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Abstract

Let x; and x; be the least and the largest zeros of the Laguerre or Jacobi polynomial of degree k. We shall
establish sharp inequalities of the form x; < A, x; > B, which are uniform in all the parameters involved. Together
with inequalities in the opposite direction, recently obtained by the author, this locates the extreme zeros of classical
orthogonal polynomials with a high precision.
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1. Introduction

Study of extreme zeros of the Hermite, Laguerre and Jacobi polynomials has a long history and most
of the classical results are collected in [16]. But only recently attention has been shifted to the case
when the parameters may vary with the degree k of a polynomial [2—4,7,10,13,15]. Most of these results
are of the asymptotic nature (with [7] and [13] being a remarkable exception) and hold under certain
restrictions on the parameters. Recently the author obtained the following explicit uniform bounds [11]
(similar inequalities for the Laguerre case were given earlier in [10]).
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Theorem 1. Let x| and xj be the least and the largest zero of the Laguerre polynomial L,(f) (x), respec-
tively, o.> — 1. Then

x1 > V243V — v, (1)

xx <U? =303 W? - vH~13 42, (2)
wherev=m—\/%,U=m+\/z.
Theorem 2. Let x| and xi be the least and the largest zero of the Jacobi polynomial Pk(a’ﬁ ) (x), respectively,
a>f>—1.Then

x1> A+301—AHYer)1S, 3)

49(s + 1)
(r2 +2s + 1)

xk<B—3(1—B»Per)~1P + 4)

where

s=o+p+1, g=a—p, r=2k+a+p+1, R:\/(rz—q2+2s+1)(r2—s2),

and
_R+4qG+1) _R—q(s+1)
r24+2s+17 7 r2425+1°

As the zeros of the Hermite polynomials can be easily expressed through the zeros of the corresponding
Laguerre polynomials we will not consider them in this paper.

Previously known results give, roughly speaking, V2 < x| < x; < UZ, for Laguerre polynomials [5,7,16],
and A < x1 < x < B, for the Jacobi case [7,13]. It is also known that these bounds are asymptotically
correct under certain assumptions on the parameters. On the other hand one can expect that much sharper
results similar to these of Theorems 1 and 2 hold in a more general situation. In particular, inequalities
analogous to (1)—(4) are known for the zeros of Charlier [9] and binary Krawtchouk polynomials [8].

The aim of this paper is to show that the bounds given by Theorems 1 and 2 are essentially sharp,
thus locating the extreme zeros of the classical orthogonal polynomials with a high precision. Namely
we shall establish (in a rather elementary way) two following theorems giving similar inequalities in
the opposite direction. Our method is based on so-called Bethe ansatz equations, having some important
applications to orthogonal polynomials [6,12]. It is also worth noticing that the above simple bounds
V2 <x1 <x; <U? and A < x| < x; < B, for the Laguerre and Jacobi polynomials, respectively, are an
immediate corollary of the Bethe ansatz equation we use here (see Lemma 1 below).

Theorem 3. Let 6 =1/k + 1/(x+ 1) < 1/50, then in the notation of Theorem 1,
9v4/3

2
M=V G vy BG — 1By ©)
Let k>30, then
9U4/3
X > U? — (6)

202 - v)l/3
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provided 0. <2(3 + 2\/§)k — 1, and

5 9U4/3
xx>U”" — v Pa 3k ) (7
otherwise.
Theorem 4. Let o> f > — 1, then in the notation of Theorem 2, for k >5,
X1 <A+9(1 — A%?BP@2R)7IS3, (8)
and for k> 56,
x> B —9(1— BHP2Rr)~1A3, ©)

It seems that the bounds in this direction received much less attention. Yet there are some rather weak
classical inequalities which will be used here ([16, Sections 6.2, 6.31]).

Theorems 1-4 yield the asymptotics for the extreme zeros given in the next theorem (in the Jacobi case
x; and B may vanish what leads to more complicated expressions). The meaning of O-terms here is that
for sufficiently large k, say k > 100, one can replace them by absolute constants.

