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a b s t r a c t

In this paper we discuss the existence of periodic solutions of discrete (and discretized)
non-linear Volterra equations with finite memory. The literature contains a number of
results on periodic solutions of non-linear Volterra integral equations with finite memory,
of a type that arises in biomathematics. The ‘‘summation’’ equations studied here can
arise as discrete models in their own right but are (as we demonstrate) of a type that
arise from the discretization of such integral equations. Our main results are in two parts:
(i) results for discrete equations and (ii) consequences for quadrature methods applied
to integral equations. The first set of results are obtained using a variety of fixed-point
theorems. The second set of results address the preservation of properties of integral
equations on discretizing them. The effect of weak singularities is addressed in a final
section. The detail that is presented, which is supplemented using appendices, reflects the
differing prerequisites of functional analysis and numerical analysis that contribute to the
outcomes.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The equation

x(t) =
∫ t

t−τ
k(t, s)f(s, x(s))ds, for t ∈ Rwith τ > 0, x(t) ∈ R, (1.1)

is an integral equation of Volterra type, studied [1] as a model of certain epidemic problems. We study possible periodic
solutions of an analogous discrete system

x(n) =
n∑

j=n−N

k(n, j)f (j, x(j)), N ∈ N, x(n) ∈ R, (1.2)

given N . We expect to satisfy (1.2) for n ∈ Z, under certain conditions on {k(·, ·)} and {f (·, ·)} (see below). Here, R =
(−∞,∞), R+ = [0,∞), N denotes the natural numbers (positive integers), Z denotes the integers; Z+ will denote the set
of non-negative integers, Q+ the positive rationals (quotients m/n, withm, n ∈ N).
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Remark 1.1. If k(t, s) ≡ 1, then (1.1) reduces to the integral equation

x(t) =
∫ t

t−τ
f(s, x(s))ds. (1.3)

Examples in the literature also include those of the form x(t) =
∫ t
t−τ k(t, s)g(s){x(s)}

γ ds and, more generally,

x(t) =
∫ t

t−τ
k(t, s)g(s)[{x(s)}α + {x(s)}β ]ds (1.4)

subject to certain conditions [2]. Eq. (1.3) was discussed, in [1], as a model for the spread of certain infectious diseases with
periodic contact rate that varies seasonally (τ > 0 is the length of time an individual remains infectious), and it is assumed
that there exists $ > 0 with f(t + $, u) = f(t, u) for all t ∈ R and u ∈ R+ (see [1]). Using Krasnosel’skiı̆’s fixed-point
theorem in a cone [3, p. 137], Cooke and Kaplan [1] established the existence, if τ is sufficiently large, of a nontrivial periodic
non-negative solution to (1.3) with period $ . Later, Leggett and Williams [4] generalized the results in [1]. We shall give
some results for discrete versions of (1.4) (with or without β = 0) in the present paper.

1.1. On particular solutions

Given the terminology ‘‘integral equation’’ for (1.1), it seems appropriate to term (1.2) a ‘‘summation equation’’ (of
Volterra type). Eq. (1.2) has also been called a recurrence relation; some authors call it a difference equation. Solution of (1.2)
can be seen as a (‘constructive’) equation-solving issue. We examine the problem from that perspective in this subsection,
but we subsequently adopt an existentialist viewpoint.
Suppose we are given ϕ and
x(n) := ϕ(n) for n ∈ {n0 − N, . . . , n0 − 1}. (1.5)

If we suppose (1.2) holds for n ≥ n0 (n ∈ N) then we seek a forward solution defined by (1.5) as a sequence {x(n)}n≥n0
satisfying (1.5) and

x(n)− k(n, n)f (n, x(n)) =
n−1∑
j=n−N

k(n, j)f (j, x(j)), n ≥ n0. (1.6a)

If, in addition to the above, (1.2) holds for n ≤ n0 − N − 1 (n ∈ N) then Eq. (1.2) gives us equations to be satisfied by a
backward solution (assume for simplicity that k(n, n) 6= 0 for n ≤ n0 − N − 1) of

k(n, n)f (n, x(n)) = x(n+ N)−
n+N∑
j=n+1

k(n, j)f (j, x(j)), (n ≤ n0 − N − 1). (1.6b)

Consequently, the values x(n) = ϕ(n) in (1.5) satisfy (1.2) for n = n0 − N, . . . , n0 − 1.
Conditions (on k and f ) are required for the solvability of each set of implicit equations in (1.6) to determine a solution,

given ϕ. The Eqs. (1.6) both have the format F(n, x(n)) = vn with F(n, u) = u− k(n, n)f (n, u) and F(n, u) = k(n, n)f (n, u)
(respectively, and with differing vn) and solvability conditions can be found from applications of the implicit function
theorem. Without further conditions, any forward solution {x(n)}n>n0 may not be unique, or there may be an integer
N0 such that {x(n)}n>N0 is undefined and similar observations apply to the backward solution. If, given ϕ, the values
{. . . , x(n0−M), x(n0−M+ 1), . . . , x(n0− 1), x(n0), x(n0+ 1), . . . , x(n0+M), . . .} exist and are uniquely defined then one
can speak of the unique solution {x(ϕ; n)}.
Clearly, any solution of (1.2) for n ∈ Z defines for arbitrary n0 ∈ Z the sequence ϕ in (1.5); we do not require (1.5) to

discuss existence of solutions in general. There remains the issue ofwhether, for any solution, supn∈Z |x(n)| <∞ or, for some
p ∈ (0,∞),

∑
n∈Z |x(n)|

p <∞ and whether {. . . x(n0−M), x(n0−M + 1), . . . , x(n0− 1), x(n0), x(n0+ 1), x(n0+ 2), . . .}
is, for example, positive, or, periodic (or almost periodic).

1.2. Practical motivation

We referred to previouswork on integral equations. From the perspective ofmathematicalmodelling in biomathematics,
involving (say) models of population growth, it is widely recognized that when population sizes are small, models based on
a continuous or differentiable function defined on Rmay be less suited than models based on discretely-defined functions
(where values may be observable only at discrete times). The construction of discrete models in (e.g.) biomathematics is
governed by an attempt to model the scientific understanding. Periodicity of solutions (or almost periodicity) is a matter of
scientific interest.
Where continuousmodels are to be preferred, on grounds of realism, over discretemodels, the scientifically faithful forms

of such continuous models rarely have closed-form solutions. Where practically useful insights into solutions are sought,
one may turn to numerical methods, applied to realistic models, to provide approximate values. In this situation, one seeks
‘appropriate’ numerical formulae; we are once more led to consider discrete (summation) equations.
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It is natural to assume continuity of k in the light of familiar models arising in biomathematics. We concentrate on that
case. However, results for the smooth case can be modified (see below) for a class of weakly-singular kernels (those of Abel
type) and modified discretization methods.

1.3. Discrete equations

Eq. (1.2) is a discrete analogue of (1.1) and (1.2) arises in the numerical analysis of (1.1) (see below, and [5–7]), aswell as in
discrete models. It appears that little work has been done on questions of periodic solutions of the implicit, non-linear, finite-
memory discrete system1 (1.2). This motivates us to investigate periodic solutions of (1.2), and to parallel some results for
(1.1) stated in [2].We establish existence results for periodic solutions of (1.2), via a variety of fixed-point theorems (cf. [12]).
In Section 2, we give some basic results and recall several fixed-point theorems, and give our main results in Section 3. In
Section 4, we discuss quadrature methods for (1.1) and demonstrate the application of the general results of Section 3.

Example 1.1. Suppose τ > 0, and h > 0 is chosen with Nτ ∈ N and h = τ/Nτ , and suppose that ϑ ∈ [0, 1]. Then the
‘‘composite’’ or ‘‘repeated’’ version (Section 4.1) of the ϑ-rule applied to (1.1) yields (1.2) with

k(n, j) = hk(nh, jh) for j 6∈ {n− Nτ , n}, (1.7a)
k(n, n− Nτ ) = (1− ϑ)h× k(nh, (n− Nτ )h), k(n, n) = ϑh× k(nh, nh),
f (n, v) = f(nh, v). (1.7b)

By assumption, we can write h ∈ Hτ if we define (for any σ ∈ R+)

Hσ := {σ/Nσ for some Nσ ∈ N} . (1.8)

In the case ϑ = 0, we obtain equations x(n) =
∑n−1
j=n−Nτ hk(nh, jh)f(jh, x(j)). These relations are explicit and are special cases

(for N = Nτ ) of the form2 x(n) =
∑n−1
j=n−N k(n, j)f (j, x(j)). However, the cases ϑ =

1
2 and ϑ = 1 yield implicit recurrence

relations and it is known that these relations display, inmany cases, better stability properties than obtained if ϑ = 0. Given
smoothness conditions, the convergence rates of x(ϕ; n) to x(φ; t), as h ↘ 0, with nh = t (n→∞), with ϕ(j) = φ(jh) for
jh ∈ [−τ , 0], are optimal if ϑ = 1

2 .

