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1. Introduction

In order to approximate the solution of the Stokes problem by finite element methods, there are basically two approaches.
The first one consists in approximating the two independent variables, velocity and pressure, using different spaces for each
one. This leads to mixed finite element methods, examples of which can be found in [1-8] and in the references therein;
mixed methods have been widely analyzed and the theory of mixed problems is well-established nowadays; see [9] (in
particular, the paper by D. Boffi, F. Brezzi and M. Fortin, Finite Elements for the Stokes problem on pages 45-100) and [10)].
The second approach, which is based on stabilized formulations, consists in modifying the discrete problem by the addition
of new terms which enhance its stability (see [11-18] and the references therein).

Both of these approaches have some advantages and some disadvantages. For mixed finite element methods the general
theory states that the convergence of these methods is only guaranteed if the discrete spaces are selected such that
they satisfy the well-known inf-sup condition (see [9,10]). On the other hand, stabilized methods depend on algorithmic
parameters which have to be tuned to get optimal results.

In this work we introduce and analyze a new family of mixed finite element methods in which the pressure is interpolated
on a mesh of rectangular elements and the velocity on a triangular mesh obtained by dividing each rectangle into four
triangles by its diagonals. The meshing strategy is usually called cross-grid, and similar ideas were employed in [9,10,19,6,
7,20,21]. We denote by P;Q; the elements in which the velocity is interpolated in each triangle by polynomials of degree no
greater than k and the pressure is interpolated in each rectangle by polynomials of degree in each variable no greater than
Lwithk>1> 1.
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In order to analyze the stability of these methods, we use the well-known macroelement technique of Stenberg [22-24]
which allows us to reduce the analysis of the global stability to a simple local condition. We prove that if the method satisfies
a local condition, optimal order of convergence can be obtained. We analyze the lowest order P;Q; element and show the
existence of a global spurious pressure mode, so convergence of the pressure does not hold for this element. The alternate
nature of the nodal values of the pressure in this spurious mode resembles the structure of the well-known checkerboard
mode of the Q; Py element (see for instance [9,25,26]). On the other hand, we prove that the cross-grid P,Q; element satisfies
the local estimate and thus the inf-sup condition, so it yields optimally convergent solutions.

Some numerical results are also presented which confirm the presence of the spurious pressure mode for the P;Q,
element and the stability of the P,Q; element. Although our methods are introduced and analyzed only in the case of
rectangular elements, they can also be appropriately defined in meshes of general quadrilateral elements; we include some
numerical experiments on such meshes which show that the nodal checkerboard mode is also present in that case for the
P1Qq element, so the presence of this spurious model is not removed by mesh distortion. The P,Q; element, moreover,
gives a correct pressure solution and so we conjecture the stability of our cross-grid P,Q; element for general meshes of
quadrilateral elements.

The rest of the paper is organized as follows. In Section 2 we state the Stokes problem and introduce the P,Q; mixed finite
element approximations. In Section 3 we present the stability analysis based on the macroelement technique. In Section 4
we analyze the stability of the lowest order cases P1Q; and P,Q;. Finally, in Section 5 we present some numerical examples.

2. Cross-grid P, Q, finite element approximation of the Stokes problem

In this section we recall the Stokes problem and we introduce the new family of cross-grid P,Q; mixed finite element
methods for its numerical approximation.

2.1. Problem statement

Let 2 C RR? be an open, bounded and polygonal domain. We consider the classical Stokes problem which models the
slow motion of an incompressible viscous fluid occupying §2:

V.ou=0 in 2, (2.1)

—pnAu+Vp=f in$2,
u=20 onl :=0d%2,

where u is the fluid velocity, p is the pressure, f € (H~'(£2))? (the dual space of (H}(£2))?) is a given body force per unit
mass and p > 0 is the kinematic viscosity, which we assume constant.

