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Abstract

In the present paper, we give some new convergence results of the global GMRES method for multiple linear systems. In the
case where the coefficient matrix A is diagonalizable, we derive new upper bounds for the Frobenius norm of the residual. We also
consider the case of normal matrices and we propose new expressions for the norm of the residual.
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1. Introduction

We consider the following multiple linear system:

AX = B, (1)

where A is an n × n real large and sparse matrix, B and X are n × s rectangular matrices with s>n.
For nonsymmetric problems, some block Krylov subspace methods have been developed these last years; see

[3,9,12,14] and the references therein.
In [9], we introduced a global approach for solving (1) and derived the global Arnoldi and the global GMRES methods.

They are generalizations of the global MR method proposed by Saad [12, p. 300] for approximating the inverse of a
matrix. These global methods are also effective, as compared to block Krylov subspace methods, when applied for
solving large and sparse low rank right-hand sides Lyapunov and Sylvester matrix [10,11,16]. Other applications of
the global Arnoldi and global Lanczos methods in control theory, model reduction and quadratic matrix equations are
given in [5,6,8,17].

In the present paper we give some new convergence results for the global GMRES method when applied to the
multiple linear system (1); numerical tests and comparison with other block methods are given in [9,11]. Our approach
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ignores the way global GMRES is implemented and uses the fact that the Frobenius norm of the residual is minimized
at each iteration.

The paper is organized as follows. In Section 2, we recall some properties of the � matrix product introduced in [4].
In Section 3, we review the global GMRES method for multiple linear systems. Section 4 is devoted to the convergence
analysis of the global GMRES method. We give new convergence results for the case A diagonalizable and also the
particular case of normal matrices.

We use the following notation. For two matrices Y and Z in Rn×s , we define the inner product 〈Y, Z〉F = trace(Y TZ),
the associated norm is the Frobenius norm denoted by ‖.‖F. The 2-norm of a matrix X is denoted by ‖X‖2. A system
of vectors (matrices) of Rn×s is said to be F-orthonormal if it is orthonormal with respect to the scalar product 〈., .〉F.
The Kronecker product of the matrices C and D is given by C ⊗ D = [ci,jD]. Finally, if X is an n × s matrix, the
x = vec(X) is the ns vector obtained by stacking the s columns of the matrix X.

2. Definitions and properties

2.1. The � product

In the following we recall the product denoted by � and defined as follows [4]:

Definition 1. Let A = [A1, A2, . . . , Ap] and B = [B1, B2, . . . , Bl] be matrices of dimension n × ps and n × ls,
respectively, where Ai and Bj (i = 1, . . . , p; j = 1, . . . , l) are n × s matrices. Then the p × l matrix AT � B is
defined by

AT � B =

⎛⎜⎜⎝
〈A1, B1〉F 〈A1, B2〉F . . . 〈A1, Bl〉F
〈A2, B1〉F 〈A2, B2〉F . . . 〈A2, Bl〉F

...
...

...
...

〈Ap, B1〉F 〈Ap, B2〉F . . . 〈Ap, Bl〉F

⎞⎟⎟⎠ .

Remarks. (1) If s = 1 then AT � B = ATB.
(2) If s = 1, p = 1 and l = 1, then setting A = u ∈ Rn and B = v ∈ Rn, we have AT � B = uTv ∈ R.
(3) The matrix A = [A1, A2, . . . , Ap] is F-orthonormal if and only if AT � A = Ip.
(4) If X ∈ Rn×s , then XT � X = ‖X‖2

F.

It is not difficult to show the following properties satisfied by the product �.

Proposition 1. Let A, B, C ∈ Rn×ps , D ∈ Rn×n, L ∈ Rp×p and � ∈ R. Then we have

1. (A + B)T � C = AT � C + BT � C.
2. AT � (B + C) = AT � B + AT � C.
3. (�A)T � C = �(AT � C).
4. (AT � B)T = BT � A.
5. (DA)T � B = AT � (DTB).
6. AT � (B(L ⊗ Is)) = (AT � B)L.
7. ‖AT � B‖F �‖A‖F‖B‖F.