As noted earlier, under certain conditions a particular solution {x(ϕ; n)} of (1.2) for n ∈ Z ⊆ Z corresponds to a choice
x(ϕ; n) := ϕ(n) for n ∈ {−N, . . . ,−1}; x(ϕ; n) is an analogue of a solution x(φ; t) of (1.1) for t ≥ 0, wherein x(φ; t) = φ(t)
for t ∈ [−τ , 0]. In the current paper, we shall have no need to consider the choice of ϕ when addressing the existence of
solutionswith certain properties. Existing results appear as theorems; our own results (presented as propositions) are in two
parts: (i) results for discrete equations (per se) and (ii) consequences for quadrature methods applied to integral equations.
One aim of the paper is to demonstrate that it is possible by picking appropriate families of quadrature rules to preserve
appropriate periodicity displayed in the integral equation model. One might suggest that seeking to preserve periodicity
displays some parallels with the search for symplectic numerical methods for certain classes of differential equations, a
topic that is seen of some significance in numerical analysis.

2. Preliminaries to the fixed-point analysis

For basic functional analysis see, e.g., [14]; we here recall a few essentials. Suppose that X is a linear space; if ‖ · ‖ is
a norm on X we denote by X‖·‖ the corresponding normed linear space and if X‖·‖ is a Banach space we denote it by X or
{X; ‖ · ‖}. The closure of a set S is denoted S, and the boundary of a set S is denoted ∂S. For basic properties of convex sets
and cones3(needed below) see [3,15]. Denote by

`(Z) := {x | x = {x(n)}n∈Z, x(n) ∈ R} (2.1)

the linear space whose elements are sequences with real x(n) (we have the obvious definitions of addition and scalar
multiplication, and x or {x(n)}n∈Z denotes {. . . , x(−2), x(−1), x(0), x(1), x(2), . . .}).

Definition 2.1. Let ω ∈ N be a given positive integer. Then x = {x(n)}n∈Z is an ω-periodic sequence if x(n + ω) = x(n) for
all n ∈ Z. Aω = Aω(Z) denotes the (finite-dimensional) subspace of `(Z) consisting of all ω-periodic sequences. We define
the norm | · |ω on Aω(Z) by setting |x|ω = supn∈Z |x(n)| = max1≤n≤ω |x(n)| for x = {x(n)}n∈Z ∈ Aω(Z). A solution x of (1.2)
is called periodic if it satisfies (1.2) for n ∈ Z and x ∈ Aω for some integer ω ∈ N.

1 For periodic solutions of explicit discrete systems, see, e.g., [8,9]. For periodic solutions of implicit discrete systems with unbounded memory, see
[10,11].
2 Periodic solutions of such an equation, with f (j, x(j)) = x(j), were discussed in [13].
3 C ⊂ X is a cone in X‖·‖ if it is a closed convex set and (i) for any non-zero v ∈ C and any λ ≥ 0, we have λv ∈ C, and (ii) if v ∈ X is non-zero then at
least one of the pair {v,−v} does not lie in C.
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Table 3.1
Assumptions in the propositions.

Assumption Proposition
3.1 3.2 3.3 3.4

Eq. (3.2) 3 3 3 3

Eq. (3.3) 3 3 3 3

Eq. (3.4) 3 3 (a–b) (a–b)
Eq. (3.5) 3 3 × ×

Eq. (3.6) × × × 3

Definition 2.2. (i) A subset of a normed linear space X‖·‖ is called relatively compact if its closure is compact. (ii) A (linear
or non-linear) operator T : X‖·‖ → X‖·‖ is called a compact operator when it maps an arbitrary bounded subset of X‖·‖ into
a corresponding set that is relatively compact in X‖·‖. A continuous compact operator is called completely continuous.

Remark 2.1. (a) Obviously, an ω-periodic sequence is ω?-periodic where ω?/ω ∈ N. For given ω ∈ N,Aω = {Aω(Z); | · |ω}
is an ω-dimensional Banach space. (b) Let D ⊆ Aω . If T : D→ Aω is continuous it follows that it is completely continuous.
(From the definition, if T : D → Aω is continuous and maps bounded sets into bounded sets, then T is completely
continuous. However, since D ⊆ Aω and Aω is finite-dimensional T maps bounded sets into bounded sets whenever it
is continuous.)

The existence of one ormore periodic solutions of (1.2) will be established via fixed-point theorems used in [2] to discuss
(1.1).We associate with (1.2) an operator T on `(Z) (or a subspace), with (Tx)(n) :=

∑n
j=n−N k(n, j)f (j, x(j)), andwe identify

a solution of (1.2) as a fixed point of T . We shall refer to Brouwer’s fixed-point theorem (Theorem A.1), but in the main we
will use (citing, and paraphrasing, [2]) either Krasnosel’skiı̆’s fixed-point theorem (stated here as Theorem 2.1), the ‘‘non-linear
alternative’’ (Theorem 2.2), or the Leggett–Williams fixed-point theorem (Theorem 2.3). These results have previously been
used in discussions of (1.1), and one of our objectives is to show that results for (1.2) can be found to parallel those for (1.1).

Theorem 2.1 (Krasnosel’skiı̆, see [2, Theorem 2.1.1]). LetX ≡ {X; ‖·‖} be a Banach space and let C ⊂ X be a cone inX. Assume
Ω1,Ω2 are bounded open subsets of X with 0 ∈ Ω1,Ω1 ⊆ Ω2, and let T : C ∩ (Ω2 \ Ω1) → C be a completely continuous
operator such that either (i) ‖Tu‖ ≤ ‖u‖, u ∈ C ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ C ∩ ∂Ω2 or (ii) ‖Tu‖ ≥ ‖u‖, u ∈ C ∩ ∂Ω1 and
‖Tu‖ ≤ ‖u‖, u ∈ C ∩ ∂Ω2 is true. Then T has a fixed point in C ∩ (Ω2 \Ω1).

Theorem 2.2 (Non-linear Alternative, see [2, Theorem 1.2.1]). Suppose that K is a convex subset of a normed linear space X‖·‖,
and let U be an open subset of K , with p? ∈ U . Then every completely continuous map T\ : U → K has at least one of the
following two properties: (i) T\ has a fixed point in U; (ii) there is an xλ ∈ ∂U with xλ = (1− λ)p?+ λT\xλ for some 0 < λ < 1.

Note that (i) and (ii) are not mutually exclusive, but if conclusion (ii) is shown to be false then conclusion (i) holds. In
applications, K can be a cone. Given r1, r2 ∈ (0,∞), r1 6= r2 the following result can be applied with R = max{r1, r2} and
r = min{r1, r2}.

Theorem 2.3 (Leggett–Williams, see [2, Theorem 4.3.1]). Let X‖·‖ define a Banach spaceX, C ⊂ X a cone inX, and 0 < r < R.
Define Cη = {x ∈ C : ‖x‖ < η} (∂Cη = {x ∈ C | ‖x‖ = η}, Cη = {x ∈ C | ‖x‖ ≤ η}). Let T : CR → C be a continuous,
compact map such that (i) there exists u0 ∈ C \ {0}with Tu 
 u for u ∈ ∂Cr ∩C(u0)where C(u0) = {u ∈ C | ∃λ > 0 with u >
λu0}; and (ii) ‖Tu‖ ≤ ‖u‖ for u ∈ ∂CR. Then T has at least one fixed point x ∈ C with r ≤ ‖x‖ ≤ R.

To supplement the preceding results we emphasize a consequence of Remark 2.1(b) by stating it as a lemma.

Lemma 2.1. Suppose that in Theorems 2.1, 2.2, 2.3 the underlying linear space X is finite-dimensional; then the condition that T
is completely continuous is satisfied when T is continuous.