Let V := (Hj(£2))* and Q := L5(£2) = {q € L*(£2) : [,, ¢ = 0}. The weak form of (2.1) is given by: Findu € V andp € Q
such that

{a(u, V) +b(v,p) =, v)yyy VYVEV, (2.2)

b(u,q) =0 Vq € Q,

where the bilinear forms a(-, -) and b(, -) are definedonV x V and V x Q, respectively, as

a(u,v):M/ Vu:Vv uvev,
2

b(v,q)=—/ V.vqg veV,qeqQ.
2

The norms and seminorms in (H™(D))?, with m an integer, are denoted by || - |m.p and | - |mp respectively and (-, -)p
denotes the inner product in L>(D) or (L?(D))? for any subdomain D C 2. The domain subscript is dropped for the case
D = 2.

The bilinear form a(, -) is coercive in V and there exists a constant 8 > 0 (see for instance [9]) such that for allg € Q

b(v, q)
ozvev  |IV][1

> Bllqllo. (2.3)

According to the general theory of mixed problems [9,10] these conditions ensure that there exists a unique solution of
problem (2.2).
Let now V;, C V and Q; C Q be finite dimensional spaces. The standard Galerkin approximation of (2.2) is given by: Find
(up, pr) € Vi x Qp such that
a(Uh, V) + b("? ph) = (fa V)V’XV Vv e Vl’h (2 4)
b(uy,q) =0 Vq € Q. ’
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In order to have a stable and convergent approximation, the discrete spaces Vj, and Qy have to satisfy the well-known
LBB condition, i.e. there should exist a constant 8 > 0, independent of h, such that

S b(v, q)
0#£veVy ||V||1

> Bligllo ¥q € Q. (2.5)

Then, if (2.5) holds the theory of mixed finite element methods [9,10] states that problem (2.4) has a unique solution which
is stable and optimally convergent, i.e. there exists a positive constant C such that

lu —uplls + llp — prllo = C{inf lu —vll; + inf [Ip — qllo}. (2.6)
veVy qeQy

2.2. Cross-grid P,Q; mixed finite elements

We now consider a partition €, of £ into rectangular elements K, which we assume to be regular, i.e. there exists a
constant o > 0 independent of the mesh size h such that

h]( < opg VK € @h,

where hyg denotes the diameter of K and pi the diameter of the largest ball contained in K.

Then, we divide each rectangle K by its diagonals into four triangles and we call 7} the resulting mesh of triangular
elements T.

Using the standard notation £ for the space of polynomials of degree not greater than k and Q; for the space of
polynomials of the form q(x, y) = Zj a;pj(x)q;(y) with p; and g; polynomials of degree less than or equal to [, the cross-grid
PyQ; mixed finite element spaces for the approximation of the velocity and the pressure are defined, respectively, as follows:

Vi={veV:v, e (P)? VT € Ty}
Q=1{q€QNH(2):q, € @, VK € Cpn}.
The cases of interest are, of course, those for which [ < k. For | = k, we have approximations of the same order for the

two variables, although not equal approximations. For | = k — 1 the orders of the interpolation errors in the error estimate
(2.6) are balanced. Moreover, we are interested in continuous pressure approximations only, so we assume that[ > 1.

3. Stability analysis—The macroelement technique

The goal of this section is to analyze the stability of cross-grid P,Q; mixed finite element approximations of the Stokes
problem by means of the satisfaction of the discrete inf-sup condition (2.5).

Our stability analysis is based on the well-known macroelement technique of Stenberg (see [22-24]). In the general
setting, a macroelement is defined as a connected set M of adjoining (velocity) elements T € 7. The macroelement parti-
tioning is called .M;,. Two macroelements M and M are said to be equivalent if there is a one-to-one and continuous mapping
G:M — M such that:

(i) GM) = M. _
(ii) ForallT C M,G(T) =T C M.
(iii) ForallT C M, G, = Ff o FT_I, where Fr and F; are affine mappings from the reference element T onto Tj and T,
respectively.

The macroelement partitioning M}, is usually required to satisfy the following assumptions:

(M1) There is a fixed set of equivalence classes D;,i = 1, ..., n, of macroelements such that each M € M}, belongs to one
of Di.

(M2) There is a positive integer L such that each T € 7}, is contained in at least one and not more than L macroelements of
Mp.

