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a b s t r a c t

In the univariate case, there is a well-developed theory on the error estimation of the
quadrature formulae for integrands from the Sobolev classes of functions. It is based on
the Peano kernel representation of linear functionals, which yields sharp error bounds
for the quadrature remainder. The product cubature formulae are the usual tool for the
approximation of a double integral over a rectangular domain. In this paper we suggest a
modification of the product cubature formulae, based on blending interpolation of bivariate
functions. Besides the usual point evaluations, themodified cubature formulae involve few
line integrals. Our approach allows application of the Peano kernel theory for derivation
of error bounds for both standard cubature formulae and their modifications. Sufficient
conditions for the definiteness of the modified product cubature formulae are given, and
some classes of integrands are specified, for which a product cubature formula is inferior
to its modified version.

© 2008 Elsevier B.V. All rights reserved.

1. Requisites

1.1. Peano kernel theory for quadratures

Throughout this paperπmwillmean the class of univariate algebraic polynomials of degree not exceedingm. A quadrature
formula for approximation of the definite integral

`[g] :=
∫ b

a
g(t)dt

is any linear functional of the form

Q [g] =
n∑
ν=1

aνg(xν), a ≤ x1 < · · · < xn ≤ b. (1)

The quadrature formulaQ is said to have algebraic degree of precisionm (in short, ADP(Q ) = m), if the remainder functional

R[Q ; g] := `[g] − Q [g]

satisfies

R[Q ; g] = 0 if g ∈ πm, and R[Q ; g] 6= 0, if g ∈ πm+1 \ πm.
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For r ∈ N, the truncated power function xr
+
is defined by xr

+
= (max{x, 0})r . According to a classical result of Peano (see,

e.g., [2,11,9] or [3]), ifL is a linear functional defined on C[a, b], which vanishes on πr−1, and g(r−1) is absolutely continuous
on [a, b], thenL[g] admits the representation

L[g] =
∫ b

a
Kr(t)g(r)(t)dt, where Kr(t) = L

[
(· − t)r−1+
(r − 1)!

]
.

Applied to the remainder of a quadrature formula Q with ADP(Q ) = m, where m ≥ r − 1, the Peano result states that if
g(r−1) is absolutely continuous on [a, b], then

R[Q ; g] =
∫ b

a
Kr(Q ; t)g(r)(t)dt. (2)

The function Kr(Q ; t) is called the rth Peano kernel of the quadrature formula Q , and, for t ∈ [a, b], explicit representations
of Kr(Q ; t) are

Kr(Q ; t) =
(b− t)r

r!
−

1
(r − 1)!

n∑
ν=1

aν(xν − t)r−1+

and

Kr(Q ; t) = (−1)r
[
(t − a)r

r!
−

1
(r − 1)!

n∑
ν=1

aν(t − xν)r−1+

]
.

For 1 ≤ p < ∞, the Lp[a, b]-norm is defined by ‖g‖Lp[a,b] :=
(∫ b
a |g(t)|

pdt
)1/p
, and ‖g‖L∞[a,b] = esssupt∈[a,b]

|g(t)|, for p = ∞. The Sobolev class of functionsW rp [a, b] is defined by

W rp [a, b] := {g ∈ C
r−1
[a, b] : g(r−1) abs. cont.on [a, b], ‖g(r)‖Lp[a,b] <∞}.

For integrand g ∈ W rp [a, b] and quadrature formula Q with ADP(Q ) ≥ r − 1, application of Hölder’s inequality to (2) yields
the sharp error estimate

|R[Q ; g]| ≤ cr,p(Q )‖g(r)‖Lp[a,b], (3)

where

cr,p(Q ) = ‖Kr(Q ; ·)‖Lq[a,b], p−1 + q−1 = 1.

The most frequently used error constants cr,p(Q ) are those with p = 1, 2 and∞. cr,∞(Q ) is particularly easy for calculation
when Kr(Q ; t) does not change its sign in (a, b). In such a case Q is said to be definite quadrature formula of order r (positive
definite, if Kr(Q ; t) ≥ 0, and negative definite, if Kr(Q ; t) ≤ 0 in (a, b)). In the case when Q is a definite quadrature formula
of order r , we have cr,∞(Q ) = |R[Q ; (·)r/r!]|. The definite quadrature formulae of order r provide one-sided approximation
to `[g] whenever g(r) has a permanent sign in (a, b). For such an integrand one can apply two definite (of opposite kinds)
quadrature formulae to obtain an interval containing the true value of `[g]. Properties like definiteness and monotonicity
in quadrature sequences are often used in numerical integration for derivation of a posteriori error estimates and rules for
termination of calculations (the so-called stopping rules), see [5–7] and the references therein.
In [8] we initiated investigations on how the Peano kernel theory can be extended to the error estimation of some

cubature formulae for double integrals on a rectangular region. In the present paper we give some further results in this
direction.

1.2. Blending interpolation of bivariate functions

Let ∆ = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d}. For m, n ∈ N, the class of blending functions Bm,n(∆) (see, e.g., [1]) is
defined by

Bm,n(∆) := {f ∈ Cm,n(∆) : Dm,nf = 0},

where Dm,nf := ∂m+nf
∂xm∂yn , and

Cm,n(∆) := {f : ∆→ R : Di,jf continuous, 0 ≤ i ≤ m, 0 ≤ j ≤ n}.