2.2. GMRES-type methods for multiple linear systems

The multiple linear system (1) could be solved by applying the classical one right-hand-side GMRES [13] method to
the s linear systems separately. Starting from an initial block X0 =[X(1)

0 , X
(2)
0 , . . . , X

(s)
0 ] and the corresponding residual

R0 = [R(1)
0 , . . . , R

(s)
0 ], with R

(i)
0 = B(i) − AX

(i)
0 , the kth approximation X

(i)
k , i = 1, . . . , s is such that X

(i)
k − X

(i)
0 ∈

Kk(A, R
(i)
0 ) where Kk(A, R

(i)
0 ) is the ith classical Krylov subspace Kk(A, R

(i)
0 ) = span{R(i)

0 , AR
(i)
0 , . . . , Ak−1R

(i)
0 }.

Another way of solving (1) is to consider all the s-second right-hand sides B(i), i = 1, . . . , s, at the same time and this
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leads to the block GMRES [18]; see also [4,7,14] and the global GMRES [9] methods. For the block GMRES method,
we consider the block Krylov subspace defined by

Kk(A, R0) = Range([R0, AR0, . . . , A
k−1R0]) ⊂ Rn. (2)

Note that the block Krylov subspace Kk(A, R0) is a sum of s classical Krylov subspaces

Kk(A, R0) =
s∑

i=1

Kk(A, R
(i)
0 ).

For the global GMRES method, we consider the matrix Krylov subspace Kk(A, R0) defined as the subset of Rn×s

generated by the matrices R0, AR0, . . . , A
k−1R0.

For the three methods, the approximation Xk can be defined as follows:

Xk − X0 =
k∑

i=1

Ai−1R0�i , (3)

where �i , i = 1, . . . , k is an s × s coefficient matrix defined by

• �i = �iIs , where �i is a scalar coefficient defined from the orthogonality relation Rk⊥FKk(A, AR0) for the global
GMRES where Rk = B − AXk is the residual corresponding to the approximate solution Xk .

• �i is a full s × s matrix defined from R
(i)
k ⊥ Kk(A, AR0), i =1, . . . , s; for the block GMRES. Note that the residual

Rk can be given as

Rk = Pk(A) ◦ R0 =
k∑

i=0

AiR0�i ,

where �0 = Is and Pk is the matrix-valued polynomial defined by Pk(t) =∑k
i=1 t i�i . We note that a breakdown

occurs in block GMRES, at step k, if the matrix [R0, AR0, . . . , A
kR0] is rank deficient.

• �i = diag(�(i)
1 , . . . ,�(i)

s ) is a diagonal matrix calculated from the orthogonality relations R
(i)
k ⊥ Kk(A, AR

(i)
0 ),

i = 1, . . . , s for the classical GMRES.

When applying GMRES to the s right-hand side linear systems separately, it is well known [15] that

‖R(i)
k ‖2

2 = 1

eT
1 (KT

i,k+1Ki,k+1)
−1e1

, i = 1, . . . , s, (4)

where Ki,k+1, i =1, . . . , s is the Krylov matrix defined by Ki,k+1 =[R(i)
0 , AR

(i)
0 , . . . , AkR

(i)
0 ] and e1 = (1, 0, . . . , 0) ∈

Rk+1.
The relation (4) is important, it is the key for developing important convergence results for GMRES [2]. For the

block GMRES method, we have the following expression of the norm of the residual [3]:

‖Rk‖2 =
det

([
rT

0 r0 rT
0 Bk

BT
k r0 BT

k Bk

])
det(BT

k Bk)
(5)

with r0 = vec(R0) and Bk = Is ⊗ Wk where Wk = [AR0, . . . , A
kR0]. Therefore, from the expression (5), it can be

shown that

‖Rk‖2 = 1

eT
1 (K̃T

k+1K̃k+1)
−1e1

, (6)

where K̃k+1 = [r0, Bk] and e1 is the first vector of the canonical basis of Rks2+1. Note that when s = 1, the block
GMRES becomes the classical GMRES and the relation (6) reduces to (4). New convergence results based on the
expression (6) are in progress for block GMRES method.
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The convergence of a Krylov subspace method could be slow and usually, these methods are used with preconditioning
techniques. With left and right preconditioners, we transform the original linear system to the new equivalent one

M−1
1 AM−1

2 Y = M−1
1 B and X = M−1

2 Y . (7)

A good preconditioner is such that it should be easy to compute the solution of the linear systems M1Z1 = W1,
M2Z2 = W2 for given W1, W2 and the matrix M−1

1 AM−1
2 of the linear system (7) must be “close” to the identity. One

of the widely used left-right preconditioner for sparse matrices is the incomplete LU factorization: ILU(�) where � is
some dropping tolerance [12]. In [9], we applied the global GMRES method with the incomplete LU factorization to
some numerical examples.