The cross-grid structure of our velocity mesh 7; makes the macroelement technique especially suitable for the stability
analysis of such elements. The natural choice for macroelements in our case is M = K, so the macroelements are indeed
the rectangular pressure elements (we use the notation M for the macroelements from now on, rather than using K, since it
is standard in this context). Condition (M2) is automatically satisfied with this choice, with L = 1. We take the unit square
M= [0, 1] x [0, 1] as the reference macroelement. Since in our case every M € M, is a rectangle of the partition Gy, it is
clear that there exists an affine transformation Fy; such that:

(i) Fu(M) = M.
(i) If we denote by T;, 1 < i < 4, the four triangles in M obtained by dividing it by its diagonals, then Tj = Fy (T}) are the
four triangles of M obtained by dividing it by its diagonals. _
(iii) FM‘f = Fy 0 Ff_l,j = 1,...,4, where Fr, and Ffj are the mappings from the reference element T, i.e. the triangle of
j j

vertices (0, 0), (1, 0) and (0, 1), onto T; and TJ respectively.
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Thus, all macroelements are equivalent, and condition (M1) is also automatically satisfied, with n = 1. For each macroele-
ment M, let us define the following finite element spaces consistent with Vi, and Q:

Vi = {v € (Hy(M))? : v}, € (P)%, VT C M}
Qu = @(M).

For the elements in Qy we define the following seminorm:
IqIm = hm1IV4llom

and for q € Q let

lglz = > iy IVqllg v

MeCy

which can also be written as

lgllz = " lali-

MeCy

From now on, C denotes a generic positive constant, possibly different at different occurrences, which is independent of h
but may depend on the mesh parameter o and some other parameters introduced in the text.

The following lemmas are the tools for showing that the global stability estimate (2.5) can be obtained from local stability
estimates. The proofs follow the same arguments as those given in [22-24]. We have incorporated a modification in the last
step of the proof of the following lemma with respect to that of Lemma 1 of [23], and so we give the proof for completeness.

Lemma 3.1. If there exists a constant C such that forany M € Cp,

Vv,
sup DM g g ey, (37)
ozvevy  [Vlim
then there exists a constant C such that the following stability inequality holds:
(V-v,q)
sup

———— = Cligls Vg € Q. (3.8)
0#£veVy ”V”l

Proof. Given q € Qy, the local stability estimate (3.7) implies that for any M € Gy, there exists vy, € V), such that
(V -, m = Clqly (3.9)
and

Vmlim < Iqlm. (3.10)

Since vyy = 0 on dM, we can define an extension function v§, € Vj, as

in M
"eM:{VM in

0 in2\M.
Thus, from (3.9) we have that
(V -V, @) = (V -V, Qum = Clgl, (3.11)

and from (3.10) we get

Iyl = lvmlim < 1qlu- (3.12)
Let us now define
V= Z V.
Megy
Then, v € V}, and from (3.11) we get
(Vov,@)= Y (Vv @) =C > lqly = Cliqll;. (3.13)
Meey Meey
On the other hand, by using the Poincaré inequality and (3.12) we obtain that
VT < Clvii =C Y viyli =C Y laly = Cliall;. (3.14)
Meey Megy

Therefore, the lemma follows from (3.13) and (3.14). O
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The following lemmas provide a relationship between stability in the mesh-dependent norm || - ||, and that in the L?
norm | - |lo. The proof of this result is essentially based on the so called Verfurth trick, which was originally used for the
proof of stability of Taylor-Hood elements (see [27] and Section 4.3 of [9], Finite elements for the Stokes problem). The proof
of the next lemma is, thus, skipped.

Lemma 3.2. There exist two constants C; and C, such that

(V-v.9

> Ciliqllo — GlIqlls ¥q € Qn.
ozvev, VIl

The next lemma is a consequence of Lemma 3.2. Its proof is essentially the same as that of Lemma 3 in [23], and it is
therefore omitted.

Lemma 3.3. If the stability in the mesh-dependent norm (3.8) is valid, then the stability condition (2.5) holds.

Therefore, the problem of proving that the inf-sup condition (2.5) holds is reduced to proving the local estimates (3.7).
In order to get sufficient conditions for these to hold, let us define the space

Ny = {q € Qul (Vq,v)y =0, Vv € Vy}.
Since we are in the same conditions as in Lemma 4 of [23], using the same arguments as there, we can prove the following

result which gives the fundamental tool for proving the stability of the proposed finite element methods:

Lemma 3.4. If the space Ny, is one-dimensional, i.e., it consists only of functions which are constant on M, then the local stability
condition (3.7) holds.