Given two sets X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}, such that a ≤ x1 < x2 < · · · < xm ≤ b and
c ≤ y1 < y2 < · · · < yn ≤ d, we define a blending grid G = G(X, Y) by

G(X, Y) :=

{
(x, y) ∈ ∆ :

m∏
µ=1

(x− xµ)
n∏
ν=1

(y− yν) = 0

}
.
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For any bivariate function f defined on ∆ there exists a unique Lagrange blending interpolant Bf = BGf ∈ Bm,n(∆), which
satisfies Bf|G(X,Y ) = f|G(X,Y ). It is given explicitly by

Bf = Lxf +Lyf −LxLyf , (4)

where Lx and Ly are the Lagrange interpolation operators with respect to variables x and y, defined by the interpolation
points X and Y, respectively. Let {lµ}mµ=1 and {lν}

n
ν=1 be the Lagrange fundamental polynomials, defined by lµ(xj) = δµj (j =

1, . . . ,m) and lν(yk) = δνk (k = 1, . . . , n), respectively, with δij being the Kronecker symbol. Then

Bf (x, y) =
m∑
µ=1

lµ(x)f (xµ, y)+
n∑
ν=1

lν(y)f (x, yν)−
m∑
µ=1

n∑
ν=1

lµ(x)lν(y)f (xµ, yν).

For r, s ∈ N satisfying r ≤ m and s ≤ n, and for f ∈ C r,s(∆), two iterated applications of the Peano formula to
f − Bf = (Id−Lx)(Id−Ly)f (with Id being the identity operator) yield, for (x, y) ∈ ∆,

f (x, y)− Bf (x, y) =
∫∫

∆

Kr(x, t)K s(y, τ )Dr,sf (t, τ )dtdτ , (5)

where

Kr(x, t) =
1

(r − 1)!

[
(x− t)r−1

+
−

m∑
µ=1

lµ(x)(xµ − t)r−1+

]
and

K s(y, τ ) =
1

(s− 1)!

[
(y− τ)s−1

+
−

n∑
ν=1

lν(y)(yν − τ)s−1+

]
.

The described Lagrange blending interpolation scheme is extended in an obvious way to the case of blending grids G(X, Y)
containing multiple gridlines, i.e., for X’s and Y’s whose components are not necessarily distinct. In such a situation, the
Lagrange interpolation operators Lx and Ly are replaced by the corresponding Hermite interpolation operators, and Bf
involves not only the traces of f over the gridlines, but also the traces of some partial derivatives of f .

2. Product cubature formulae and their blending counterparts

Consider the problem of calculation of a double integral over the rectangular region∆ = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤
y ≤ d},

I[f ] :=
∫∫

∆

f (x, y)dxdy.

A standard way for approximation of I[f ] is by a cubature formula C[f ],

I[f ] ≈ C[f ] =
n1∑
i=1

n2∑
j=1

aijf (ti, τj),

where the points {(ti, τj)} are usually assumed to belong to the integration domain. The case of a rectangular region admits
usage of cubature formulae of product type (cf. [12,4]),

C[f ] = C(Q1,Q2)[f ] :=
n1∑
i=1

n2∑
j=1

cidjf (ti, τj), (6)

where Q1[g] =
∑n1
i=1 cig(ti) and Q2[g] =

∑n2
j=1 djg(τj) are quadrature formulae approximating `1[g] :=

∫ b
a g(x)dx and

`2[g] :=
∫ d
c g(x)dx, respectively.

Some natural questions arise about the magnitude of the error

E[C; f ] := I[f ] − C[f ].

How small is |E[C; f ]|? Is it possible, as in the univariate case, to estimate |E[C; f ]| by a certain norm of a single derivative
of the integrand, say, Dr,sf ? Can we build definite cubature formulae of order (r, s) ?
The answer to the second question is in the negative. Indeed, an estimate of the form |E[C; f ]| ≤ cr,s(C)‖Dr,sf ‖ would

mean that the cubature formula C is exact for all functions from Br,s(∆). Hence, while in the univariate case we deal with
algebraic degree of precision, in the bivariate case we have to deal with the notion of blending degree of precision. However,
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in contrast to the univariate case, the linear space of blending functions Br,s(∆) is of infinite dimension, and no cubature
formula exists, which uses only finite number of point evaluations and is exact for all f ∈ Br,s(∆).
We show that error estimation of the abovementioned type is still possible, if we allow our cubature formulae to involve,

in addition to the standard data of point evaluations, some line integrals. The construction of such cubature formulae is
realized through the following scheme (see [8]):
We approximate I[f − Bf ] by C[f − Bf ], where C is a cubature formula of the customary type, i.e., which involves only

point evaluations of the integrand. This results in a cubature formula S[f ] for approximate calculation of I[f ],

I[f ] ≈ S[f ], S[f ] := C[f ] + I[Bf ] − C[Bf ]. (7)

Among the components of the new cubature formula S, I[Bf ] is the one that looks different from the conventional cubature
formulae. Indeed, by the explicit form of Bf (x, y)we obtain

I[Bf ] =
m∑
µ=1

bµ`2[f (xµ, ·)] +
n∑
ν=1

bν`1[f (·, yν)] −
m∑
µ=1

n∑
ν=1

bµbν f (xµ, yν) =: CB[f ]. (8)

Here,

Q ′[g] =
m∑
µ=1

bµg(xµ)

is the interpolatory quadrature formula for `1[g] =
∫ b
a g(x)dx, generated byLx, and

Q ′′[g] =
n∑
ν=1

bνg(yν)

is the interpolatory quadrature formulae for `2[g] =
∫ d
c g(y)dy, generated by Ly. CB[f ] is called blending cubature formula,

and it involvesm+n univariate integrals over the gridlines ofG. Of course, one can use solely the approximation I[f ] ≈ CB[f ]
instead of I[f ] ≈ S[f ]. However, there is a good reason for preferring S to CB, which will be explained below.
On using (5) one obtains

E[CB; f ] = I[f ] − CB[f ] =
∫∫

∆

Kr(Q ′; t)Ks(Q ′′; τ)Dr,sf (t, τ )dtdτ ,

where Kr(Q ′; t) = `1[K(·, t)] and Ks(Q ′′; τ) = `2[K(·, τ )] are the rth Peano kernel of Q ′ and the sth Peano kernel of Q ′′,
respectively. From the above formula and Hölder’s inequality holds the sharp inequality

|E[CB; f ]| ≤ c(r,s),p(CB)‖Dr,sf ‖Lp(∆).