3. Main results on discrete equations

In our discussion of discrete equations, we rely on assumptions that parallel those made in discussions [2] of the
continuous case (1.1). The restrictions imposed by these assumptions are no more than one expects from the existing
literature concerning (1.1). For each of the propositions in this section, we adopt corresponding Assumptions from the list
in Section 3.1 (as indicated in Table 3.1). Any additional hypotheses are given in the statements of the propositions, but the
table gives an indication of the differing assumptions.
Associated with (1.2), we define (for suitable k, f ) an operator T on `(Z) by

(Tx)(n) =
n∑

j=n−N

k(n, j)f (j, x(j)), n ∈ Z. (3.1)

A fixed point of T is a solution of (1.2). We have ω ∈ N. One may replace ω by ω? = ȷ̂× ω with given ȷ̂ ∈ N.
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3.1. Assumptions

Assumption 1.

k : Z× Z→ R+ and k(n+ ω, j+ ω) = k(n, j) for every n, j ∈ Z. (3.2)

Assumption 2. (a)

f : Z× R+ → R+ (3.3a)

(b) For each n ∈ Z,

f (n, ·) is continuous on R+. (3.3b)

(c) For all n ∈ Z and u ∈ R+,

f (n+ ω, u) = f (n, u). (3.3c)

Assumption 3. (a) The function ψ is a non-decreasing continuous map

ψ : R+ → R+; ψ(u1) ≥ ψ(u2) if u1 ≥ u2 ∈ R+. (3.4a)

(b) The functions f , ψ in (3.4a), and q ∈ Aω satisfy

f (n, u) ≤ q(n)ψ(u) for all u ∈ R+ and n ∈ Z. (3.4b)

(c) There exists a constant a0 ∈ (0, 1], such that f , ψ in (3.4a), and q ∈ Aω satisfy

a0q(n)ψ(u) ≤ f (n, u) for all u ∈ R+ and n ∈ Z. (3.4c)

(d) There exists a function ξ : (0, 1)→ R+ \ {0} such that, for ψ in (3.4a),

ψ(µυ) ≥ ξ(µ)ψ(υ), for any 0 < µ < 1, υ ≥ 0. (3.5)

Assumption 4. With given f , ψ , q, there exists a continuous function χ : R+ → R+ with

χ(u)q(n) ≤ f (n, u) ≤ q(n)ψ(u) for all u ∈ R+ and n ∈ Z. (3.6a)

(The second inequality in (3.6a) arises in (3.4b).) In Proposition 3.4 we require (3.6a) with

χ(u)/u non-increasing for u in an interval (0, r]. (3.6b)

A few further assumptions are stated, later, in terms of κmax,min(q\)which are defined for any q\ ∈ Aω by

κmax(q\) := max
1≤n≤ω

n∑
j=n−N

k(n, j)q\(j), κmin(q\) := min
1≤n≤ω

n∑
j=n−N

k(n, j)q\(j). (3.7)

Of course, regarding Assumptions 1–4, it is reasonable to suppose that f is defined onZ×R and that its restriction toZ×R+
(also denoted by f ) satisfies the above assumptions.

3.2. From conditions on (1.1) to conditions on (1.2) obtained by discretization

We assume$ ∈ R+ and let us suppose that

k ∈ C(R× R→ R+) and, for every t, s ∈ R, k(t +$, s+$) = k(t, s). (3.8a)
Further,

f : C(R× R+ → R+), and f(t +$, u) = f(t, u). (3.8b)

Lemma 3.1. With the above assumption, if h > 0, and hW` ∈ R+, for ` ∈ {n− N, n− N + 1, . . . , n}, n ∈ Z and when k and
k, f and f are related by

k(n, j) = hWn−jk(nh, jh), j ∈ {n− N, n− N + 1, . . . , n}, n ∈ Z (3.9)

f (n, u) = f(nh, u), n ∈ Z, u ∈ R, (3.10)

then (3.2) and (3.3) are satisfied with$ = h× ω where ω ∈ N. Suppose, also, that

q ∈ C(R→ R) and q(t) = q(t +$) for t ∈ R. (3.11a)

Then if q(n) = q(nh) (for n ∈ Z) and$ = h× ω, it follows that q ∈ Aω . Relations (3.4b) or (3.4c) follow if, respectively,
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f(t, u) ≤ q(t)ψ(u) for all u ∈ R+ and t ∈ R, (3.11b)

or

a0q(t)ψ(u) ≤ f(t, u) for all u ∈ R+ and t ∈ R. (3.11c)

Remark 3.1. Conditions on k, f and q, in the literature on (1.1), include the assumptions (on k, f, q) of Lemma 3.1. Now, for
$ ∈ R+, H$ ⊂ R is defined as {$/N$ | N$ ∈ N}. In view of Lemma 3.1, we later suppose that h ∈ H$ . Referring to
Example 1.1, where h = τ/Nτ , we also ask that h ∈ Hτ . This restricts τ and$ (we need τ = {Nτ/N$ }$ ). This restriction
will be overcome; see Proposition 4.1 et seq.

3.3. Positive periodic solutions via Krasnosel’skiı̆’s fixed-point theorem

First, we use Theorem 2.1 to establish a result for (1.2). In Krasnosel’skiı̆’s theorem, takeX and C to be

X := Aω ≡ {Aω, | · |ω}, and C := {x ∈ Aω | x(n) ≥ M|x|ωforn ∈ Z} (3.12)

withM from (3.13b): x ∈ Cwhen x(n) ≥ M|x|ω for 1 ≤ n ≤ ω. It is readily shown thatC is a cone inAω . Let T : C→ `(Z) be
defined by (3.1). Then, T : C→ Aω . Indeed, for any x ∈ C ⊂ Aω , it follows from (3.2) and (3.3c) that (Tx)(n+ω) = (Tx)(n),
and so Tx ∈ Aω , because

n+ω∑
j=n+ω−N

k(n+ ω, j)f (j, x(j)) =
n∑

j=n−N

k(n+ ω, j+ ω)f (j+ ω, x(j+ ω)) =
n∑

j=n−N

k(n, j)f (j, x(j)).

Next we require that T : C→ Aω is continuous and compact. Continuity is readily established (it follows from the uniform
continuity of f on compact subsets of its domain of definition) and by Lemma 2.1 the required result follows.

Proposition 3.1. Taking the Assumptions indicated in Table 3.1 suppose (where q is the function in (3.4b), and given (3.7)), that

κmin(q) > 0; (3.13a)

there exists M ∈ (0, 1) with

M/ξ(M) ≤ a0κmin(q)/κmax(q); (3.13b)

there exists α > 0 with

α > κmax(q)ψ(α); (3.13c)

and there exists β > 0, β 6= α, with

β < a0κmin(q)ψ(Mβ). (3.13d)

Then, (1.2) has at least one positive periodic solution x ∈ Aω(Z), with

0 < min{α, β} < |x|ω < max{α, β}; x(n) ≥ Mmin{α, β} for n ∈ Z. (3.14)

Proof. For any a > 0 letΩa = {x ∈ Aω : |x|ω < a}. To apply Theorem 2.1, we show the following hold:

(a) T : C→ C, (b) |Tx|ω ≤ |x|ω for x ∈ C ∩ ∂Ωα = Sα, (c) |Tx|ω ≥ |x|ω for x ∈ C ∩ ∂Ωβ = Sβ .

(a) Let x ∈ C. Then (3.4a)–(3.4b) imply that, for n ∈ {1, . . . , ω},

|(Tx)(n)| ≤ ψ(|x|ω) max
n∈{1,...,ω}

n∑
j=n−N

k(n, j)q(j) = κmax(q)ψ(|x|ω). (3.15)

On the other hand, since x ∈ C, we have x(n) ≥ M|x|ω for n ∈ Z, and thus (3.4a), (3.4c), (3.5) and (3.13b) give, for n ∈
{1, . . . , ω},

(Tx)(n) ≥ a0
n∑

j=n−N

k(n, j)q(j)ψ(x(j)) ≥ a0ψ(M|x|ω)
n∑

j=n−N

k(n, j)q(j)

≥ a0ξ(M)ψ(|x|ω)
n∑

j=n−N

k(n, j)q(j) ≥ κmin(q)a0ξ(M)ψ(|x|ω)

≥ {κmin(q)/κmax(q)}a0ξ(M)|Tx|ω ≥ M|Tx|ω;

so Tx ∈ C and (a) holds.
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To establish (b), let x ∈ C ∩ ∂Ωα = Sα . In this case, |x|ω = α and x(n) ≥ Mα for all n ∈ Z. Now for n ∈ {1, . . . , ω}, we
have |(Tx)(n)| ≤ ψ(|x|ω)