Combining Lemmas 3.1, 3.3 and 3.4 we obtain the main result of this section:

Theorem 3.1. If the space Ny, is one-dimensional, i.e., it consists only of functions which are constant on M, then the inf-sup
condition (2.5) holds, problem (2.4) has a unique solution (uy, p) and there exists a constant C independent of the mesh size h
such that

lu—wplls + lp — pallo < C{inf |lu —v||; + inf [p —qllo}.
vevy qeQn

Remark 3.1. We observe that, under the hypothesis of the previous theorem, if the continuous solution satisfies u €
(H*1(2) M Ha(£2))* and p € H*1(£2) (N [3(£2), using classical interpolation error estimates (see for example [28]) we
can conclude that [lu — uy[ly + [Ip — prllo < C{R* w1 + hHplliga )

4. Stability of cross-grid P, Q, mixed finite elements

The aim of this section is to analyze the stability of cross-grid P,Q; mixed finite elements for different values of k and [,
with k > land [ > 1, using the numerical analysis given in Section 3. According to Theorem 3.1, for such elements stability
holds if the condition dim(Ny,) = 1 is satisfied. Therefore, the following patch-test type condition should first be checked if
stability is to be expected:

dimVy > dimQy — 1
for every macroelement M. Since in our case M is a rectangle of the partition Cp, it is easy to see that for P;Q; elements,
dimVy =2{1+4(k—1) +2(k — 2)(k — 1)} = 4k* — 4k + 2
dimQy = (I + 1)*
and therefore, P,Q; elements satisfy the patch test if
4k* — 4k +2 > I* 4 21.

Thus, for the P,Qx (k > 1) mixed interpolations this gives k > 1.58, so the lowest order P;Q; element is suspected to be
unstable. For the P,Q,_1 (k > 2) methods, on the other hand, this condition holds for all values of k; the simplest case P,Q;
may thus be stable. In the following subsections we consider and analyze in detail the cases P;Q; and P,Q; (see Figs. 1 and 3).
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K

O Pressure Nodes

* Velocity Nodes

&

Fig. 1. Velocity and pressure nodes of the cross-grid P1Q; mixed finite element.

4.1. The cross-grid P;Q; element

We first consider the cross-grid P;Q; element, which is the simplest cross-grid element that one can consider among
those which use a continuous pressure interpolation. The velocity and pressure nodes of this element are shown in Fig. 1.
In this case, dim(Vy;) = 2 and dim(Qy) = 4, so the space Ny is at least two-dimensional. In fact, dim(Ny;) = 2 and Ny,
consists of functions which take the same value at opposite vertices of M. These local spurious pressure modes add up to
form a global spurious pressure mode. The next lemma shows the existence of such a pressure mode when £2 is a rectangle
and a uniform mesh is considered. Thus, this element does not satisfy the inf-sup condition (2.5).

Lemma 4.1. Let 2 = (0,A) x (0, B) and let Cp, be a uniform mesh consisting of N x M rectangles. Let us consider the P1Q,
mixed finite element approximation. Then, there exists a global spurious pressure mode G, € Qp, \ {0} such that
(Van, vy) =0 Vv, € Vj.
Proof. Let K;; = [(i — 1)hy, ihy] x [(j — 1)hy, jhy] be the rectangles of the uniform mesh €y, with hy = A/N, h, = B/M,
1<i<Nand1<j<M,andletn;; = (ih, jh,),0 <i < N,0 < j < M, be the nodes of the mesh C;. We define gn € Qp as
N __Ja ifi+jiseven
Qn(nij) = {—a ifi 4 jis odd

witha € R, a # 0. In order to simplify the notation we define g;; = Gy ().
Let p; j be the Lagrange basis of Qy, i.e. p;j € Qu, pij(n;j) = 1and it is zero at the rest of the nodes of the mesh ¢;. Then,
if i + j is even we have that