Due to the separated variables, the error constant of the blending cubature formula CB is simply the product of the error
constants of Q ′ and Q ′′,

c(r,s),p(CB) = cr,p(Q ′)cs,p(Q ′′).

Thus, for the blending cubature formula CBwehave a sharp theoretical error bound in terms of the normof a single derivative
of the integrand. On the other hand, for practical implementation, we should be able to construct a sequence of cubature
formulae of improved quality tomake possible the calculation of I[f ]with anyprescribed tolerance. This goal can be achieved
by either increasing the number of gridlines or usage of compound blending cubature formulae. Both approaches lead to
increase of the number of the univariate integrals involved. This, however, is an undesirable effect, as these integrals are not
always possible to be exactly calculated.
For this reason we give preference to the approximation scheme (7). In this scheme the blending grid G is fixed, and m

and n are relatively small numbers. Hence, them+n line integrals involved in S stay unchanged during the calculations. For
getting better approximations to I[f ] one varies the cubature formula C (e.g., uses compound product cubature formulae
with increasing number of nodes).
In what follows, C is assumed to be a product cubature formula for approximate calculation of I , i.e., C is of the form

(6). For easy reference, every cubature formula S obtained from a product cubature formula C through (7) will be called
henceforthmodified product cubature formula (MPCF). Clearly, there are two pairs of quadrature formulae which determine
uniquely amodified product cubature formula S: the pair (Q ′,Q ′′), which defines the blending interpolation operator B, and
the pair (Q1,Q2), which generates the product cubature formula C(Q1,Q2).
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3. Peano kernels and error bounds for MPCF

The statements in this section are valid under some general assumptions, which we give below.
S is a MPCF of the form (7), where C = C(Q1,Q2) is a product cubature formula generated through (6), and B is a given

blending interpolation operator, defined by a blending gridG(X, Y)with #(X) = m and#(Y) = n. Recall that associatedwith
B are the interpolatory quadrature formulae Q ′ and Q ′′. Further, r and s are natural numbers, satisfying r ≤ ADP(Q ′) + 1
and s ≤ ADP(Q ′′) + 1. We denote the corresponding Peano kernels of Q ′ and Q ′′ by Kr(Q ′; t) and Ks(Q ′′; τ). (For the
sake of simplicity, here and hereafter we use the same notation for the Peano kernels of quadrature formulae designed for
definite integrals on different intervals! Recall that Q ′ and Q1 approximate `1, while Q ′′ and Q2 approximate `2. The same
notational convention applies to the reminders and error constants of these quadrature formulae.) Finally, it is assumed that
the integrand f is smooth enough so that Dr,sf exists and is integrable on∆.
Making use of (5), one easily deduces that the remainder E[S; f ] admits the following integral representation:

E[S; f ] =
∫∫

∆

Kr,s(S; t, τ )Dr,sf (t, τ )dtdτ , (9)

where the Peano kernel of S of order (r, s) is given by

Kr,s(S; t, τ ) = Kr(Q ′, t)Ks(Q ′′, τ )−
n1∑
i=1

n2∑
j=1

cidjKr(ti, t)K s(τj, τ )

= Kr(Q ′, t)Ks(Q ′′, τ )− Q1[Kr(·, t)]Q2[K s(·, τ )]. (10)

Further representations of Kr,s(S; t, τ ) are given in the following theorem.

Theorem 1. Let, in addition to the assumptions made in the beginning of this section, ADP(Q1) ≥ m− 1 and ADP(Q2) ≥ n− 1.
Then, for (t, τ ) ∈ ∆, the Peano kernel Kr,s(S; t, τ ) possesses the following representations:

Kr,s(S; t, τ ) = Kr(Q ′, t)Ks(Q2; τ)+ Kr(Q1; t)Q2[K s(·, τ )], (11)

Kr,s(S; t, τ ) = Ks(Q ′′, τ )Kr(Q1; t)+ Ks(Q2; τ)Q1[Kr(·, t)], (12)

Kr,s(S; t, τ ) = Kr(Q ′, t)Ks(Q2; τ)+ Kr(Q1; t)Ks(Q ′′; τ)− Kr(Q1; t)Ks(Q2; τ). (13)

Proof. The proofs of (11) and (12) make use of formulae Kr(Q ′, t) = `1[Kr(·, t)] and Ks(Q ′′, τ ) = `2[K s(·, τ )]. By
subtracting and adding Kr(Q ′; t)Q2[K s(·, τ )] to the right-hand side of (10), one obtains

Kr,s(S; t, τ ) = Kr(Q ′; t)
[
Ks(Q ′′; τ)− Q2[K s(·, τ )]

]
+ Q2[K s(·, τ )]

[
Kr(Q ′; t)− Q1[Kr(·; t)]

]
= Kr(Q ′; t)

[
`2[K s(·, τ )] − Q2[K s(·, τ )]

]
+ Q2[K s(·, τ )] [`1[Kr(·; t)] − Q1[Kr(·; t)]]

= Kr(Q ′; t)R[Q2;K s(·, τ )] + Q2[K s(·, τ )]R[Q1;Kr(·, t)]
= Kr(Q ′, t)Ks(Q2; τ)+ Kr(Q1; t)Q2[K s(·, τ )].

For the last equality we have used the fact that R[Q2;K s(·, τ )] = Ks(Q2; τ) and R[Q1;Kr(·, t)] = Kr(Q1; t). To verify,
e.g., the last identity, one writes

R[Q1;Kr(·, t)] = R

[
Q1;

(· − t)r−1+
(r − 1)!

]
−

1
(r − 1)!

m∑
µ=1

R[Q1; lµ](xµ − t)r−1+

= R

[
Q1;

(· − t)r−1+
(r − 1)!