∑n
j=n−N k(n, j)q(j) ≤ ψ(α)κmax(q). This, with (3.13c), yields |Tx|ω ≤ ψ(α)κmax(q) < α = |x|ω;

thus (b) is satisfied.
To establish (c), let x ∈ C ∩ ∂Ωβ = Sβ . Then |x|ω = β and Mβ ≤ x(n) ≤ β for all n ∈ Z. Now, for n ∈ {1, . . . , ω},

it follows from (3.4a) and (3.4c) that |(Tx)(n)| ≥ a0
∑n
j=n−N k(n, j)q(j)ψ(x(j)) ≥ a0κmin(q)ψ(Mβ), which, together with

(3.13d), yields (Tx)(n) ≥ a0κmin(q)ψ(Mβ) > β = |x|ω for n ∈ {1, . . . , ω}, and thus |Tx|ω > |x|ω; that is, (c) holds.
Applying Krasnosel’skiı̆’s Theorem 2.1, we conclude that (1.2) has a solution x ∈ Aω with x ∈ C ∩ (Ωα \ Ωβ) if β < α,

or x ∈ C ∩ (Ωβ \Ωα) if α < β . Finally, we note that |x|ω 6= α and |x|ω 6= β . In fact, if |x|ω = α, then from x = Tx we have
α = |x|ω = |Tx|ω ≤ ψ(α)κmax(q) < α = |x|ω (which is a contradiction). A similar argument shows that |x|ω 6= β . This
completes the proof. �

Example 3.1. Consider (see Remark 1.1) the non-linear system

x(n) =
n∑

j=n−N

k(n, j)g(j)[x(j)]γ for n ∈ Z, (3.16)

where 0 < γ < 1. Assume that k satisfies (3.2) and, for ω ∈ N, that

g ∈ Aω, g(n) ≥ 0, and κmin(g) > 0 (3.17)

(with κmin(g), κmax(g) defined by (3.7)). Then (3.16) has at least one positive periodic solution x ∈ Aω , where with
M = 1

2 (κmin(g)/κmax(g))
1
1−γ , β = 1

2M
γ
1−γ (κmin(g))

1
1−γ < |x|ω < 2(κmax(g))

1
1−γ = α and x(n) ≥ Mβ for n ∈ Z.

To see that the above result is true, we apply Proposition 3.1 with q = g , f (n, u) = q(n)uγ , ψ(u) = uγ , a0 = 1
and ξ(u) = uγ . Now, the continuity and periodicity conditions on k, f in Proposition 3.1 and continuity and monotonicity
properties of ψ are clearly satisfied; we verify (3.13). Now (3.13a) is satisfied by assumption. To establish (3.13b) for ξ , we
note that

M
ξ(M)

= M1−γ =
(
1
2

)1−γ
κmin(g)
κmax(g)

≤
κmin(g)
κmax(g)

= a0
κmin(g)
κmax(g)

.

Also (3.13c) holds since α/(ψ(α)) = α1−γ = 21−γ κmax(g) > κmax(g). Since β/ψ(Mβ) = {1/Mγ
}β1−γ =

{1/Mγ
}
( 1
2

)1−γ
Mγ κmin(g) =

( 1
2

)1−γ
κmin(g) < a0κmin(g), (3.13d) is also true. Now apply Proposition 3.1.

With additional conditions on k and f in (1.2), applications of Proposition 3.1 will yield additional positive periodic solutions
of (1.2). For completeness we provide one result on multiple solutions.

Proposition 3.2. Take the Assumptions indicated in Table 3.1 and suppose also that (3.13b) is satisfied. Also, given (3.7), suppose
(where q ∈ Aω is the function in (3.4b)) that there are constants 0 < γ0 < γ1 < γ2 with (i) γ0 < a0κmin(q)ψ(Mγ0),
with (ii) γ1 > κmax(q)ψ(γ1) and with (iii) γ2 < a0κmin(q)ψ(Mγ2). Then (1.2) has at least two positive periodic solutions
x1 = {x1(n)}n∈Z, and x2 = {x2(n)}n∈Z ∈ Aω with 0 < γ0 < |x1|ω < γ1 < |x2|ω < γ2, x1(n) ≥ Mγ0 and x2(n) ≥ Mγ1 for
n ∈ Z.

Proof. The existence of x1 follows from Proposition 3.1 with α = γ1 and β = γ0, and the existence of x2 follows from
Proposition 3.1 with α = γ1 and β = γ2. �

3.4. Non-negative periodic solutions via the non-linear alternative

We use Theorem 2.2 to obtain the following existence result for (1.2).

Proposition 3.3. With the Assumptions indicated in Table 3.1, assume in addition that, with κmax(q) as in (3.7), there exists
α > 0 with

α > κmax(q)ψ(α). (3.18)

Then (1.2) has a non-negative solution x ∈ Aω with |x|ω < α.

Proof. Any non-negative solution (that is, with x(n) ≥ 0 for n ∈ Z) of (1.2) is a solution of

x(n) =
n∑

j=n−N

k(n, j)f\(j, x(j)), N ∈ N, x(n) ∈ R. (3.19)

where

f\(n, u) = f (n, |u|). (3.20)
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By construction, and the assumptions on f , f\(n, ·) is continuous on R for each n ∈ Z and

f\(n+ ω, u) = f\(n, u) ≥ 0 for all n ∈ Z and u ∈ R. (3.21)

We apply Theorem 2.2 to (3.19), setting (T\x)(n) =
∑n
j=n−N k(n, j)f\(j, x(j)) for n ∈ Z, and taking X‖·‖ to be Aω with norm

| · |ω and U = {x ∈ Aω | |x|ω < α}. It is easy to see that the operator T\ maps Aω to Aω by conditions (3.2) and by the
assumed properties of f . In addition, these properties guarantee that T\ : Aω → Aω is continuous and compact. Let xλ ∈ Aω
be any solution of

xλ(n) = λ

{
n∑

j=n−N

k(n, j)f\(j, xλ(j))

}
, n ∈ Z,

for 0 < λ < 1. Notice that (3.2) and (3.3a) imply xλ(n) ≥ 0 for all n ∈ Z. Now for n ∈ {1, . . . , ω}, we have
|xλ(n)| ≤

∑n
j=n−N k(n, j)q(j)ψ(xλ(j)) ≤ ψ(|xλ|ω)

∑n
j=n−N k(n, j)q(j) ≤ κmax(q)ψ(|xλ|ω) and therefore

|xλ|ω ≤ κmax(q)ψ(|xλ|ω). (3.22)

In addition, (3.18) and (3.22) implies that |xλ|ω 6= α. Apply Theorem 2.2 (with p∗ = 0): since we have shown that option (ii)
(in the statement of that theorem) cannot occur, we deduce that (1.2) has a solution x = {x(n)}n∈Z ∈ Aω with x(n) ≥ 0 for
all n ∈ Z. Further, |x|ω < α. (We have |x|ω ≤ α by Theorem 2.2 and |x|ω 6= α by an argument similar to that used to show
that |xλ|ω 6= α.) �

If there is n0 ∈ {1, . . . , ω} such that k(n0, n0)f (n0, 0) > 0, then the null periodic sequence, {y(n) = 0}n∈Z, is not a
solution of (1.2). Then, the non-negative solution x with |x|ω < α, in Proposition 3.3, satisfies |x|ω > 0. The next example
provides an illustration of the application of Proposition 3.3.

Example 3.2. Consider the non-linear system

x(n) =
n∑

j=n−N

k(n, j)g(j)(µ+ |x(j)|γ ) for n ∈ Z, (3.23)

where γ > 1 and µ > 0 are given constants. Assume that k satisfies (3.2) and, for ω ∈ N, that

g ∈ Aω, g(n) ≥ 0, and κmax(g) > 0 (3.24)

(with κmax(g) defined by (3.7)). Then (3.23) has at least a non-negative periodic solution x ∈ Aω with 0 < |x|∞ < α for any
α > 0 and µ > 0 satisfying 0 < µ < α

κmax(g)
− γαγ .