Elh(X,J’)m,-J = Gi—1,j—1Pi-1,j—1 + Qi j—1Pij—1 + Gi—1,Pi-1j + i jPij
a (pi—l,j—l +Pij — Pij-1— PH,j)

a{(ihx—x><jhy—y)+(x—(i—1)hx>(y—(i—l)hy>
hy hy hy hy
x—(@{—Dhe\ (jhy—y ihy —x\ (y— (G — Dh,
- (SR ) - () ()
and so

34 y—jhy, y—G—Dh, jhy—y (G—Dh, —y
%(&y)“(u:a( Jhy G y My g y >

heh, heh, hehy hehy

Let 7}, be the corresponding triangular mesh obtained by dividing each rectangle into four triangles by its diagonals. We
denote by nj_1/2j—12 = ((i — 1/2)hy, G — 1/2)hy), 1 <i < N, 1 < j < M, the internal node in each rectangle. Let ; ; be
the piecewise linear Lagrange basis of Vj, i.e., B;j € V, such that 8; j(n;j) = 1 and it is zero at the rest of the nodes of 7.
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Fig. 2. Support of the shape function g;; for corner nodes n; ;.
Let us consider internal nodes n;_1; j_1,; first; the support of 8;_1/2j_1,2 is K; ;. Since adi: (x, ~)‘Kw. is an odd function with
respect to the liney = (j — 1/2)hy, and Bi_1,2 j—1/2(x, -) is an even function with respect to that line, we conclude that

ol

™ X, ¥)Bi—1/2,j—1/2(x, y)dxdy = 0.

dq
/ Th(X»}’)13171/2.171/2(X»J’)d’<dy=/
Q X

Ki j

Now we consider corner nodes n;; and denote the support of ;; by w;; = Un, jet T = Uj<<s T; (see Fig. 2). An easy
calculation shows that

%4 54
/ Y e By = — / W gy 1<1<4
T, 0X Tira 0x

and thus,

3n 9qn
‘/.Qa(x»Y),BiJ = /1;)1-- 5("’ Y)Bij=0.

o

By using the same arguments, we can prove that

dqn
[ S yasa iy =0
2 9y
and
dqn
— (%, ¥)Bij(x, y)dxdy = 0.
o 0y
The proof concludes by observing that the case i + j odd is completely analogous and so (Vqy, vy) = 0,Vv, € V.. O
Remark 4.1. Due to the alternate nature of the spurious pressure mode gy, which resembles the well-known checkerboard
mode of the elemental pressures in the Q; Py element, we call this pressure distribution a nodal checkerboard mode.
4.2. The cross-grid P,Qq element
We now consider the cross-grid P,Q; element (see Fig. 3). In this case, dim(V);) = 10 and dim(Qy;) = 4. The following
lemma shows that for the P,Q; element the space Ny is one-dimensional and therefore, from Theorem 3.1, we conclude

that this element is stable and optimally convergent.

Lemma 4.2. The space Ny, for the cross-grid P,Q; element is one-dimensional.

Proof. Let ¢ € Ny be, ie, g € Qu such that (Vq,v)y = 0Vv € Vy. We denote by nj, 1 < j < 13, the nodes of the
triangulation lyingon M and by T;, 1 < i < 4, the triangles in M, as shown in Fig. 4. Let $;, 1 < j < 13, be such that 'Bf\r € P
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Ny X
K

O Pressure Nodes

* Velocity Nodes

Q *
Fig. 3. Velocity and pressure nodes of the cross-grid P,Q; mixed finite element.
* X0
n7 n
n 3 T n
3
*Ng T, 9 Ty N *
n T ] N
n n 5
& *

Fig. 4. Local numbering of nodes and triangular elements in the P,Q; case.

and Bj(n;) = &;j, i.e. the corresponding ,-Lagrange basis function of node j. Finally, let p;, 1 < j < 4, be such that p; € Qu
and pj(n;) = §;;. Then, any q € Qu can be written as

4
qx.y) =Y qmpi(x. y).
j=1
We compute explicitly the products (Vag,v) for selected velocity fields v. We first notice that these products can be com-
puted on the reference macroelement M = [0, 1] x [0, 1]. Indeed, for any macroelement M € C;, we have that ﬂ] =

BjoFu,1 <j <13,andp; = pioFy, 1 < i < 4, constitute the corresponding Lagrange basis in M, and from a simple change
of variables we get

8pj ) 10 A A
/M B (6, 9)fy . idady / o i 5 5) By (&, 9)hehy iy

3 A A A A imn
h, / LB R ),
M

/%()( Ydxd /13()()hhdd
Mayx,yﬁ,x,y xdy hanyﬂny xdy

3 R A
he / B % )8R §)dRdy
0 0y

where hx and h, denote the lengths of the edges of M.
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Display Vectors of Nodal-Velocity, [Nodal-Velocityl factor 0.1 m

Fig. 5. Cavity flow, P;Q; element: Velocity vectors.

