11) �(X12−X12) �(X13−X13)
�(X12−X12)T �(X22−X22) �(X23−X23)
�(X13−X13)T �(X23−X23)T �(X33−X33)

] [
x(t)

x(t − �)
f (�(t))

]
= 0. (24)
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Calculating the derivative ofVd(xt ) along the solutions ofS0 and adding the terms on the left sides of
(23) and (24) to it yields

V̇d(xt )|S0 = �T(t)	�(t)−
∫ t

t−�

T(t, s)

(t, s)ds, (25)

where

�(t)= [xT(t) xT(t − �) f T(�)]T, 
(t, s)= [�T(t) ẋT(s)]T,

	 =
[ 	11+ �ATZA 	12+ �ATZB 	13+ �ATZD

	T12+ �BTZA 	22+ �BTZB 	23+ �BTZD
	T13+ �DTZA 	T23+ �DTZB 	33+ �DTZD

]
,

	ij (i, j = 1,2,3; i�j�3) are defined in (19) and
 is defined in (20).
In addition, the conditions (2) are equivalent to

fj (�j (t))(fj (�j (t))− kj cTj x(t))�0, j = 1,2, . . . , m (26)

and it is easy to show that

{�(t)|(x(t), x(t − �))) �= 0 and(2)} = {�(t)|�(t) �= 0 and(2)}. (27)

Now,using (26)and (27)andapplying theS-procedureshows that, if thereexistsT=diag(t1, t2, . . . , tm)�0
such that

�T(t)	�(t)−
∫ t

t−�

T(t, s)

(t, s)ds

− 2
m∑
j=1

tj fj (�j (t))(fj (�j (t))− kj cTj x(t))<0, (28)

thenV̇d(xt )|S0<0 for �(t) �= 0 and(x(t), x(t − �)) �= 0 under the condition (2). Thus,S0 is absolutely
stable. Equation (28) gives (19) and (20).�

From Theorem 7, a stability criterion for a system with time-varying structured uncertainties is easily
obtained by using Lemma 4.

Theorem 8. For a given scalar�>0, S1 is robustly absolutely stable if there existP = P T>0,

Q = QT>0, Z = ZT�0, X = XT =
[
X11 X12 X13
XT12 X22 X23

XT13 XT23 X33

]
�0, � = diag(�1, �2, . . . , �m)�0, T =

diag(t1, t2, . . . , tm)�0, any matricesNi (i = 1,2,3) and a scalarε >0 such that the following LMI
and(20)hold.


	11+ εETa Ea 	12+ εETa Eb 	̃13 �ATZ PH

	T12+ εETb Ea 	22+ εETb Eb 	̃23 �BTZ 0

	̃
T
13 	̃

T
23 	̃33 �DTZ �CTH

�ZA �ZB �ZD −�Z �ZH
HTP 0 HTC� �HTZ −εI


<0, (29)
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where

	̃13= 	13+ CKT + εETa Ed,
	̃23= 	23+ εETb Ed,
	̃33= 	33− 2T + εETd Ed,

and	ij (i, j = 1,2,3; i�j�3) are defined in(19).

5. A numerical example

Example 9. Consider systemS1 with

A=
[−1 0
1 −2

]
, B =

[−0.5 −0.1
0.1 −0.5

]
, D =

[
0 −1

−1 0

]
, C = I

and�A(t), �B(t) and�D(t) being

‖�A(t)‖�0.2, ‖�B(t)‖�0.05, ‖�D(t)‖�0.05.

This can be transformed into (3) and (4) with

H =
[
1 0
0 1

]
, Ea =

[
0.2 0
0 0.2

]
, Eb =

[
0.05 0
0 0.05

]
, Ed =

[
0.05 0
0 0.05

]
.

Sincem= 2, assumingk1 = 1 andk2 = 2.23 gives

D21 = {diag(0,0)}, D22 = {diag(0,0),diag(k1,0)}.
Solving LMI (19) yields

P =
[
16.4678 −9.3711
−9.3711 29.0463

]
, Q=

[
9.2568 −6.1537

−6.1537 27.4173

]
,

�1 = 0.3889, �2 = 28.5416.

Thus,S1 is robustly absolutely stable.
However, LMI (12) inTheorem5 is not truewhenk1=1 andk2=2.09.Thismeans that it is conservative

to directly apply the S-procedure to check the stability of an uncertain systemwithmultiple nonlinearities.
In contrast, the LMIs (15) in Theorem 6 do hold. While Theorem 5 only provides a sufficient condition
for the stability ofS1, Theorem 6 provides a necessary and sufficient condition. This example clearly
illustrates that Theorem 6 is a big improvement over Theorem 5.
Fork1= 1 andk2 = 3, LMIs (15) in Theorem 6 are not true. That means that no Lyapunov functional

in the extended Lur’e form that guarantees the delay-independent robust absolute stability ofS1 can be
found. In contrast,Theorem8shows thatS1 is robustly absolutely stable for��1.5789.This demonstrates
that the delay-dependent criterion, Theorem 8, is less conservative than the delay-independent criterion,
Theorem 6.
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6. Conclusion

This paper has presented some sufficient, and necessary and sufficient conditions for the existence of
a Lyapunov functional in the extended Lur’e form with a negative definite derivative that guarantees the
delay-independent absolute, or robust absolute, stability of delay Lur’e control systems with multiple
nonlinearities. The existence problem has been converted to the simple problem of solving a set of LMIs.
In order to overcome the conservatism, some delay-dependent criteria have been derived for absolute,
or robust absolute, stability. A numerical example demonstrated that the delay-dependent criteria thus
obtained are less conservative than the delay-independent criteria.
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