We shall use Proposition 3.3, with

q(n) = g(n), n ∈ Z, ψ(u) = µ+ uγ for u ≥ 0,

to establish this result: Obviously, f (n, u) = g(n)(µ + |u|γ ) satisfies the conditions on f assumed in Proposition 3.3. It
remains to show that Condition (3.18) holds. Indeed, the continuous and differentiable function h(u) = {u/κmax(g)} − γ uγ
satisfies h(0) = 0 and h′(u) = {1/κmax(g)} − γ 2uγ−1 > 0 for small u > 0. Thus, we have {u/κmax(g)} > γ uγ for small
u > 0,which implies thatwe can choseα > 0 andµ such that 0 < µ < α

κmax(g)
−γαγ , or equivalently, γαγ−1+ µ

α
< 1

κmax(g)
.

By the mean-value theorem, there is a number 0 < α∗ < α such that

ψ(α) = (ψ(α)− ψ(0))+ ψ(0) = γα∗γ−1α + µ < α
(
γαγ−1 +

µ

α

)
<

α

κmax(g)
.

Thus Condition (3.18) holds. We now apply Proposition 3.3 and the result follows.

3.5. Non-negative periodic solutions via the Leggett–Williams theorem

It is possible to use Theorem 2.3 to establish the existence of non-negative periodic solutions of (1.2).

Proposition 3.4. With the Assumptions indicated in Table 3.1, assume also that

κmin(q) > 0; (3.25)

r < κmin(q)χ(r), (3.26a)
R > ψ(R)κmax(q). (3.26b)

Then (1.2) has a non-negative solution x ∈ Aω with r ≤ |x|ω < R.
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Proof. In Theorem 2.3, takeX = Aω and C = {x ∈ Aω | x(n) ≥ 0} for n ∈ {1, . . . , ω}, i.e.,{x ∈ Aω | x(n) ≥ 0 for n ∈ Z}.
Clearly, C is a cone in Aω . Let u0 = {u0(n)}n∈Z with u0(n) = 1 for all n ∈ Z and note that C(u0) = {x ∈ C : there exists
λ > 0 with x(n) ≥ λ for n ∈ {1, . . . , ω}}. From (3.2) and (3.3a), it follows that T : C→ C is continuous.
To apply Theorem 2.3, we first show (where ∂Cρ := {x ∈ C | |x|ω = ρ}, when ρ ∈ R+) that

|Tx|ω ≤ |x|ω for x ∈ ∂CR. (3.27)

If x ∈ ∂CR, then |x|ω = R and, since
∑n
j=n−N k(n, j)q(j)ψ(x(j)) ≤ ψ(|x|ω)

∑n
j=n−N k(n, j)q(j), we have

(Tx)(n) ≤ ψ(R)κmax(q) (3.28)

for n ∈ {1, . . . , ω}. This, together with (3.26b), gives

|Tx|ω ≤ ψ(R)κmax(q) < R = |x|ω, (3.29)

which implies that (3.27) is true. Next, we show that

Tx 
 x for x ∈ ∂Cr ∩ C(u0). (3.30)

To show this, let x = {x(n)}n∈Z ∈ ∂Cr ∩ C(u0), hence |x|ω = r and r ≥ x(n) > 0 for n ∈ {1, . . . , ω}. Now,

(Tx)(n) ≥
n∑

j=n−N

k(n, j)q(j)
χ(x(j))
x(j)

x(j) ≥
χ(r)
r

n∑
j=n−N

k(n, j)q(j)x(j) for n ∈ {1, . . . , ω}.

Let n0 ∈ {1, . . . , ω} be such that minn∈{1,...,ω} x(n) = x(n0) and this together with the previous inequality yields, for
n ∈ {1, . . . , ω},

(Tx)(n) ≥
χ(r)
r
x(n0)

n∑
j=n−N

k(n, j)q(j) ≥
(
χ(r)
r
κmin(q)

)
x(n0).

By (3.26a) we obtain (Tx)(n) > x(n0) for n ∈ {1, . . . , ω} and (Tx)(n0) > x(n0), so that (3.30) is true.
Applying Theorem 2.3, we conclude that (1.2) has a non-negative periodic solution x = {x(n)}n∈Z ∈ C with r ≤ |x|ω ≤ R.

Note that |x|ω 6= R, by (3.29). �

Example 3.3. Consider the following discrete non-linear system

x(n) =
n∑

j=n−N

k(n, j)g(j)([x(j)]α + [x(j)]β), n ∈ Z, (3.31)

with 0 < α < 1, β ≥ 1 and (3.2) satisfied. In addition assume

g ∈ Aw with g(n+ ω) = g(n) ≥ 0 for all n ∈ Z, (3.32)

κmin(g) > 0 and κmax(g) <
1
2
. (3.33)

Then (3.31) has a non-negative solution x ∈ Aω with
( 1
2κmin(g)

) 1
1−α ≤ |x|ω < 1, in which we have κmin(g) ≡

minn∈{1,...,ω}
∑n
j=n−N k(n, j)g(j).

To establish this, let f (n, u) = g(n)[uα + uβ ], ψ(u) = [uα + uβ ], χ(u) = uα , and q(n) = g(n) with r =
( 1
2κmin(g)

) 1
1−α

and R = 1. Obviously, (3.3a), (3.6a) and (3.25) hold. To establish (3.26a), notice that r/χ(r) = r1−α = 1
2κmin(g) < κmin(g).

Also, χ(u)/u = 1/u1−α is non-increasing on (0, r] as 0 < α < 1, and finally (3.26b) holds with R = 1. We can now apply
Proposition 3.4.
Consider (3.33) for varying α ∈ (0, 1), β ≥ 1. We can denote x(n) by xα,β(n), to indicate dependence on the values α,

β . The complexity of (3.31) as an equation for xα,β(n) when {xα,β(n − `)}N`=1 are known increases with increasing β: for
example, if α = 1

2 and 1 < β ∈ N then (3.31) can be viewed as a polynomial equation of degree 2β for
√
x(n) =

√
xα,β(n).

As our discussion is confined to the unit ball |x| < 1, the periodic solution xα,β(n) that is addressed in the result is located
in this unit ball and satisfies 0 < r ≤ |xα,β |ω < 1 for any α ∈ (0, 1), β > 1.

4. Discretization

We develop further the discussion of the discretization of (1.1). We here require continuity of k and f (later, we address
the weakly singular case). We first pause to indicate the general nature of results found, concerning (1.1), in the literature
and refer to the application of Krasnosel’skiı̆’s fixed-point theorem in [2, p. 139]. Thus, with our assumptions, we have the
following version of [2, Theorem 4.4.1]:
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Theorem 4.1. Given (1.1) with 0 < τ ∈ R+, suppose that (i) k satisfies (3.8a), (ii) f satisfies (3.8b) and (iii) ψ , q, m, k
and f collectively satisfy (3.11). Suppose that (iv) (3.13) hold when κmax(q), κmin(q) are replaced by κ̂max(q) ≡ κ̂τmax(q) and
κ̂min(q) ≡ κ̂

τ
min(q) with

κ̂τmax(q) = inf
t∈[0,$ ]

∫ t

t−τ
k(t, s)q(s)ds, κ̂τmin(q) = sup

t∈[0,$ ]

∫ t

t−τ
k(t, s)q(s)ds. (4.1)

Then there exists at least one$ -periodic solution x of (1.1) such that

0 < min{α, β} < sup
t
|x(t)| < max{α, β}; x(t) ≥ Mmin{α, β} for t ∈ R. (4.2)

A$ -periodic solution x is a solution that satisfies x(t +$) = x(t) for all t ∈ R.

Proposition 4.1. Suppose that 0 < τ ∈ R+ and that τ̃ ≡ τ̃ (ε) with 0 < τ − ε < τ̃ ≤ τ . If the conditions of Theorem 4.1
apply, they apply also when τ is replaced by τ̃ provided that ε is sufficiently small—and the conclusion of Theorem 4.1 applies to
a$ -periodic solution

x̃(t) =
∫ t

t−τ̃
k(t, s)f(s, x̃(s))ds. (4.3)

Further, provided that ε is sufficiently small, if the conditions of Theorem 4.1 apply to (4.3) they establish the existence of a
$ -periodic solution x of (1.1).