Let us first take v = (B9, 0); by the simple calculation of the corresponding integrals we have that condition (Vgq, v)y; =
0 leads to

7 7 1 1
- L —q(n3) — —q(ng) = 0, 4.15
60‘]("1) + 60(1(”2) + 20(1(”3) 20Q("4) (4.15)

and taking now v = (0, B¢) yields

7 1 1 7
— —q(n) — —q(n —q(n —q(ng) = 0. 4.16
GOQ( 1) 20‘]( 2) + 20‘]( 3) + 60‘1( 4) (4.16)

Finally, taking v = (0, 812) we obtain

1 7 7 1
- - + — + — =0. 4.17
2Oq(m) 6Oq(nz) 60q(n3) 20q(n4) (4.17)

Subtracting (4.16) from (4.15) we get q(n,) = q(n4) and adding up (4.15) and (4.17) we get q(n;) = q(ns). Substituting
these in (4.15) we get q(n;) = q(n,), and the proof concludes. O

Remark 4.2. Let us notice that for cross-grid meshes this P,Q; element has the same optimal order of convergence as the
well-known P,P; Taylor-Hood element, with the advantage that it requires one less pressure node in each rectangle.

5. Numerical results

We present in this section some numerical results obtained with the P;Q; and the P,Q; cross-grid mixed finite elements
on two test cases of the Stokes problem.

5.1. The lid-driven cavity flow problem

In this first example we solved the classical lid-driven cavity flow problem. The fluid domain is the unit square 2 =
[0, 1] x [0, 1] and the flow is driven by the top lid {y = 1, 0 < x < 1}, which moves with constant velocity u = (1, 0);
in the rest of the boundary, homogeneous Dirichlet conditions are imposed. Moreover, in this flow problem f = 0, and we
took v = 0.1. In the Stokes case that we consider, the solution to this problem is known to be symmetric about the cavity
centerline x = 0.5, with a unique primary vortex centered on that line. The pressure is singular at the top corners.

We solved this problem with both the P;Q; and the P,Q; mixed finite elements. In the first case, a uniform mesh of 20 x 20
rectangular elements was used for the pressure approximation, from which a uniform cross-grid mesh of 1600 triangular
elements was generated for the velocity approximation. In the second case, the pressure mesh was courser and consisted
only of 10 x 10 rectangular elements, from which 400 quadratic triangular elements were generated for the velocity. In this
way, the number of velocity nodes is the same in the two cases, and equal to 841.

Both elements produced correct velocity solutions, which are plotted in Figs. 5 and 6. As can be observed, both solutions
reproduce the main features of the flow such as symmetry and a unique primary vortex.

The pressure solution obtained with the two elements is shown in Figs. 7 and 8 in the form of pressure contours. A clear
nodal checkerboard mode phenomenon can be seen in the solution of the P;Q; element, just as predicted by Lemma 4.1.
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Fig. 6. Cavity flow, P,Q; element: Velocity vectors.
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Fig. 7. Cavity flow, P;Q; element: Pressure contours.

S =7
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Contour Lines of Nodal-Pressure m

Fig. 8. Cavity flow, P,Q; element: Pressure contours.

The P,Q; element, on the other hand, gave correct pressure results. It has to be said that the hydrostatic (constant) pressure
mode was avoided by setting to zero the value of the pressure at the top right corner of the cavity.