Theorem 5. (i) In the notation of Theorem 1, for sufficiently large k and o > 50, the extreme zeros of the
Laguerre polynomial L,(c“) (x) satisfy

1/6
xl _1/2 1 1
L o140 1 —_— - : 10
2 ((“+) (a+1+k) ) (19)
X _ _
U—kz:I—O(k Yok 4 a)~112). (11)

(1) In the notation of Theorem 2, for sufficiently large k and o> [} > — 1, the extreme zeros of the Jacobi
polynomial Pk(x’ﬁ ) (x) satisfy

2/3
X B+ 1? o220
A—1+0 (k(k+oc)(k+[3)) ;oortzqt+rr, (12)
X (ﬁ+1)4/3 ) 2 ) )
X_1+O<k2/3(k+ﬁ)5/6«/k+a B 4

Let r* = q2 +s24 y(s + 1)2/3(r2 — s2)1/3, then

X
le—Mwa%%Q%,y>m (14)
Xk 3(s + D3

5 =1- 0™, (15)

T
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Xk

& = 1= oW+ 172, - <y <0; (16)

1
|xx| = O (kl/6—«/k—+oc) . <L (17)

It is worth to compare the obtained inequalities with the classical results for the fixed values of the
parameters. In particular, in the Laguerre case one has ([16, Theorem 6.32], see also [14] for a far-reaching
generalization)

2
X < («/4k T20+2— 6" 3@k + 20+ 2)"/61'11) :

where 6-1/3j;; = 1.85575. .., and i, stands for the least positive zero of the Airy function. One can
check that for a fixed « this differs from (2) only by the better factor ¢ =2 - 6~1/31, instead of 3, before
the second terms of (2). It is tempting to conjecture that asymptotically for k — oo, and uniformly in all
the parameters involved, one should get the same constant ¢ instead of 3 before the second terms in all
the expressions (1)—(4).

The paper is organized as follows. In the next section we establish rather general inequalities being our
main tool in the sequel. In Sections 3 and 4 we will prove Theorems 3 and 4, dealing with Laguerre and
Jacobi polynomials, respectively. Section 4 also contains a proof of Theorem 5.

2. Bethe ansatz inequalities

In this section we will consider real polynomials f= f (x) with only real simple zeros x| < x3 < - - - < Xxg,
satisfying a differential equation

" —2af +bf =0. (18)

We suppose here that a = a(x) and b = b(x) are meromorphic functions and none of x; coincides with
the singularities of a or b. For such an f we define the discriminant A(x) = b(x) — a?(x), and consider
the second negative moments of f at its zeros

1
S(foxi) = D
fix ; i —x;)°
Lemma 1.
1 A(x;) — 2a’(x;)
S(f,x;) = = . 19
(f, %) ;(xi_xj)z 3 (19)

Proof. Using the logarithmic derivative and (18) we get

1 F\ _fP = f1 % = 2af"f +bf?
L

@-x)2  \f o r?

(20)
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Thus

2 / 2
S(f,xi):xli_)n)lv <f 2af f +bf" 1 )

f? (x — x;)?

The result follows on applying four times L’Hopital’s rule and substituting f” from (18) at each step. O

Remark 1. Results of this type are called Bethe ansatz equations and are known (or can be routinely
established) in a more general situation and weaker smoothness assumptions. We refer to [1,6,12] and

the references therein for a more detailed discussion.
Lemma 2.

— 2a'(xi)

Dumhm=1+u—mﬂ(M”)3 —Au0>a

provided x ¢ [x1, x¢). In particular, if a’(x;) >0, then
3—2(x — x)2A0x) + 3(x — x)*(A(x;) — 4(x)) > 0.

Proof. From (20) we have

, 2
Ly ! (f“)_auo +b(x) = a* (1) > A(x).

(x —x;)? i —xj)? “\rw
Since
1
— = S(f, xi),
; (X—Xj)2<; (xi = xj)? "

for x ¢ [x1, xx], we obtain

m + S(f, xi) > 4(x),

and (21), (22) follow by Lemma 1. O

21

(22)

Remark 2. Similar arguments can be apply to x € [x1, xx], say x; < x < x;41, giving an upper bound on

Xi+1 — X;. Indeed,

1 1
S +y

+ > 1

@ —xie)? xS (- xy)?
1 1 1 1
< + + ) —+ —
(x—x)*  (x—xiq1)? ;;uj—mﬂ jéggw—anz

1 1

+ —_
(x—x)% (= xip)? (g — )’

+ S2(f, xi) + S2(f, xig1).
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By substituting here x = (x; + x;41)/2, one obtains

18
= 34((x; + xi4+1)/2) — A(xi) — A(xiq1) + 2a' (x;) + 2a’ (xi41)’

2
(Xit1 — xi)
provided the denominator is positive.