Proof. We are concerned only with the effect of replacing κmax(q), κmin(q) in (3.13) by κ̂ τ̃max(q), κ
τ̃
min(q) instead of by

κ̂τmax(q), κ̂
τ
min(q). Under the assumptions, the integrals

∫ t
t ′ k(t, s)q(s)ds depend continuously on t

′
∈ [τ , τ + ε], uniformly in

t . The integral with lower limit t − τ and that with lower limit t − τ̃ are therefore arbitrarily close (uniformly in t) for cor-
respondingly small ε. Indeed, |

∫ t
t−τ k(t, s)q(s)ds −

∫ t
t−τ̃ k(t, s)q(s)ds| ≤ ε supt∈R sups∈[t−τ ,t−τ̃ ] |k(t, s)| sups∈[t−τ ,t−τ̃ ] |q(s)|

and hence is bounded by ε supt∈[0,$ ] sups∈[t−τ ,t−τ̃ ] |k(t, s)| sups∈[t−τ ,t−τ̃ ] |q(s)|. Thus the pair (̂κτmin(q), κ̂
τ̃
min(q)) and the pair

(̂κτmax(q), κ̂
τ̃
max(q)) are in each case arbitrarily close for τ and τ̃ sufficiently close. �

We shall exploit the preceding result, which indicates (in broad terms) that one can consider τ > 0 to be replaced by a
nearby τ̃ . Assume that

τ − ε < τ̃ ≤ τ , and τ̃ = Nτ̃h where Nτ̃ ∈ N, (4.4)

for sufficiently small ε > 0 that Proposition 4.1 applies. The process for ensuring (4.4) is discussed later (Section 4.4). We
consider discretization of

x(t) =
∫ t

t−τ̃
k(t, s)f(s, x(s))ds, with τ̃ > 0, x(t) ∈ R, (4.5)

(which is (1.1), with τ replaced by τ̃ ) using quadrature.Whenwe discretize (4.5), we seek (forNτ̃ ∈ Z+, h = τ̃ /Nτ̃ ) a discrete
system of the type

x̃(n) =
n∑
j−Nτ̃

hWn−jk(nh, jh)f(jh, x̃(j)), x̃(n) ∈ R, (4.6)

with x̃(j) ≈ x(jh). We shall examine conditions on the integral equation (1.1) which allow the analysis, as in [5], of periodic
solutions, and the application to (4.6) of the discrete analysis developed earlier.
We assume that k satisfies conditions (for example, those in Theorem 4.1) that guarantee the existence of a$ -periodic

solution x of (1.3), on the assumption that ε is sufficiently small that the conditions continue to be satisfied when τ is
replaced by τ̃ in (4.4); see Proposition 4.1. To simulate Theorem4.1 (and similar results) using discrete equations, we present
in Section 4.1 (see also [16]) various quadratures that can be used to discretize (1.1), while ensuring the existence of periodic
solutions of (4.6).

4.1. Quadrature rules: Basic properties and examples

We restrict attention to simple approximations associated with sampling the integrand at equally-spaced abscissae.
Certain Newton–Cotes rules, the 2-point Radau rule, the composite versions, and classical Romberg and certain Gregory
rules provide acceptable examples (see [6,16–18]). Thoughwe shall need to discretize integrals over [t−τ , t] (first replacing
the integral by that over [t − τ̃ , t]), our quadrature rule is defined by the approximation for an integral over [0, 1], of the
type
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0
ψ(s)ds ≈

N∑
`=0

wN,`ψ(`h) =: Q1/N(ψ), h = 1/N. (4.7)

We restrict the permitted quadrature (4.7) to formulae satisfying

N∑
`=0

wN,` = 1, and wN,j ≥ 0 for j ∈ {0, 1, . . . ,N}. (4.8)

Since some weights wN,j might vanish, the values of h and N are fixed by requiring that (4.7) with h ∈ (0, 1] cannot be
rewritten using a larger value h∗ > h (where h∗ = 1/N∗), as an approximation

∑N∗
`=0w

∗

N,`ψ(`h
∗).

An affine change of variable is used to secure, for arbitrary finite a < b, the induced approximation

Q
[a,b]
1/N (ψ) :=

N∑
j=0

{(b− a)wN,j}ψ(a+ jh) ≈
∫ b

a
ψ(s)ds, h = (b− a)/N (4.9a)

(Q1/N(ψ) isQ
[0,1]
1/N (ψ)). We can use the synonymous notation

Q
[a,b]
h (ψ) =

N∑
j=0

{(b− a)wN,j}ψ(a+ j(b− a)h) ≈
∫ b

a
ψ(s)ds, wherein h = 1/N. (4.9b)

For a given interval [a, b] we relate h and h as here, and we denote {(b − a)h1, (b − a)h2, (b − a)h3, . . .} by H ≡ (b − a)H
when H = {h1, h2, h3, . . .}, h` = 1/N`. N` ∈ N.
We use the concept of a family of quadrature rules. For example, a basic rule generates a family of related composite rules:

We recall that a family of composite orm-times repeated quadrature formulae (m ∈ N) is based on summation over ` of the
contributionsQ[`h,(`+1)h](ψ) (cf. (4.9)) to give∫ 1

0
ψ(s)ds =

m−1∑
`=0

∫ (`+1)/m

`/m
ψ(s)ds ≈

m−1∑
`=0

Q
[`/m,(`+1)/m]
1/mN (ψ) =: (m×Q1/N)(ψ) (form ∈ N). (4.10)

The approximation (4.10) is of the generic form (4.7); indeed one might write (m × Q1/N)(ψ) as Q1/mN(ψ). The collection
{Q1/mN(ψ)}m∈N where N ⊆ N provides an example of a family (denoted, say Qrptd) of quadrature rules. Evidently, one
obtains from (4.10)

∫ b
a ψ(s)ds ≈ Q[a,b]1/mN(ψ) form ∈ N.

4.2. Discretization using families of quadrature rules

We restrict attention to families of quadrature rules (4.7) that correspond to discrete convolutions—that is, where
wn,j = Wn−j in (4.7).

Definition 4.1. A quadrature family Q (a collection of rules) is defined by a set of formulae (4.7) for h ∈ HQ
⊂ (0, 1], in

whichwn,j = Wn−j. We assume

HQ
:= {h1, h2, h3, . . .}, NQ

:=
{
N [1],N [2],N [3], . . .

}
(in which h` = 1/N [`]), (4.11)

are defined by a monotonically decreasing sequence of values h` with N [`] ∈ NQ
⊆ N. The choice of h ∈ HQ (or the choice

of N ∈ NQ) is assumed to define uniquely a particular rule inQ.

To discretize (1.1) and obtain a discrete system of the type (1.2), we employ∫ nh

(n−N)h
ψ(s)ds ≈

n∑
j=n−N

hWn−jψ(jh)

(
with n ∈ N,

N∑
j=0

Wj = N, Wj > 0

)
, (4.12)

derived from families of rules (4.9) on setting a = (n − N)h and b = nh in corresponding families of rules (4.7), and for the
case wherewn,j = Wn−j.

4.3. Convergence of quadrature rules as the stepsize tends to 0

We denote by R[0, 1] the space of bounded Riemann-integrable functions on [0, 1].
The types of permitted quadrature rules discussed above provide generic sums, denoted {Qh(ψ)}, that approximate the

integral
∫ 1
0 ψ(s)ds. Thus, the expression

1
2hψ(0)+hψ(h)+· · ·+hψ(1−h)+

1
2hψ(1), withh = 1/m, N ∈ N, can be computed

for h = 1, h = 1
2 , h =

1
4 , h =

1
8 , . . . , or for h = 1,

1
5 , h =

1
25 , h =

1
125 , . . . and in general for h = h0, h = h1, h = h2, . . .

where h` = 1/N`, N` ∈ N, and N`+1 > N`. In each case, the elements of the corresponding sequence converge (as h` → 0)
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to a limit that coincides with the integral ifψ ∈ R[0, 1]. Similar convergence issues arise for a general family of quadratures
and a sequence of positive values h ∈ HQ

= {h1, h2, h3, . . .}wherein lim`→∞ h` = 0.

Definition 4.2. The familyQ = {Qh}h∈HQ is termed convergent if, for any ψ ∈ R[0, 1],

lim
h↘0, h∈HQ

Q
[0,1]
h (ψ) =

∫ 1

0
ψ(s)ds. (4.13)

Assumption 5. The familyQ is assumed to be convergent.

Theorem 4.2. Repeated quadrature rules, classical Romberg rules, and Gregory rules having a fixed number of correction terms,
using abscissae at step h ∈ HQ, define families that satisfy (4.13).

Proof. The associated quadrature approximations are either Riemann sums, weighted sum of a finite set of Riemann sums,
or differ byO(h)‖ψ‖∞ from a Riemann sum. The Riemann sums referred to here converge to the required integral as h↘ 0.
(See [6, p. 123], [17, Theorem 1], [16].) �

Theorem 4.3. Suppose U is a set of functions defined on [0, 1] that are uniformly bounded and equi-continuous, and (4.13) is
valid. Then limh↘0 supu∈U |Qh(u)−

∫ 1
0 u(s)ds| = 0, where h↘ 0 with h ∈ H .