]
= Kr(Q1; t),

as R[Q1; lµ] = 0 for µ = 1, . . . ,m, by virtue of the assumption ADP(Q1) ≥ m − 1. The proof of (12) goes along the same
lines, this time one subtracts and adds to the right-hand side of (10) Ks(Q ′′; τ)Q1[Kr(·, t)]. We omit the details.
The proof of (13) follows by substituting Q2[K s(·, τ )] = Ks(Q ′′; τ)−Ks(Q2; τ) in (11). For the latter identity, we observe

that

Q2[K s(·, τ )] = Q2

[
(· − τ)s−1+

(s− 1)!

]
−

1
(s− 1)!

n∑
ν=1

Q2[lν](yν − τ)s−1+

= Q2

[
(· − τ)s−1+

(s− 1)!

]
−

1
(s− 1)!

n∑
ν=1

bν(yν − τ)s−1+
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= Q2

[
(· − τ)s−1+

(s− 1)!

]
− Q ′′

[
(· − τ)s−1+

(s− 1)!

]

= R

[
Q ′′;

(· − τ)s−1+

(s− 1)!

]
− R

[
Q2;

(· − τ)s−1+

(s− 1)!

]
= Ks(Q ′′; τ)− Ks(Q2; τ)

(we have used the assumption ADP(Q2) ≥ n−1, yieldingQ2[lν] = `2[lν] = bν for ν = 1, . . . , n). The theorem is proved. �

For 1 ≤ p ≤ ∞, letW r,sp (∆) be the Sobolev class of functions

W r,sp (∆) := {f : ∆→ R : ‖Dr,sf ‖Lp(∆) <∞}.

If the integrand f belongs toW r,sp (∆), then (9) and Hölder’s inequality imply a sharp error estimate for S:

|E[S; f ]| ≤ c(r,s),p(S)‖Dr,sf ‖Lp(∆), (14)

where

c(r,s),p(S) = ‖Kr,s(S; ·, ·)‖Lq(∆), p−1 + q−1 = 1.

If the calculation of the error constant c(r,s),p(S) turns out to be a difficult task (which is the typical case, especially for values
of p different from 1, 2 and∞), one can resort to some further estimates. The connection (13) between the Peano kernels
of S and the related quadrature formulae Q ′, Q ′′, Q1 and Q2 furnishes an upper bound for c(r,s),p(S) in terms of the error
constants of these quadrature formulae.

Corollary 2. Under the assumptions of Theorem 1, for 1 ≤ p ≤ ∞ there holds

c(r,s),p(S) ≤ cr,p(Q ′)cs,p(Q2)+ cr,p(Q1)cs,p(Q ′′)+ cr,p(Q1)cs,p(Q2). (15)

Proof. From (13) and the triangle inequality, we have

c(r,s),p(S) = ‖Kr,s(S; ·, ·)‖Lq(∆)
≤ ‖Kr(Q ′; ·)‖Lq[a,b] · ‖Ks(Q2; ·)‖Lq[c,d] + ‖Kr(Q1; ·)‖Lq[a,b] · ‖Ks(Q

′′
; ·)‖Lq[c,d]

+‖Kr(Q1; ·)‖Lq[a,b] · ‖Ks(Q2; ·)‖Lq[c,d]
= cr,p(Q ′)cs,p(Q2)+ cr,p(Q1)cs,p(Q ′′)+ cr,p(Q1)cs,p(Q2). �

As was already mentioned, no error bound exists for a conventional cubature formula C , in terms of the norm of a single
partial derivative of the integrand. We show below that three partial derivatives do this job. To this end, we derive an
alternative representation of the modified product cubature formula S.

Theorem 3. Under the assumptions of Theorem 1, the modified product cubature formula S admits the representation

S[f ] = C[f ] + Q ′
[
R[Q2; f ((·)Q ′ , (·)R)]

]
+ Q ′′

[
R[Q1; f ((·)R, (·)Q ′′)]

]
. (16)

If the integrand f belongs to W r,sp (∆), then the error of the product cubature formula C satisfies

|E[C; f ]| ≤ c(r,s),p(S) · ‖Dr,sf ‖Lp(∆) + cs,p(Q2) · ‖Q
′
‖ · ‖D0,sf ‖Lp(∆) + cr,p(Q1) · ‖Q

′′
‖ · ‖Dr,0f ‖Lp(∆). (17)

(Here, ‖Q ′‖ =
∑n1
i=1 |ci| and ‖Q

′′
‖ =

∑n2
i=1 |di|.)

Proof. Since ADP(Q1) ≥ m− 1 and ADP(Q2) ≥ n− 1, then Q1[lµ] = `1[lµ] = bµ (µ = 1, . . . ,m), and Q2[lν] = `2[lν] = bν
(ν = 1, . . . , n). Therefore,

C[Bf ] =
m∑
µ=1

Q1[lµ]Q2[f (xµ, ·)] +
n∑
ν=1

Q2[lν]Q1[f (·, yν)] −
m∑
µ=1

n∑
ν=1

Q1[lµ]Q2[lν]f (xµ, yν)

=

m∑
µ=1

bµQ2[f (xµ, ·)] +
n∑
ν=1

bνQ1[f (·, yν)] −
m∑
µ=1

n∑
ν=1

bµbν f (xµ, yν)

= Q ′
[
Q2[f (xµ, ·)]

]
+ Q ′′ [Q1[f (·, yν)]]−

m∑
µ=1

n∑
ν=1

bµbν f (xµ, yν).
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On the other hand, according to (8),

I[Bf ] =
m∑
µ=1

bµ`2[f (xµ, ·)] +
n∑
ν=1

bν`1[f (·, yν)] −
m∑
µ=1

n∑
ν=1

bµbν f (xµ, yν)

= Q ′
[
`2[f (xµ, ·)]

]
+ Q ′′ [`1[f (·, yν)]]−

m∑
µ=1

n∑
ν=1

bµbν f (xµ, yν).