We will solve inequality (21) for the Laguerre and Jacobi polynomials in the next section. This will
require rather involved calculations but the following simple heuristic arguments show what type of
bounds may be expected.

Suppose that 4(x) has only two real zeros y; < y». Neglecting the term 2a’(x), we obtain that all
the zeros of f are in the interval (y, y2). Let x; be, say, the largest zero of f, we put xx = y» — ¢,
and choose x = y» — 5¢/9. Now, on omitting higher derivatives of 4, that is putting 4(y2 — 0) ~
A(y2) — 04’ (y2) = —64'(y2), (21) can be rewritten as

1662 (A(xk) 32634 (y2)

729

0<1+

— 4 ~ 1
21 3 (x)) +

Thus we obtain x; > y, + %(44‘/()’2))_1/3

in the opposite direction x; < y2 + 3(44'(y2))~

. Notice that similar heuristic considerations given in [11] yield
173 (4’ (y7) is negative as 4(y>) = 0).

3. Laguerre polynomials

The Laguerre polynomials L,({“) (x) are polynomials orthogonal on [0, co) for o > — 1, with respect to
the weight function x*e ™. The corresponding ODE is

u' — (1 — (e + l)x_l)u/ +kx"lu= 0, u= L,Ea)(x).
We also need the explicit representation

k .
o k+ —x)'
LPw0=3" (k_‘:,‘> ( i);) . (23)

i—0

Using the notation of Theorem 1 we get k = (U — V)2 /4, 2=V U — 1, and the condition « > — 1, means
V >0.
We have a(x) = (x — VU)/2x,ad' (x) = VU/Z)C2 > (0, and also

(U? —x)(x = V?)

A(x) = ,
(x) 4x2

(24)

Let x; and x; be the least and the largest zeros of L,(c“) (x), respectively. We need the following (rather
weak) bound on xj. ([16, Section 6.31]).

(+ D(+3) 2VU(VU +2)
2k+a+1 V24 U2

(25)

X1 <
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By (23) we have Zf:oxi =k(k+a),implying x| <k+oa=(U + V)2/4 < xi. Moreover, as 0 < S(L(“), X;)
< A(x;), we get that all the zeros satisfy V2 <x; < U2, hence

1 3
V2<xl<%<xk<uz. (26)
Lemma 3. For V2 <x <xj,
2 _ 12
Mm)—A@)<—zvr—@1—X) (27
For xp <x < U2,
2 y2
A(xp) — A(x) < — (x — xp). (28)
dx;

Proof. Using that (V% 4+ Uz)xy —VU%(x + ¥))/xy is an increasing function in x and y we obtain

Ax) — A(x) VU (x +x1) — (V2+U>xx, U?—-vVv2 py?-vy?
= < < X
x| —Xx 4x2x% 4xx1 4v4

Axp) — A(x) (V24 UPxxp — VU (x+xx) U?>—VZ2 Uy?-—vy?
e < <
X — Xk 4x2x13 Adxxp 4x,§

and the result follows. [

Proof of Theorem 3. (i) We choose x = x| — ¢, where e = 2V*/3 /(U? — V2)1/3 Then (22) and (3) give

_FWUR—x) = V) N 32U -V?) o £Ur —x)(x1 — V?)

0<3 = F(x)).
= 212 4v* 2x2 (v

We claim that under our assumptions F(x) has two zeros y; <yz, and x; <y;. As x; <xg9 =
((e+ D (x+3))/(2k + a+ 1), it is enough to show that F(xg) <0. Putting b = « + 1, we have

262 82k(k +b)  2¢%k(k + b)

F(x0) =9+ + —
Here
262 82k(k +b) 82k +b)> 16
£ i e k(k + 2) & ( j‘ ) < 051/3 _ 16543,
(b+2)*  b2b+2) b b
and

282k(k +b)  [16bk(b +k)\*? bk \*°
— S(——) =523
b? U* k+b

Now it is left to check that 9 4 166*/3 — 672/3 <0, for 6 < %, proving the claim.
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For y; we get

V2

yi=Vi+4
h (1 V1= 18v2U2h—4) —9

s

where h = V2/3(U? — V2)1/3, and

18V2U? 2702
217254
h(14+ V1= 18V20%4) 9> 25 — 5 9<2h -
27U8/3 5
_ _ _ 07523
- (1 2023 (U2 — v2)4/3) SheEm

As2—27-5072%3 > 0, the result follows.
(ii) We choose x = x — &, where ¢ = 2U%/3 /(U? — V2)!/3. By (22) and (3) we have

(U2 = xp)(xx — VD N 33U = V?)