Proof. If u ∈ C[0, 1], a fortiori u ∈ R[0, 1] so limh↘0 |Qh(u)−
∫ 1
0 u(s)ds| = 0. This convergence is uniform on compact sets,

and U is compact in C[0, 1] by the Arzela–Ascoli theorem. �

The proof of the next result is also straightforward [16].

Lemma 4.1. Let k(t, s), f(t, u) satisfy (3.8) and let q ∈ A$ . Then the family of integrands

{k (t, t + (σ − 1)τ ) f (t + (σ − 1)τ , q(t + (σ − 1)τ )) for σ ∈ [0, 1], t ∈ R}

is uniformly bounded and equicontinuous.

4.4. Approximate integration on [t − τ , t]

For h ∈ HQ,Qh ∈ Q induces, whenψ ∈ R[a, b], the approximationQ
[a,b]
h (ψ) in (4.9). By assumption limh↘0Q

[a,b]
h (ψ) =∫ b

a ψ(s)ds the limit being taken with h ∈ HQ. Henceforth, we are mainly concerned with integrands ψ(s) of the form
k(t, s)f(s, x(s))with t ∈ R (integrated for s ∈ [t − τ , t]).
Given arbitrary τ > 0 and t ∈ R, a convergent family of quadrature rules Q induces corresponding formulae that

generate discrete equations obtained from (1.1). For the specific τ in (1.1), we require quadrature (cf. (4.12)) to approximate
integrals over [t − τ , t], in which t = nh, h ∈ H$ ∩ Hτ . If τ/$ 6∈ Q+, this cannot be achieved, so we replace τ by an
approximation τ̃ with τ̃ /$ ∈ Q+, and h ∈ H$ ∩ Hτ̃ . The approximation τ̃ ≈ τ (with τ̃ ≤ τ ) can be made arbitrarily close
by taking suitable sufficiently small h ∈ H$ . To use rules from the familyQwe also require h ∈ τ̃HQ; this is a refinement of
(4.4) requiring Nτ̃ ∈ N; now, Nτ̃ ∈ NQ. In commonplace families of quadrature, the members N [`] in the sequenceNQ form
either a increasing arithmetic progression or an increasing geometric progression.

Assumption 6. We are given positive τ ,$ , and a family of quadrature rules {Qh}h∈HQ associated with NQ in (4.11). We
assume that, given arbitrary ε > 0, there exists a corresponding h? > 0 such that, whenever h ≤ h? and h ∈ H$ , there exist

τ̃ ∈ [τ − ε, τ ] with τ̃ = Nτ̃h, where Nτ̃ ∈ NQ.

Remark 4.1. In Assumption 5, h ∈ Hτ̃ ∩ H$ ∩ τ̃HQ (and this condition is to be satisfied by h?, in the sense that h? ∈

Hτ̃? ∩ H$ ∩ τ̃
?HQ). Suppose τ/$ = % ∈ R; if τ̃ /$ ∈ Q+ then τ̃ /$ = µ1/µ2 with µ1,2 ∈ N. If h ∈ τ̃HQ then h = τ̃ /Ñ

where Ñ ∈ NQ (then Ñ = τ̃ /h). If h ∈ H$ ; then N$ := $/h ∈ N. Hence, µ1/µ2 = Ñ/N$ where Ñ ∈ NQ and we need to
be able to approximate % arbitrarily closely by fractions of the form Ñ/N$ .

Given$ , h, with$ = N$ h, identify ω = ω(h)with N$ , and write ω? = ω(h?) for N?$ ; if h < h? then N$ > N?$ . Select
Nτ̃ so that Nτ̃ = τ̃ /h ∈ NQ where

τ̃ =
Nτ̃
N$

$ = max
n∈NQ

{
n
N$

$ < τ

}
and τ̃ ? =

Nτ̃?
N?$

$ = max
n?∈NQ

{
n?

N?$
$ < τ

}
.

To ensure that 0 ≤ τ − τ̃ < τ − τ̃ ? when h < h?, we require Nτ̃ > Nτ̃? ∈ NQ. With % = τ/$ , Nτ̃ must be the largest
integer inNQ such that Nτ̃ < %N$ . The commonplaceNQ give N [`] = µ+N [`−1] with 0 < µ ∈ N or N [`] = ν×N [`−1] with
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1 < ν ∈ N, and, for simplicity and convenience,we take the latter casewithN [`] = ν`. Then,Nτ̃ = ν λ̃with λ̃ = blogν(%N$ )c
(and Nτ̃ > Nτ̃? ).
Our approximate integration proceeds, with a choice of h ∈ H$ ⊂ (0, τ ], to determination of τ̃ , to application of a

quadrature rule. When∣∣∣∣∫ t

t−τ
ψ(s)ds−

∫ t

t−τ̃
ψ(s)ds

∣∣∣∣ ≤ ε sup
s∈[t−τ ,t−τ̃ ]

|ψ(s)|, (4.14)

the quadrature involved in (4.7) induces, for t = nh, and on setting N equal to Nτ̃ , the approximation∫ t

t−τ̃
ψ(s)ds ≈

Nτ̃∑
`=0

τ̃w` ψ(t − τ̃ + ` h) =: Q
[t−τ̃ ,t]
h (ψ), (h = τ̃ /Nτ̃ ), (4.15)

so the sum in (4.15) approximates the first integral in (4.14) with a sum of the type in (4.12). For examples, see Appendix B.

4.5. Dependence on τ

Remark 4.2. Prior to discretization, we replaced τ by a nearby value τ̃ in the integral equation. To analyze this further, we
can appeal to variations of parameters formulae and to inequalities like that of Gronwall [6].
Consider a solution x(t) ≡ x(τ ; t) of x(τ ; t) =

∫ t
t−τ k(t, s)f(s, x(τ ; s))ds (that is, of (1.1)). One can see that if δx(τ ; t) =

x(τ̃ ; t)− x(τ ; t) then

δx(τ ; t) =
∫ t

t−τ
k(t, s){f(s, x(̃τ ; s))− f(s, x(τ ; s))}ds+

∫ t−τ

t−τ
k(t, s)f(s, x(̃τ ; s))ds. (4.16)

Further, if it exists, the first-order sensitivity, can be expressed as ∂
∂τ

x(τ ; t). If the derivatives exist,

∂

∂τ
x(τ ; t) =

∫ t

t−τ

{
k(t, s)f2(s, x(τ ; s))

∂

∂τ
x(τ ; s)

}
ds− k(t, t − τ)f(t − τ , x(τ ; t − τ)). (4.17)

The two displayed equations permit further investigation; under mild additional conditions and assumptions, not pursued
here, δx(τ ; t) can be related to the size of τ − τ̃ .

4.6. Numerics of integral equations

We can now address the issue of guaranteeing conditions for periodic solutions when we discretize an integral equation
(1.1) for which a result like Theorem 4.1 holds. Given a$ -periodic solution x(t) of (1.1), the sequence {x(n) = x(nh)}n∈N is
ω-periodic where ω = $/h and we seek conditions ensuring a ω-periodic solution of our discretized equations. Obviously,
ω is a function of h, ω = ω(h). We now consider an equation of the type (4.6) but in the form

x̃(n) =
n∑

j=n−Nτ̃ (h)

hWn−jk(nh, jh)f(jh, x̃(j)), h ∈ H$ , x̃(n) ∈ R. (4.18)

This is of the form (1.2) with k(n, j) := hWn−jk(nh, jh), f (j, u) := f(jh, u). We define (4.18) to be theQh-based discretization
of (1.1) and we examine the assumptions made in Lemma 3.1 and Propositions 3.1–3.4 when applied to (4.18). Now if
$ = ωh for ω ∈ N, then k(n, j) = k(n+ ω, j+ ω) when k(nh+$, jh+$) = k(nh, jh), and f (n, u) = f (n+ ω, u) when
f(nh+$, u) = f(nh, u). The following is typical of the results we seek.

Proposition 4.2. Given q ∈ A$ , and f satisfying (3.8b), suppose that $ = ωh and define q(n) = q(nh), f (n, u) =
f(nh, u).(a) Suppose that ψ satisfies (3.4a) and the functions f, ψ and q satisfy f(t, u) ≤ q(n)ψ(u) for all u ∈ R+ and t ∈ R.
Then (3.4b) is satisfied.(b) If there exists a constant a0 ∈ (0, 1), such that f,ψ , and q satisfy a0q(t)ψ(u) ≤ f(t, u) for all u ∈ R+
and t ∈ R, then (3.4c) is satisfied.