Since S[f ] = C[f ] + I[Bf ] − C[Bf ], we deduce (16) from the above formulae for C[Bf ] and I[Bf ]:

S[f ] = C[f ] + Q ′
[
`2[f (xµ, ·)] − Q2[f (xµ, ·)]

]
+ Q ′′ [`1[f (·, yν)] − Q1[f (·, yν)]]

= C[f ] + Q ′
[
R[Q2; f ((·)Q ′ , (·)R)]

]
+ Q ′′

[
R[Q1; f ((·)R, (·)Q ′′)]

]
.

Now (17) follows from (14) and (16):

|E[C; f ]| ≤ |E[S; f ]| +
∣∣Q ′ [R[Q2; f ((·)Q ′ , (·)R)]]∣∣+ ∣∣Q ′′ [R[Q1; f ((·)R, (·)Q ′′)]]∣∣

≤ |E[S; f ]| + ‖Q ′‖ max
x∈[a,b]

|R[Q2; f (x, ·)]| + ‖Q ′′‖ max
y∈[c,d]

|R[Q1; f (·, y)]|

≤ c(r,s),p(S) · ‖Dr,sf ‖Lp(∆) + cs,p(Q2) · ‖Q
′
‖ · ‖D0,sf ‖Lp(∆) + cr,p(Q1) · ‖Q

′′
‖ · ‖Dr,0f ‖Lp(∆).

Theorem 3 is proved. �

Remark 4. In fact, the following more general error bound for |E[C; f ]| can be derived with the same proof:

|E[C; f ]| ≤ c(r,s),p1(S) · ‖D
r,sf ‖Lp1 (∆) + cµ,p2(Q2)‖Q

′
‖ · ‖D0,µf ‖Lp2 (∆) + cν,p3(Q1) · ‖Q

′′
‖ · ‖Dν,0f ‖Lp3 (∆),

provided that 1 ≤ pi ≤ ∞ (i = 1, 2, 3), µ ≤ ADP(Q2) − 1, ν ≤ ADP(Q1) − 1, and the derivatives of the integrand
appearing in the right-hand side exist along with their norms. It is worth mentioning that the derivation of error estimates
for cubature formulae is a non-trivial task. Authors mainly concentrate on the construction of cubature formulae of a given
algebraic degree of precision, which is another difficult problem (see e.g., [10]). For a different error estimate for cubature
formulae (which however is expressed in terms of the norms of more derivatives of the integrand), see [12, Chapter 5].

4. Definite MPCF

A MPCF S is said to be positive definite of order (r, s), if Kr,s(S; t, τ ) ≥ 0 (resp., negative definite of order (r, s), if
K(r,s)(S; t, τ ) ≤ 0) on∆. In general, the verification of definiteness is a difficult task, but Theorem 1 provides some sufficient
conditions. Recall that a quadrature formula Q is said to be positive if all the coefficients of Q are positive.

Theorem 5. The following are sufficient conditions for a MPCF S to be positive definite of order (r, s):
(i) Q1 and Q ′ are positive definite of order r, Q2 is positive, and positive definite of order s, andK s ≥ 0 on∆;
(ii) Q1 and Q ′ are negative definite of order r, Q2 is positive, and negative definite of order s, andK s ≤ 0 on∆;
(iii) Q2 and Q ′′ are positive definite of order s, Q1 is positive, and positive definite of order r, andKr ≥ 0 on∆;
(iv) Q2 and Q ′′ are negative definite of order s, Q1 is positive, and negative definite of order r, andKr ≤ 0 on∆;
(v) Q1 and Q ′ are definite of opposite type of order r, Q2 and Q ′′ are definite of opposite type of order s, and Q1 and Q2 are definite
of opposite type.
The following are sufficient conditions for a MPCF S to be negative definite of order (r, s):
(i′) Q1 and Q ′ are positive definite of order r, Q2 is positive, and negative definite of order s, andK s ≤ 0 on∆;
(ii′) Q1 and Q ′ are negative definite of order r, Q2 is positive, and positive definite of order s, andK s ≥ 0 on∆;
(iii′) Q2 and Q ′′ are positive definite of order s, Q1 is positive, and negative definite of order r, andKr ≤ 0 on∆;
(iv′) Q2 and Q ′′ are negative definite of order s, Q1 is positive, and positive definite of order r, andKr ≥ 0 on∆;
(v′)Q1 and Q ′ are definite of opposite type of order r, Q2 and Q ′′ are definite of opposite type of order s, and Q1 and Q2 are definite
of the same type.

Proof. The assumptions (i)–(v′) guarantee that all the summands appearing in the right-hand sides of formulae (11)–(13)
have the same constant sign on∆, which yields the sign consistency of Kr,s(S; t, τ ) on∆. Either of the assumptions (i) and
(ii) ensures that the two summands in the right-hand side of (11) are positive on ∆, while the same summands are both
negative on∆ under either of the assumptions (i′) and (ii′). Similarly, the two summands in the right-hand side of (12) are
positive ∆ if one of assumptions (iii) and (iv) is fulfilled. The same summands are both negative on ∆ if either (iii′) or (iv′)
holds true. Finally, all the summands in the right-hand side of (13) are positive or negative on∆ depending on whether (v)
or (v′) is assumed. Theorem 5 is proved. �
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Table 1
Sufficient conditions for 0 ≤ E[S; f ] ≤ E[C; f ]