0<3
2x,§ 4)6,‘(t
6U*  2(U? — x3)(xx — V2
_3 8 ( k)z( k )
X Zxk
QU*  2U? — xp)(x — V)
< — .
x,% 2x,§

Thus
F(xg) == 18x7 — (U? — x)(xx — V?) > 0.

The equation F'(x) =0, has two zeros, y; < yz, and x; > y». Indeed, as x; > xo=(V + U)2/4, itis enough
to check F(xg) < 0. We have

(U — V)?(BU2 4+ 10VU 4 3V?)

4F (xg) = 72U% — <72U0% = 3083 (U? — vH*3

4
QBUSBW + v)¥34 — WU — v)¥3) =303 WU + V)3 24 — (4k)*3) <0,
for k>30. Thus,
U2
9+ VW2 = V)Y (14 VT=18VIU2B(V2 + 1) 7F)

5 U?
2023 W2 — V)P 49— 18V2/(U? - V?)

xk>y2:U2—
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Finally, 9 — 18V2/(U2 — V2)>0, if a<2 (3 + 2J§) k — 1, proving (6). Otherwise,

18v?2 18Vv?2
2/3,772 _ y2\1/3 23,772 _ ui/3 (A~
207U Vo) U2 —vy2 v Vo) (2 U2/3(U2 _ V2)4/3>
9h?
U232 — v1/3 (o _
U ) 253k23(k + b)?

> U — vA)IB @ = 32,
and (7) follows. [

4. Jacobi polynomials

The Jacobi polynomials Pk(“’ﬁ ) (x) are polynomials orthogonal on [—1, 1] for o, f > — 1, with respect
to the weight function (1 — x)*(1 + x)ﬁ . The corresponding ODE is

, @+ p+2)x4+a—-p , kk+o+p+1)
u — u +

3 5 u=0, u :Pk(“’ﬁ)(x).

1—x 1 —x

We will use the notation of Theorem 2 and put p = r> + 2s + 1 throughout this section.
We have

_p)c2—|—2q(s—i—1)x—|—s2—i—qz—r2 _ plx—A)(B —x)

A0 = 4(1 — x2)? 4(1 — x2)? @
As

oy = (BT +o—p+4@+ DB+ 1) .

20+ p+2)(1 — x2)?

we can use (22) and moreover, as 4(x;) > 0, we obtain

A<x;<B (30)
In the opposite direction it is known ([16, Section 6.2])

x1<—2k+a_ﬁ_2<2k+ﬁ_u_2<xk. 31)

2k +o+p 2k +oa+p
It is also easy to show that x; <0, for > f, (see e.g. [11]).

Lemma 4. For A <x < xq,

R(x1 — x)
Alxy) —A4(x) < ————.
(x0) = 4 < 3 =
For xy <x < B,
R(x — xi)

A(Xk) — A(X) < m



1. Krasikov / Journal of Computational and Applied Mathematics 193 (2006) 168—182 177

Proof. We have

A(x1) — Ax) < %ﬁz ((x1 — A)(B — x1) — (x — A)(B — x))
- M

4(
P R(x1 —x)
P B A —x)= LT
S a1 ( =0 =20 x2)?
p
A < —LP (= AYB =) — (x — A)(B —
Alxg) — A(x) < a _x]%)Z((xk )(B —xx) — (x —A)(B —x))
p R(x — xi)
P B-A)x—x) = K
T4 -2 ( e —w) =0 x2)?2

Proof of Theorem 4. (i) Choose ¢= (2 — 2A2)2/ 3 / R'Y3 and putx =x; —e&. Then x > A, otherwise there
is nothing to prove. Using the previous lemma and (22) we obtain
Zp(x; — A)(B — x1) 38R
2(1 — x3)? 2(1 — x2)?
31— AYH?2 &Zp(x; — A)(B —x1) 38R
T —xHr 2(1 — x3)? 2(1 — xH)?