In what follows, we will be interested only in the global GMRES method. Our aim is to analyze the convergence of
this method for some problems.

3. The global GMRES method

Let Kk(A, V ) = span{V, AV , . . . , Ak−1V } denotes the matrix Krylov subspace of Rn×s spanned by the matrices
V, AV , . . . , Ak−1V where V is an n × s matrix. Note that Z ∈ Kk(A, V ) means that

Z =
k∑

i=1

�iA
i−1V, �i ∈ R, i = 1, . . . , k,

= pk(A)V ,

where pk is the scalar polynomial defined by pk(t) =∑k
i=1 �i t

i−1.
Now consider the block linear system of Eq. (1) and let X0 be an initial n× s matrix with the corresponding residual

R0 = B − AX0.
The global GMRES method constructs, at step k, the approximation Xk satisfying the following two relations:

Xk − X0 ∈ Kk(A, R0) and Rk⊥FKk(A, AR0),

where the notation ⊥F means the orthogonality with respect to the scalar product 〈Y, Z〉F. From these two relations,
we obtain

Xk = X0 + Kk(� ⊗ Is)

and

Rk = R0 − Wk(� ⊗ Is),

where Kk = [R0, AR0, . . . , A
k−1R0], Wk = AKk and � is such that

(WT
k � Wk)� = WT

k � R0.

If Pk denotes the F-orthogonal projector onto the matrix Krylov subspace Kk(A, AR0), then the residual Rk can be
expressed as Rk = R0 − PkR0. As we are dealing with an orthogonal projection method onto the Krylov subspace
Kk(A, AR0), we have the minimization property

‖Rk‖F = min
Z∈Kk(A,R0)

‖R0 − AZ‖F. (8)

The problem (8) is solved by applying the global Arnoldi process [9], to get an F-orthonormal basis {V1, . . . , Vk} of
the matrix Krylov subspace Kk(A, R0). Note that if Vk is the n × ks matrix Vk = [V1, . . . , Vk], then VT

k �Vk = Ik .
The minimization problem (8) is then equivalent to a small least-squares (k + 1) × k problem. In this paper, we are
interested in the convergence analysis of the global GMRES method and ignore how the method is implemented.
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4. Convergence analysis of the global GMRES method

In this section, we give new convergence results for the global GMRES method. We will consider the case where A
is diagonalizable and the case of normal matrices.

We first review some comparisons between the global GMRES for solving the multiple linear system (1) and the
standard GMRES method [13] applied to each single linear system AX(i) = B(i); i = 1, . . . , s where B(i) is the ith
column of the n × s matrix B.

Theorem 1 (Bouyouli et al. [4]). Let Ki,k+1, i = 1, . . . , s be the Krylov matrix defined by

Ki,k+1 = [R(i)
0 , AR

(i)
0 , . . . , AkR

(i)
0 ] with R

(i)
0 = B(i) − AX(i), i = 1, . . . , s.

Then

KT
k+1 � Kk+1 =

s∑
i=1

KT
i,k+1Ki,k+1, (9)

where Kk+1 = [R0, AR0, . . . , A
kR0].

It has been proved in [4] that when applying the global GMRES method to the multiple linear system (1), we obtain

‖Rk‖2
F = 1

eT
1 (KT

k+1 � Kk+1)
−1e1

, (10)

where e1 is the first unit vector of Rk+1. The relation (10) is the key for developing new convergence results. We first
give a result about the rate of the convergence of the global GMRES for general matrices.

Theorem 2 (Bouyouli et al. [4]). Let Rk be the kth residual obtained by the global GMRES. Then

‖Rk‖F

‖Rk−1‖F
=
√

1 − c2
k ,

with

c2
k = det(KT

k � Wk)
2

det(KT
k � Kk) det(WT

k � Wk)
,

and Wk = AKk .

We consider now the case where the symmetric part AS of the matrix A is positive definite.