Q ′ Q ′′ Q1 Q2 Dr,sf Dr,0f D0,sf

PPD(r) PPD(s), K s ≥ 0 PD(r) PPD(s) ≥ 0 ≥ 0 ≥ 0
PN D(r) PN D(s), K s ≤ 0 N D(r) PN D(s) ≥ 0 ≤ 0 ≤ 0
PPD(r), Kr ≥ 0 PPD(s) PPD(r) PD(s) ≥ 0 ≥ 0 ≥ 0
PN D(r), Kr ≤ 0 PN D(s) PN D(r) N D(s) ≥ 0 ≤ 0 ≤ 0
PPD(r) PN D(s) N D(r) PD(s) ≥ 0 ≤ 0 ≥ 0
PN D(r) PPD(s) PD(r) N D(s) ≥ 0 ≥ 0 ≤ 0
PPD(r) PN D(s), K s ≤ 0 PD(r) PN D(s) ≤ 0 ≥ 0 ≤ 0
PN D(r) PPD(s), K s ≥ 0 N D(r) PPD(s) ≤ 0 ≤ 0 ≥ 0
PN D(r), Kr ≤ 0 PPD(s) PN D(r) PD(s) ≤ 0 ≤ 0 ≥ 0
PPD(r), Kr ≥ 0 PN D(s) PPD(r) N D(s) ≤ 0 ≥ 0 ≤ 0
PPD(r) PPD(s) N D(r) N D(s) ≤ 0 ≤ 0 ≤ 0
PN D(r) PN D(s) PD(r) PD(s) ≤ 0 ≥ 0 ≥ 0

Remark 6. Since Kr(Q ′; t) = `1[Kr(·, t)], the assumption that Kr(x, t) does not change its sign on ∆ implies that Q ′ is
definite of order r . Similarly, the assumption thatK s(y, τ ) does not change its sign on∆ implies that Q ′′ is definite of order
s. On the other hand, the requirement thatKr(x, t) (resp.K s(y, τ )) does not change its sign inside ∆ means that each of
the distinct interior components of X (resp. of Y) appears even times, which means that the blending interpolation operator
is of Hermite type. In order that Bf (and, consequently, S[f ]) does not involve derivatives of f , the interior gridlines of the
blending grid G(X, Y) must be double and have to pass through the abscissae of certain Gauss-type quadrature formulae.
That is to say, Q ′ and Q ′′ must be Gauss-type quadrature formulae.

In general, the influence of the ‘‘correction term’’ I[Bf ] − C[Bf ], which we add to a product type cubature formula C[f ]
to obtain its modified counterpart S[f ], is indeterminate: depending on B, C and f , it may reduce or increase the error
magnitude. In some cases equation (16) can be used to compare the errors of S and C . To describe these cases, we observe
that

E[S; f ] = E[C; f ] − Q ′
[
R[Q2; f ((·)Q ′ , (·)R)]

]
− Q ′′

[
R[Q1; f ((·)R, (·)Q ′′)]

]
,

by virtue of (16). Assume that the sign of E[S; f ] is known, e.g., E[S; f ] ≥ 0. This is the case, for instance, when S is positive
definite of order (r, s) and Dr,sf ≥ 0 on∆, or when S is negative definite of order (r, s) and Dr,sf ≤ 0 on∆. If

Q ′
[
R[Q2; f ((·)Q ′ , (·)R)]

]
≥ 0 and Q ′′

[
R[Q1; f ((·)R, (·)Q ′′)]

]
≥ 0, (18)

then

0 ≤ E[S; f ] ≤ E[C; f ],

i.e., S has smaller error than C .
The inequalities (18) are fulfilled, for instance, when Q ′ and Q ′′ are positive quadrature formulae, Q1 and Q2 are definite

of order r and s, respectively, and Dr,0f and D0,sf have appropriate constant signs on∆ (or at least on the gridlines of G). The
latter requirements for Q ′, Q ′′, Q1 and Q2 are in close connection with the assumptions in Theorem 5 which guarantee the
definiteness of S.
Our last statement summarizes the various conditions yielding superiority of a definite modified product cubature

formula S to the associated with S product cubature formula C . For the sake of brevity, we shall denote that a quadrature
formula Q is positive (negative) definite of order m by writing that Q is PD(m) (N D(m)). If, in addition, Q is positive,
i.e., all the coefficients of Q are positive, then we shall write that Q is PPD(m) (PN D(m), respectively).

Proposition 7. Let C = C(Q1,Q2) be the product cubature formula generated by the quadrature formulae Q1 and Q2, and let
the MPCF S be generated by Q ′, Q ′′, Q1 and Q2. Assume that the integrand f is in C r,s(∆), and its derivatives Dr,sf , Dr,0f and D0,sf
do not change their signs in∆. Then the requirements in each row of Table 1 imply the inequalities 0 ≤ E[S; f ] ≤ E[C; f ]: If we
reverse the inequalities in the last three columns of Table 1, then the requirements in each row imply the reversed inequalities
0 ≥ E[S; f ] ≥ E[C; f ].

5. Application

The implementation of MPCF requires the exact calculation of some line integrals, and this circumstance is perhaps the
only objection against their usage. On the other hand, if the integrand admits exact calculation of the line integrals involved,
it isworth applyingMPCF as an alternative to the standard product cubature formulae. For instance, a class of such integrands
is described by f (x, y) = g(x · y), where the univariate function g(t) admits application of the Leibnitz–Newton rule.
To demonstrate how the theory developed in the preceding sections works, we construct below sequences of definite

modified product cubature formulae for the square∆ = [0, 1]× [0, 1]. As was mentioned in Section 2, every such cubature
formula is generated by four quadrature formulae Q ′, Q ′′, Q1 and Q2, all of them approximating the definite integrals over
the interval [0, 1].
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Fig. 1. The graphs of K4,2(S+4,2,5; t, τ ) (left) and K4,4(S
+

4,4,5; t, τ ) (right).