Figs. 9 and 10 plot three-dimensional views of the two pressure solutions. The nodal nature of the spurious pressure

mode in the P;Q; case can be clearly observed there. In the P,Q; case, on the other hand, the pressure singularity at the top
corners is clearly captured.
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Fig. 9. Cavity flow, P;Q; element: 3D view of the pressure solution.
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Fig. 10. Cavity flow, P,Q; element: 3D view of the pressure solution.
5.2. The trapezoidal domain

Although our cross-grid mixed finite elements have been defined only in the case of meshes of rectangular elements,
the methods that we have developed can also be appropriately defined for meshes of regular quadrilateral elements. This
second example is intended to test the performance of the P;Q; and the P,Q; elements in such cases.

The problem consists of a fully developed plane Poiseuille flow on a trapezoidal domain of vertices (0, —1), (5, —1), (2, 1)
and (3, 1). A parabolic velocity profile is prescribed both at the inlet (left boundary) and at the outlet (right boundary), with
a maximum inflow velocity of 1, and a no slip boundary condition is imposed at the top and bottom. The solution of this
simple flow problem can introduce some inconsistent boundary conditions on the pressure in some stabilized residual-
based formulations (such as GLS) if linear elements are used, which forces the numerical pressure contours to be normal to
the boundary (see [29]).

The quadrilateral meshes employed for the pressure approximation in this problem are constructed from 10 (resp. 5)
equally spaced subdivisions of each boundary for the P;Q; element (resp. the P,Q; element); the resulting cross-grid
triangular meshes can be seen in Fig. 11 for the P;Q; and 12 for the P,Q; element.

The velocity solutions obtained reproduce accurately the analytical solution u = (1 — y?, 0) in both cases, and are not
plotted. The pressure solutions obtained are shown in Figs. 13 and 14. A nodal checkerboard mode was obtained again with
the P;Q; element, so the presence of this spurious model is not removed by mesh distortion. The P,Q; element, on the other
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Fig. 13. Trapezoidal domain, P;Q; element: Pressure contours.
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Fig. 14. Trapezoidal domain, P,Q; element: Pressure contours.

hand, gave a correct pressure solution with a linear variation in the x variable, as can be seen in Fig. 14. With this mixed
formulation, the pressure is not affected by inconsistent boundary conditions.

Acknowledgements

We would like to thank Professors Gabriel Acosta and Ricardo Duran for their useful comments. The first author’s work
was supported by ANPCyT under grant PICT 03-13719, by Universidad de Buenos Aires under grants X052 and X007 and by

CONICET under grant PIP 5478. The first author is a member of CONICET, Argentina. The second author’s work was supported
by the Spanish MEC under Projects MTM2005-07660-C02-01 and MTM2006-07932.