0<3-—

Thus, we get
18(1 — A%? — & p(B — x1)(x1 — A) := F(x}) > 0. (32)
We shall show that this quadratic has two real zeros z] < z2, and xj < z;. For, it is enough to prove
F((A+ B)/2) <0,and x| < (A + B)/2. The last claim follows from (31), as
2k+a—p—2 A+ B
< .
2k + o+ p 2

Indeed, o, f > — 1, and we obtain

X< —

A+ B A+B 2k+oa—p—2
— X1 >
2 ) 2k + o+ B
_4(2k3+(3oc+ﬂ+4)k2+(oc2+aﬁ+4oc+4ﬁ+4)k+(oc+1)(oc+ﬁ+2))>0
(r—Dp '
Now we have
A+ B
F< + >=72(1—A2)2—82p(B—A)2,
and it is negative whenever
2R*>729p°(1 — A% (33)

As

2

g(l—Az)__ 2 +1)° — 4% -
dg \ R* ) (»—4¢DHR@GR+(s+D(p—q¢?)
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and for g =0,
1-A2  (s+1)?
R2 - p2(r2 _ s2)'
We have
Pl — A%)? (s + D* (s+ D* 1 2
<

B

< < <
R* p(r2 —s2)%  16k2(k + $)°(2k +5)>  16k2 729

provided k> 5. This proves (33) and, thus, x| < zj.
Finally, solving F(x) = 0, we obtain

18(1 — A2)?

18(1 — A%)? 4 20— A2)2/3
2R (1 + \/1 — (18p(1 — A2)2)/82R2)

<A
+ 82R (2R)1/3

X1<A+

(i1) Choose ¢ = (2 — 232)2/3/R1/3, and put x = x; + ¢. Similar to the previous case we get
18(1 — B®)? — &2 p(B — xp) (xx — A) := F(x;) > 0. (34)

We shall show that xj is greater than the largest zero of F'(x) = 0. To prove this we establish F(xp) <0,
where xo = 2k + f — 2 — 2)/(2k + « + f) < xx, by Lemma 31. For it is enough to show

18(1 — B2)? : 729R%(1 — B%)?
e=p(B — xp)(xi — A) 2(p(B — xi)(xk — A))
‘We have
d (1 — 32) 20r2 —s2)(q(r* — s 4+ (s + DR)
— — > 0.
dg \ R? pR*

Asg=a—f<a++2=s+ 1, we obtain

1— B2 4(s+1)?
< b
R2 p2(r2 _ SZ)

2p2
1o g < U
p-(r= —s°)

We also have

16+ D(k = D@+ 1) +k(k+ P2k + 2+ p))
p(B —xo)(xo — A) = Okt 2t P

>16k(0£+1)(k+ﬁ) >2(r—q—1)(s—|—q+1)(r—s)
2k +a+p+1 r '
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Therefore we obtain
__ s+ )0 —g?)’ 796+ D+ —q°)’
PHr—qg=1=96+q+ 1D Pr—g-D'r-9*

The last expression is an increasing function in ¢, and substituting ¢ = s + 1, we get

G IP6+ D0 =)0 +5)" _ 2916k(s + Dk +9)* 2916k

= < <
P —s—2)> k — D3k + 5)° k—1)3
for k >56. Finally, solving F (xg) = 0, we obtain
18(1 — B?)?
x> B —

2R <1 + \/1 —18p(1 — BZ)Z/SZRZ)
18(1 — B%)? 9(1 — B%)?/3

g BA-8Y)" , 9-B)""

2R (2R)'/3

179

Remark 3. More accurate calculations show that in fact (9) holds for k > 20, instead of 56. It is also easy

to improve the constant 9 in (8), (9) to 9/(2 — o(1)), similar to the Laguerre case.

Proof of Theorem 5. The asymptotics for the Laguerre case is an easy exercise, here we will establish

(12)~(17).

Notice that the inequality 72 >s? 4 ¢? is equivalent to R >¢g (s 4+ 1). We also observe that the last term

in (4) may be ignored. Indeed,

_@+s+D*R+p—q(s+1)
PR+ pHqG+D)

1— B?

)

and this is an increasing function on R. As ¢ <s + 1, we get R > r> — 52, what implies

_@ts+1D’Qr2 -2 —g+ 1) 20+ D222 =5 g+ 1)

1 — B?
pQ2r2 —s2+q(s+1)) p?
(a4 D%k + o) (k + p)
> p2 .

Now calculations yield

° %G + 1Sk

< (s + HR3 ) <
p32(1 — B2)*/3 @+ D3k +w*k + p)°

for some positive constant c. This expression is a decreasing function in f and for f = —1, is O((o +

1)4 / K2 (k + oc)4). Thus the last term in (4) is negligible whenever k — oo.
Proof of (12). As R>q(s + 1), we have |A| > R/2r2, and

2s+1—g)? 8B+ D 16(f+ 1)?
< < .
R+p—q(s+1) p r2

1—A2<2(1+A) =
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Therefore,
3/2
(1 — A%)?/3 / 128(8 + 1)*r 256(8 + 1)%r 3208+ 1)?
—_— < <
|AIR1/3 R2 2= g2 —52) " kk+a)k+p
and (12) follows.