Positive definite MPCF of order (4, 2). The nth member of the sequence {S+(4,2,n)}
∞

n=1 of positive definite MPCF of order
(4, 2) is built by the quadrature formulae Q ′, Q ′′, Q1 and Q2, selected as follows (see Theorem 5,(v)):

- Q ′ is the (elementary) Simpson quadrature formula;
- Q ′′ is the (elementary) midpoint quadrature formula;
- Q1 is the nth compound quadrature formula, based on the three-point open Newton–Cotes quadrature formula

Q [f ] =
1
3
[2f (1/4)− f (1/2)+ 2f (3/4)] ;

- Q2 is the nth compound trapezium quadrature formula.

Negative definite MPCF of order (4, 2). The sequence {S−(4,2,n)}
∞

n=1 consists of negative definite cubature formulae of
order (4, 2), and the quadrature formulae Q ′, Q ′′, Q1 and Q2, which generate S−(4,2,n) are chosen as follows (see Theorem 5,
(ii′)):

- Q ′ is the (elementary) Simpson quadrature formula;
- Q ′′ is the (elementary) midpoint quadrature formula;
- Q1 is the nth compound Simpson quadrature formula;
- Q2 is the nth compound midpoint quadrature formula.

Positive definiteMPCF of order (4, 4). The sequence {S+(4,4,n)}
∞

n=1 consists of positive definite cubature formulae of order
(4, 4), where in S+(4,4,n)Q

′
≡ Q ′′ is the two-point Gaussian quadrature formula

Q ′[f ] =
1
2
f

(
3−
√
3

6

)
+
1
2
f

(
3+
√
3

6

)
, (19)

and Q1 ≡ Q2 is the nth compound quadrature formulae, based on (19). Here, the positive definiteness of S+(4,4,n) is justified
by Theorem 5(i).

Negative definite MPCF of order (4, 4). The sequence {S−(4,4,n)}
∞

n=1 consists of negative definite cubature formulae of
order (4, 4). Here, in S−(4,4,n), Q

′
≡ Q ′′ is the two-point Gaussian quadrature formula (19), and Q1 ≡ Q2 is the nth compound

Simpson quadrature formula. The negative definiteness of S−(4,4,n) is verified by Theorem 5(v
′).

The Peano kernels of two positive definite MPCF are depicted in Fig. 1.
The above MPCF and the associated with them product cubature formulae have been tested with the following two

integrands:

f1(x, y) = exy, f2(x, y) = cos xy.

Notice that Di,jf1(x, y) ≥ 0 for every i, j and (x, y) ∈ ∆, while D4,2f2(x, y) and D4,4f2(x, y) change their signs in [0, 1]2.
The double integrals of f1 and f2 over [0, 1]2 can be reduced to univariate ones, namely, we have

I[f1] =
∫ 1

0

eu − 1
u
du, I[f2] =

∫ 1

0

sin u
u
du.

Making use of the MacLaurin expansion of the integrands and appropriate estimation of the truncation error, one finds for
the true values of I[f1] and I[f2]

I[f1] = 1.317902151454403 . . . , I[f2] = 0.946083070367183 . . . .
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Table 2
The error of S+4,2,n and the related product cubature formulae Cn

n E[Cn; f1] E[S+4,2,n; f1] E[Cn; f2] E[S+4,2,n; f2]

5 −1.666× 10−3 8.802× 10−6 1.005× 10−3 3.772× 10−6

10 −4.167× 10−4 2.188× 10−6 2.511× 10−4 9.324× 10−7

15 −1.852× 10−4 9.714× 10−7 1.116× 10−4 4.136× 10−7

20 −1.042× 10−4 5.462× 10−7 6.275× 10−5 2.325× 10−7

25 −6.667× 10−5 3.496× 10−7 4.016× 10−5 1.488× 10−7

30 −4.630× 10−5 2.428× 10−7 2.789× 10−5 1.033× 10−7

Table 3
The error of S−4,2,n and the related product cubature formulae Cn

n E[Cn; f1] E[S−4,2,n; f1] E[Cn; f2] E[S−4,2,n; f2]

5 8.326× 10−4 −4.438× 10−6 −5.024× 10−4 −1.915× 10−6

10 2.083× 10−4 −1.097× 10−6 −1.256× 10−4 −4.683× 10−7

15 9.259× 10−5 −4.863× 10−7 −5.578× 10−5 −2.073× 10−7

20 5.209× 10−5 −2.733× 10−7 −3.138× 10−5 −1.164× 10−7

25 3.334× 10−5 −1.749× 10−7 −2.008× 10−5 −7.443× 10−8

30 2.315× 10−5 −1.214× 10−7 −1.395× 10−5 −5.167× 10−8

Table 4
The error of S+4,4,n and the related product cubature formulae Cn

n E[Cn; f1] E[S+4,4,n; f1] E[Cn; f2] E[S+4,4,n; f2]

5 2.320× 10−7 1.319× 10−8 1.314× 10−7 1.572× 10−9

10 1.451× 10−8 8.267× 10−10 8.201× 10−9 9.753× 10−11

15 2.867× 10−9 1.634× 10−10 1.620× 10−9 1.924× 10−11

20 9.069× 10−10 5.170× 10−11 5.125× 10−10 6.085× 10−12

25 3.715× 10−10 2.118× 10−11 2.100× 10−10 2.492× 10−12

30 1.792× 10−10 1.022× 10−11 1.013× 10−10 1.202× 10−12

Table 5
The error of S−4,4,n and the related product cubature formulae Cn

n E[Cn; f1] E[S−4,4,n; f1] E[Cn; f2] E[S−4,4,n; f2]

5 −3.480× 10−7 −1.983× 10−8 −1.970× 10−7 −2.360× 10−9

10 −2.177× 10−8 −1.241× 10−9 −1.231× 10−8 −1.463× 10−10

15 −4.300× 10−9 −2.451× 10−10 −2.430× 10−9 −2.886× 10−11

20 −1.361× 10−9 −7.756× 10−11 −7.687× 10−10 −9.126× 10−12

25 −5.573× 10−10 −3.177× 10−11 −3.149× 10−10 −3.738× 10−12

30 −2.688× 10−10 −1.533× 10−11 −1.519× 10−10 −1.803× 10−12

We used Wolfram’s Mathematica to perform some numerical experiments with the above definite MPCF. The results are
given in Tables 2–5.
In the cases S = S+4,2,n and S = S