Theorem 3. If the symmetric part of the matrix A is positive definite, then

‖Rk‖F

‖Rk−1‖F
�
√

1 − (�min(AS))2

‖A‖2
2

,

where �min(AS) is the smallest eigenvalue of the matrix AS.

The proof is easily obtained by using Theorem 2 and the first part of Theorem 6 of [4].
We shall consider the case where the matrix A is diagonalizable, and the particular case where A is a normal matrix.
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4.1. Diagonalizable matrices

Let A = XDX−1 where D is the diagonal matrix whose elements are the eigenvalues �1, . . . , �n of the matrix A. In
[4], the following upper bound for the norm of the residual Rk was given:

‖Rk‖F ��F(X)‖R0‖F
√

n min
p∈Pk,p(0)=1

(
max

i=1,...,n
|p(�i )|

)
, (11)

where �F(X) = ‖X‖F‖X−1‖F and Pk is the set of polynomials of degree less or equal than k. We will give a more
sharp upper bound for the norm of the residual Rk .

We first give the following lemma to be used later.

Lemma 1 (Bellalij and Sadok [2]). Let E and F be two matrices of Cn,k+1 (k�n − 1) and Cn,n, respectively, and let
�1(F )��2(F )� · · · ��n(F ) > 0 be the singular values of F. If the matrix E is of full rank, then

�n(F )2

eT
1 (EHE)−1e1

� 1

eT
1 (EH(F HF)E)−1e1

� �1(F )2

eT
1 (EHE)−1e1

,

where EH is the conjugate transpose of the matrix E and e1 is the first unit vector of Rk+1.

Theorem 4. Let the initial residual R0 be decomposed as R0 = X	 where 	 is an n × s matrix whose columns are
denoted by 	(1), . . . , 	(s). Let Rk = B − AXk be the kth residual obtained by applying global GMRES to (1). Then we
have

‖Rk‖2
F �

‖X‖2
2

eT
1 (V H

k+1D̃Vk+1)
−1e1

, (12)

where D̃ is the diagonal matrix defined by

D̃ = diag

(
s∑

i=1

|	(i)
1 |, . . . ,

s∑
i=1

|	(i)
n |
)

and

Vk+1 =

⎛⎜⎜⎜⎝
1 �1 . . . �k

1
...

...
...

...
...

...

1 �n . . . �k
n

⎞⎟⎟⎟⎠ . (13)

The coefficients 	(i)
1 , . . . , 	(i)

n are the components of the vector 	(i), i = 1, . . . , s.

Proof. The ith matrix Krylov Ki,k+1 can be written as

Ki,k+1 = [X	(i), XD	(i), . . . , XDk	(i)], i = 1, . . . , s

which is decomposed as

Ki,k+1 = XD	(i)Vk+1, (14)

where D	(i) is the diagonal matrix defined as

D	(i) =

⎛⎜⎜⎜⎜⎝
	(i)

1 0 . . . 0

0 	(i)
2

. . .
...

...
. . .

. . . 0
0 . . . 0 	(i)

n

⎞⎟⎟⎟⎟⎠ .
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Using the relation (14) and the fact that Ki,k+1 is a real matrix, it follows that

KT
i,k+1Ki,k+1 = KH

i,k+1Ki,k+1 = V H
k+1D

H
	(i)X

HXD	(i)Vk+1.

Invoking the relation (9), we obtain

KT
k+1 � Kk+1 =

s∑
i=1

V H
k+1D

H
	(i)X

HXD	(i)Vk+1. (15)

On the other hand using Lemma 1, we get

eT
1 (V H

k+1D
H
	(i)X

HXD	(i)Vk+1)
−1e1 �‖X‖−2

2 eT
1 (V H

k+1D
H
	(i)D	(i)Vk+1)

−1e1 (16)

and then from the relations (15) and (16) and the fact that D̃ =∑s
i=1 DH

	(i)D	(i) , we get

eT
1 (KT

k+1 � Kk+1)
−1e1 �‖X‖−2

2 eT
1 (V H

k+1D̃Vk+1)
−1e1. (17)

Finally, the relations (10) and (17) imply

‖Rk‖2
F �

‖X‖2
2

eT
1 (V H

k+1D̃Vk+1)
−1e1

which shows the result. �

Let us set 
i =∑s
l=1 |	(l)

i |2/‖	‖2
F, i = 1, . . . , n and let D
 be the diagonal matrix defined by

D
 =

⎛⎜⎜⎜⎝

1 0 . . . 0

0 
2
. . .