Proofof(13). As R <q(s+1), we get q2 > r2 —s2. This yields —1 < f <2k +o—2k(2k + 200+ 1),
a> 2k — 1 +2k@k — 1), and k < o/2. Thus, s is a large positive number and |A| > ¢gs/r2. Now, using

R > r? — 52, we obtain
g 2s + 1 —¢g)? 8(B+ 1)? 4B+ 1)?
B ) 22— = D wk+p)
+p—qs+1) 2rs—sc—qGs+1) ak+p)
This yields
6
(1 — A%)?/3 256r12(g+1)8 1088+ 13
< < b
|A|R'/3 ok + B)*q0s0(r2 — g (2 — 52 k*(k + 2) (k4 p)°

and the result follows.

Proof of (14). The condition q2 =r2 — 52 —y(s + 1)2/3(r2 — 52)1/3, y> 0, implies that R > g (s + 1),
and B > 0. Rewriting B as (rr—s%— qz)/(R 4+ g(s + 1)) we obtain B > (rr—s%— qz)/ZR. We also
have

8(x + 1)? 8(a + 1)?
< .
R+p+qi+1) 2

1-B><2(1-B)=

Hence

3
(1- 32)2/3 B 512(0 + 1)4 5 N (r2 _ S2)l/3
BRI/ = 4 l 2 + )3

900k 3 (o + Dk + o+ g+ D/3
P+ B+ )Yk +at+p+ DY
The second term here is a decreasing function in > — 1, and does not exceed
900k /3 (o 4+ 1)8/3 (k + a)'/3
P2k + o)t

and the result follows.
Proof of (15), (16). In those case k < («/2oc2 + 204+ 1— oc) /2,0>2k —1+2k(2k — 1), and so « is

large. Therefore,

<512y_3 +

<900k 23572,

0>r2—q2—s2>r2—2(s+1)2>r2—4s2,
and hence s <r <2s. By g <s + 1, it follows

252 +2s +1—7r2 (s + ¥
r= (s + D22 — 2)1/3 = (r2 — s)l/3°
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Rewriting Bas (r2—q%—s2)/(R+q(s+1)),and using R < ¢(s+1), wehave B > (r2—¢%—s2)/2q (s +1).
Now

6
(1 — B%)?3 < p6p-2 64g%(s + 1)°
1/3 = S o202 2 216
BR R=(r= — g~ — s%)

_ 64 + DY =5 =96 + )PP
P02 = sD((s + DY 4902 —sH)

—256(s + 1)10/3 N 256(s + 1)*/3
<
P2 =D + DY 4902 =D 0+ DY 402 = 1))

=11+ I

Now we shall consider two cases corresponding to the restrictions in (16) and (15). If
—<3(s + D*3 /402 — s2)1/3  that is g% < r? — (s2 — 65 — 3)/4, then

—1024(s + 1)> —64
< 3o 70 <35
P(r?—s?) 7k

Otherwise, using —y < (252425 +1— r2)/(s + 1)2/3(r2 — s2)1/3, and k < o/4, for large o, we get

256(s + 1)° 128(s + 1)°

< = O %k~ 2).
(r2 — 22252+ 2s + 1 —r2)  aOk2(k + 5)? @ )

I <

Similarly, I, = O(y79), if —y<3(s + D*3/4(r%2 — sH)1/3,

(r2 _ s2)2 5 6
I, = — | = k
=0 < P ) 0 ( a )

if 2 < —y(r2 —sH!'3/(s + D¥3<§, and I = (ko~®), otherwise. These readily yield (15), (16).
Proof of (17). In this case

r2—q2—s

R+q(s+1)

2 Iyl(s + D13

(r2 — sHV8/ (s + D3 4 9(r2 — s1)!/3

<

|B| =

=0 (i) = ()
(s + D32 — s2)l/6 Kok +a)’
and R = sv/r2 — s2(1 + o(1)). Thus,

_ 1 —o(1)) 1
| — BY2A3R i (d=oy U
( ) s13(r2 — g2)1/6 0 kU6k +o)’

and (17) follows. O
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