−

4,2,n we cannot refer to Proposition 7 to claim that either 0 ≤ E[S; fi] ≤ E[Cn; fi] or
0 ≥ E[S; fi] ≥ E[Cn; fi], (i = 1, 2). The reason for f2 is that D4,2f2 does not have a permanent sign in [0, 1]2. As to f1, neither of
the requirements in Proposition 7 for the quadrature formulaeQ ′,Q ′′,Q1 andQ2, which generate S, matches the sign pattern
of the derivatives D4,2f1, D4,0f1 and D0,2f1, as required in Table 1. Nevertheless, Tables 2 and 3 clearly indicate that the use of
S instead of Cn reduces the error magnitude by factors approximately equal to 188 for f1 and 270 for f2. Notice that the cost
of this reduction is the additional calculation of four line integrals.
Since in [0, 1]2, signD4,4f1 = signD4,0f1 = signD0,4f1 = 1, we see that the assumptions of Proposition 7 are satisfied

(specifically, in rows two and twelve of Table 1). Consequently, we have 0 < E[S; f1] < E[Cn; f1] in Table 4, and the reversed
inequalities in Table 5. The same behavior is observed for E[S; f2] and E[Cn; f2], though D4,4f2 changes its sign in [0, 1]2. The
error reduction factor is approximately 17.5 for f1, and 84 for f2. This reduction is achieved at the expense of four (in the case
S+4,4,n) or five (in the case of S

−

4,4,n) additionally calculated line integrals.
It is also observed that for all n, E[S+4,2,n; f1] and E[S

+

4,4,n; f1] are positive, while E[S
−

4,2,n; f1] and E[S
−

4,4,n; f1] are negative,
in accordance with the theory.
If a MPCF S is shown to be definite of order (r, s) through Theorem 5, its error constant c(r,s),∞(S) can be expressed in

terms of the error constants of the four quadrature formulae Q ′, Q ′′, Q1 and Q2, generating S. Namely, integration of (13)
over∆ yields

c(r,s),∞(S) = |̃cr,∞(Q ′)̃cs,∞(Q2)+ c̃r,∞(Q1)̃cs,∞(Q ′′)− c̃r,∞(Q1)̃cs,∞(Q2)|,
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where c̃m,∞(Q ) := `1[Km(Q ; ·)] or c̃m,∞(Q ) := `2[Km(Q ; ·)] depending on whether Q approximates `1 or `2. In the cases
when Q is positive or negative definite of ordermwe have c̃m,∞(Q ) = cm,∞(Q ) or c̃m,∞(Q ) = −cm,∞(Q ), respectively. This
observation together with the well-known error constants of the Newton–Cotes quadratures with one, two or three nodes,
and the two-point Gaussian quadrature formula, yields

c(4,2),∞(S+4,2,n) =
1

34 560n2

(
1+

7
16n2

+
7
8n4

)
,

c(4,2),∞(S−4,2,n) =
1

69 120n2

(
1+

1
n2
−
1
n4

)
,

c(4,4),∞(S+4,4,n) =
1

9331 200n4

(
1−

1
2n4

)
,

c(4,4),∞(S−4,4,n) =
1

6220 800n4

(
1+

3
4n4

)
.

Using that ‖D4,2f1‖C(∆) = 21e, ‖D4,4f1‖C(∆) = 209e, ‖D4,2f2‖C(∆) = 12, ‖D4,4f2‖C(∆) < 92.8, and the above error
constants, one can compare the actual error in Tables 2–5 (columns two and four) with the theoretical bounds, given by
the Peano kernel theory through (14) with p = ∞. Although the latter bounds usually well overestimate the real error
magnitude, in our case we observe a remarkably stable (with respect to n) and reasonably small error overestimation factor.
Namely, for S±4,2,n this factor varies between 7.56 and 7.74 for f1, and between 3.73 and 3.77 for f2. For S

±

4,4,n (definite MPCF
of order (4, 4)), the error overestimation factor ranges between 7.35 and 7.38 for f1, and between 10.1 and 10.22 for f2.
We can also derive upper bounds for |E[Cn; fi]|, i = 1, 2, with Cn being the product cubature formulae appearing in S±4,2,n

and S±4,4,n. To this end we make use of Theorem 3 (estimate (17) with p = ∞), and the error constants c(4,2),∞(S
±

4,2,n) and
c(4,4),∞(S±4,4,n) given above. Notice that ‖Q

′
‖ = ‖Q ′′‖ = 1 whenever Q ′ and Q ′′ are positive (which is always the case in

the above definite MPCF). Observe that ‖D4,0f1‖C(∆) = ‖D0,2f1‖C(∆) = ‖D0,4f1‖C(∆) = e, and ‖D4,0f2‖C(∆) = ‖D0,2f2‖C(∆) =
‖D0,4f2‖C(∆) = 1. Comparison of the sharp errormagnitude |E[Cn; fi] in Tables 2 and 3 (columns one and three)with the error
bounds furnished by Theorem 3 reveals an error overestimation factor ranging between 5.47 and 5.49 for f1, and an error
overestimation factor approximately equal to 3.33 for f2. Similarly, the actual error magnitude |E[Cn; fi], given in columns
one and three in Tables 4 and 5, is overestimated in the bounds provided by Theorem 3 by a factor not exceeding 9.1 for f1
and 5.77 for f2.
Let us mention once again that, for other integrands, the numerical results could show better performance of a product

cubature formula C than its modified counterpart S. Our main goal in this paper was to show how the Peano kernel theory
can be adopted for error estimation of both S and C .
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