1416 M.G. Armentano, J. Blasco / Journal of Computational and Applied Mathematics 234 (2010) 1404-1416

References

[1] D. Boffi, Minimal stabilizations of the P, 1-P; approximation of the stationary Stokes equations, Math. J. Models Methods Appl. Sci. 5 (2) (1995)
213-224.
[2] D. Boffi, L. Gastaldi, On the quadrilateral Q,-P; element for the Stokes problem, Int. J. Numer. Methods Fluids 39 (4) (2002) 1001-1011.
[3] F.Brezzi, R. Falk, Stability of higher-order Hood-Taylor methods, SIAM J. Numer. Anal. 28 (3) (1991) 581-590.
[4] X.Chen, W. Han, H. Huang, Analysis of some mixed elements for the Stokes problem, J. Comput. Appl. Math. 85 (1997) 19-35.
[5] M. Fortin, Old and new finite elements for incompressible flows, Int. J. Numer. Methods Fluids 1 (4) (1981) 347-364.
[6] Y.Kim, S. Lee, Stable finite element methods for the stokes problem, Int. J. Math. Math. Sci. 24 (10) (2000) 699-714.
[7] Y.Kim, S. Lee, Modified Mini finite element for the Stokes problem in R? or R3, Adv. Comput. Math. 12 (2000) 261-272.
[8] C.Taylor, P. Hood, A numerical solution of the Navier-Stokes equations using the finite element technique, Int. J. Comput. Fluids 1 (1) (1973) 73-100.
[9] D. Boffi, F. Brezzi, L. Demkowicz, R.G. Duran, R. Falk, M. Fortin, Mixed Finite Elements, Compatibility Conditions, and Applications, in: Lectures Notes
in Mathematics, vol. 1939, 2008.
[10] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, Berlin, Heidelberg, New York, 1991.
[11] R. Araya, G.R. Barrenechea, A. Poza, An adaptive stabilized finite element method for the generalized Stokes problem, J. Comput. Appl. Math. 214
(2008) 457-479.
[12] J. Blasco, An anisotropic GLS-stabilized finite element method for incompressible flow problems, Comput. Methods Appl. Mech. Eng. 197 (2008)
3712-3723.
[13] J. Blasco, R. Codina, Space and time error estimates for a first order, pressure stabilized finite element method for the incompressible Navier-Stokes
equations, Appl. Numer. Math. 38 (2001) 475-497.
[14] R.Codina,]. Blasco, A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation, Comput. Methods Appl. Mech.
Eng. 143 (3-4) (1997) 373-391.
[15] R.Codina, ]. Blasco, Analysis of a pressure-stabilized finite element approximation of the stationary Navier-Stokes equations, Numer. Math. 87 (2000)
59-81.
[16] TJ.R. Hughes, L. Franca, M. Balestra, A new finite element formulation for computational fluid dynamics: V. Circumventing the BabuSka-Brezzi
condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal order interpolation, Comput. Methods Appl. Mech.
Eng. 59 (1) (1986) 85-99.
[17] N.Kechkar, D. Silvester, Analysis of locally stabilized mixed finite element methods for the Stokes problem, Math. Comp. 58 (197) (1992) 1-10.
[18] P. Svacek, On approximation of non-Newtonian fluid flow by the finite element method, ]. Comput. Appl. Math. 218 (2008) 167-174.
[19] W. Dahmen, C.A. Micchelli, On the optimal approximation rates for criss-cross finite element spaces, J. Comput. Appl. Math. 10 (3) (1984) 255-273.
[20] Y.Kim, S. Lee, Stable finite element methods with divergence augmentation for the stokes problem, Appl. Math. Lett. 14 (2001) 321-326.
[21] Shi Shu, Jinchao Xu, Ying Yang, Haiyuan Yu, An algebraic multigrid method for finite element systems on criss-cross grids, Adv. Comput. Math. 25
(2006) 287-304.
[22] R. Stenberg, Analysis of Mixed Finite Element Methods for the Stokes problem: A unified approach, Math. Comp. 42 (165) (1984) 9-23.
[23] R.Stenberg, A technique for analysing Finite Element Methods for viscous incompressible fluid flow, Int. J. Numer. Methods Fluids 11 (1990) 935-948.
[24] R. Stenberg, Error analysis of some Finite Element Methods for the Stokes problem, Math. Comp. 54 (190) (1990) 495-508.
[25] R.. Sani, P.M. Gresho, R.L. Lee, D.F. Griffiths, The cause and cure (?) of the spurious pressures generated by certain FEM solutions of the incompressible
Navier-Stokes equations. I, Int. . Numer. Methods Fluids 1 (1) (1981) 17-43.
[26] R.L Sani, P.M. Gresho, R.L. Lee, D.F. Griffiths, M. Engelman, The cause and cure (!) of the spurious pressures generated by certain FEM solutions of the
incompressible Navier-Stokes equations. II, Int. J. Numer. Methods Fluids 1 (2) (1981) 171-204.
[27] R. Verfurth, Error estimates for a mixed finite element approximation of the Stokes equations, RAIRO Anal. Numer. 18 (2) (1984) 175-182.
[28] S.C.Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, 1994.
[29] J.J. Droux, T.J.R. Hughes, A boundary integral modification of the Galerkin least squares formulation for the Stokes problem, Comput. Methods Appl.
Mech. Eng. 113 (1994) 173-182.



	Stable and unstable cross-grid  Pk Ql  mixed finite elements for the  Stokes problem
	Introduction
	Cross-grid  Pk Ql  finite element approximation of the Stokes problem
	Problem statement
	Cross-grid  Pk Ql  mixed finite elements

	Stability analysis---The macroelement technique
	Stability of cross-grid  Pk Ql  mixed finite elements
	The cross-grid  P1 Q1  element
	The cross-grid  P2 Q1  element

	Numerical results
	The lid-driven cavity flow problem
	The trapezoidal domain

	Acknowledgements
	References