...
...

. . .
. . . 0

0 . . . 0 
n

⎞⎟⎟⎟⎠ . (18)

Note that 
i �0; i = 1, . . . , n, and
∑n

i=1 
i = 1.
In the following theorem, we give an upper bound for the norm of the residual.

Theorem 5. Let Pk be the set of polynomials of degree less or equal than k, and let �2(X) = ‖X‖2‖X−1‖2. Then we
have the following results:

‖Rk‖2
F

‖	‖2
F

�
‖X‖2

2

eT
1 (V H

k+1D
Vk+1)
−1e1

(19)

and

‖Rk‖F

‖R0‖F
��2(X) min

p∈Pk;p(0)=1

(
max

�∈Sp(A)
|p(�)|

)
, (20)

where Sp(A) the set of eigenvalues of the matrix A.

Proof. The relation (19) is obtained directly from (12) and the definition of D
. To show (20), we first use the fact that
	 = X−1R0 and then ‖	‖F = ‖X−1R0‖F �‖X−1‖2‖R0‖F. Therefore, replacing in (19), we get

‖Rk‖2
F

‖R0‖2
F

�
‖X‖2

2‖X−1‖2
2

eT
1 (V H

k+1D
Vk+1)
−1e1

. (21)
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Finally, we invoke the following result already proved in [1]:

1

eT
1 (V H

k+1D
Vk+1)
−1e1

� min
p∈Pk;p(0)=1

(
max

�∈Sp(A)
|p(�)|

)
. (22)

Hence, replacing (22) in (21), the result (20) follows. �

Note that since �F(X) is larger than �2(X), the upper bound given by (20) is smaller than the one given by (11). In
the case s = 1, the results of Theorem 3 reduce to those given in [2] for the classical GMRES.

4.2. Normal matrices

In this subsection, we assume that the matrix A is normal and we set A = XDXH with XHX = I . We will give an
expression, not only an upper bound, for the norm of the residual Rk .

Theorem 6. Let A=XDXT with XTX= I and D =diag(�1, . . . , �n). Consider the eigen-decomposition of the initial
residual R0 = X	. Then we have

‖Rk‖2
F

‖R0‖2
F

= 1

eT
1 (V H

k+1D
Vk+1)
−1e1

(23)

and

‖Rk‖2
F

‖R0‖2
F

� max

�0,

∑n
i=1 
i=1

(
1

eT
1 (V H

k+1D
Vk+1)
−1e1

)
, (24)

where 
 = (
1, . . . , 
n)
T, Vk+1 and D
 are defined by (13) and (18), respectively.

Proof. Since XHX = I , the relation (15) becomes

KT
k � Kk =

s∑
i=1

V H
k DH

	(i)D	(i)Vk (25)

which is expressed as

KT
k � Kk = V H

k D̃Vk , (26)

therefore

eT
1 (KT

k � Kk)
−1e1 = eT

1 (V T
k D̃Vk)

−1e1. (27)

Invoking (10) and the fact that ‖R0‖F = ‖	‖F, we get

‖Rk‖2
F

‖R0‖2
F

= 1

eT
1 (V H

k+1D
Vk+1)
−1e1

which shows the result.
The relation (24) is directly derived from (23). �

We can state now the following main result.

Theorem 7. Let A be a normal matrix and let Rk be the obtained residual, at step k, when applying the global GMRES
method to the multiple linear system (1). Then we have

‖Rk‖F

‖R0‖F
� min

p∈Pk;p(0)=1

(
max

�∈Sp(A)
|p(�)|

)
,

where Pk is the set of polynomials of degree �k and Sp(A) is the set of eigenvalues of the matrix A.
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Proof. The proof is derived from the relations (22) and (23). �

5. Conclusion

We developed in this paper new convergence results for the global GMRES method when applied to multiple linear
systems. We considered the case when the matrix A is diagonalizable and the case of normal matrices. We showed that
these new results are better than the ones given already in [9]. For s = 1, our results reduce to those obtained for the
classical GMRES method.
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