Other assumptions in the discrete case depend on κmin,max(q) (q ∈ Aω , cf. (3.7)), which, with q(n) = q(nh) compare with
κ̂ τ̃min,max(q) in (4.1). Since∫ t

t−τ
k(t, s)q(s)ds =

∫ 1

0
k(t, t + (σ − 1)τ )q(t + (σ − 1)τ )dσ ≈

∑
j

wjk(t, t + (j/Nτ − 1)τ )q(t + (j/Nτ − 1)τ ),

Theorem 4.3 and Lemma 4.1 have obvious corollaries that combine (on setting f (t, u) = u) to give us Proposition 4.3 below.
(The familyQ of quadratures inducing {Qh} is always assumed to be convergent.)

Proposition 4.3. Suppose that k(t, s) satisfies (3.8a) in Assumption 3.2 and q ∈ A$ is continuous. Then,
∑n
j−Nτ̃ (h)

hWn−jk(t, jh)

q(jh) −
∫ t
t−τ k(t, s)q(s)ds is arbitrarily small (uniformly for t in R) and κ̂

τ̃
min(q), κ̂

τ̃
max(q) differ from κmin(q) and κmax(q)

(respectively) by arbitrarily small amounts for sufficiently small h.
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It now follows that our discrete theory is applicable to the equations obtained by application of convergent quadrature
of the type discussed above, given sufficient conditions on the integral equation. The following result is typical:

Proposition 4.4. Suppose the conditions of Theorem 4.1 hold, and consider the Qh-discretization (4.18). Then the conditions of
Proposition 3.1 apply to (4.18) for all sufficiently small h ∈ H .

5. Modifications for weakly singular equations and their discretization

The discussion that we have provided can be adapted to the treatment of a typical class of weakly-singular kernels
(kernels of Abel type). We indicate one approach. Consider

x(t) =
∫ t

t−τ
k](t, s)f(s, x(s))ds, for t ∈ Rwith τ > 0, x(t) ∈ R. (5.1)

Assumption 7. Suppose the functions k and f satisfy (3.8) and the possibly unbounded kernel k\ satisfies

k\(t, s) = k(t, s)/|t − s|ν with ν ∈ (0, 1). (5.2)

With this assumption, k\(t + $, s + $) = k\(t, s) for $ ∈ R+ for every t, s ∈ R. For every u ∈ C(R) we use the
notation T ]u(t) =

∫ t
tτ
k](t, s)f (s, u(s))ds. Without ambiguity, we employ the notation T ] for the operator defined on given

D ⊆ Aω , the latter being equipped with the uniform norm. This operator T ] is a compact map from D ∈ Aω to Aω , and
the abstract functional analysis can be applied to the integral equation case. Preparatory to the numerics, if we define
A(t) =

∫ t
tτ
(t − s)−νds = τ 1−ν/{1− ν}, then

T ]u(t) =
∫ t

tτ

k(t, s)f (s, u(s))− k(t, t)f (t, u(t))
(t − s)ν

ds+ A(t)k(t, t)f (t, u(t)). (5.3)

To obtain a discretized equation we can now apply quadrature to approximate the integral term (the integrand is
continuous). As in the case of continuous kernels, we can apply the general discrete theory if we discretize the integral
appropriately. The use of quadrature as indicated may give low-order accuracy. More generally, we can adapt other
numerical techniques found in the literature [6] for an equation of Abel type.

6. Concluding remarks

We are indebted to the referees for their careful reading of the submitted paper and their erudite comments on various
details in our approach. In the current work, we have demonstrated (as a first step) the existence of periodic solutions under
certain conditions. In our view, a significant next step is to discusswhether such periodic solutions act as attractors to nearby
solutions. From the perspective of numerical analysis, it would also be of interest to investigate refinements ormodifications
of the quadrature methods discussed here, and minimal conditions under which the discretized solutions are accurate.
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Appendix A. Some background analysis and related observations

Classical fixed-point theorems include those named after Bertus (L.E.J.) Brouwer (1881–1966), and the Polish
mathematician Julius Schauder (1899–1943). We first recall Brouwer’s theorem in n dimensions:

Theorem A.1. Every continuous map T from the closed unit ball in Rn to itself has at least one fixed point.

The usual generalizations of Brouwer’s fixed-point theorem to infinite-dimensional spaces all include a compactness
assumption of some sort and often, in addition, an assumption of convexity. We recall Schauder’s fixed-point theorem.

Theorem A.2. A completely continuous operator that transforms a bounded convex and closed set into itself has at least one fixed
point in the given set.

Definition A.1. LetX = {X, ‖ · ‖} be a Banach space (a complete, normed, linear space). (i) A closed, convex, set C inX is a
(positive) conewhen:

(a) if u ∈ C then λu ∈ C for λ ≥ 0; (A.1)
(b) if u ∈ C and − u ∈ C then u = 0. (A.2)
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(ii) A cone C inX induces a partial ordering 6 inX by the definition u 6 v if and only if v − u ∈ C . For u, v in C such that
v − u 6∈ C we write u 
 v. A Banach space with a partial ordering induced by a cone is a partially ordered Banach space. (iii)
An operator T is a compression of a cone C in an ordered Banach space if (a) T (0) = 0; (b) there exists r, R with 0 < r < R
such that T (u) 
 u if u ∈ C, ‖u‖ ≤ r , and u 6= 0; and also, (c) for all ε > 0, (1+ ε)u 
 T (u) if u ∈ C, ‖u‖ ≥ R.

Using Definition A.1 we can state the ‘‘compression of the cone’’ theorem [3, p. 137] due to Krasnosel’skiı̆ (1920–1997). It
reads as follows.

Theorem A.3. Let the positive completely continuous operator T be a compression of the cone C. Then T has at least one non-zero
fixed point on C.

TheoremA.3 can be established using Schauder’s theorem. TheoremA.3was refined by Leggett andWilliams [4]who proved
the following result, in which the conditions associated with a compression are relaxed.

Theorem A.4. Given a cone C ∈ X, define Cρ := {v ∈ C |‖v‖ ≤ ρ} (ρ ∈ (0,∞)) and C∞ = C. Suppose u ∈ C \ {0} and
C[u] := {v ∈ C |αv > ufor some α > 0}. For some R > 0, suppose that T : CR → C is completely continuous with T (0) = 0,
and there exists r with 0 < r < R such that T (u) 
 u if u ∈ C, ‖u‖ = r and for all ε > 0, (1+ ε)u 
 T (u) if u ∈ C, ‖u‖ = R.
Then T has a fixed point x ∈ C with r ≤ ‖x‖ ≤ R.

Remark A.1. In order to emphasize the connections with theories for (1.1), we have relied on Theorems 2.1–2.3 to establish
our main results. We observe, however, that Propositions 3.1 and 3.2 can be deduced by arguments using Brouwer’s
theorem that by-pass these theorems. Unlike Brouwer’s fixed-point theorem (per se), Theorems 2.1–2.3 share with our
propositions the feature that they provide concrete conditions to be verified to establish the existence of solutions satisfying
explicit conditions.

Appendix B. Examples of quadrature families

For the integral in (4.5) over [nh− τ̃ , nh], (4.10) induces the approximation∫ t

t−τ̃
ψ(s)ds ≈

n∑
j=n−Nτ̃

hW (m×Q)
n−j ψ(jh) (t = nh, h = τ̃ /Nτ̃ , Nτ̃ = mN ∈ N),

withW (m×Q)
j = wN,s if j ≡ smod (m) and s 6= 0,W

(m×Q)
0 = wN,N ,W

(m×Q)
rm = wN,0 +wN,N if rm 6∈ {0,Nτ̃ },W

(m×Q)
Nτ̃

= wN,0.

By assumption,wN,j ≥ 0 for j ∈ {0, 1, . . . ,N}; hence,W
(m×Q)
j is non-negative for j ∈ {0, 1, . . . ,Nτ̃ }. Likewise, a given rule R

from amongst the classical Romberg rules gives an approximation expressible as
∫ 1
0 ψ(s)ds ≈

∑2m
j=0w

[R]
N,jψ(j/{2

m
}), where

m ∈ N, and wherew[R]N,j = w
[R]
N,N−j > 0, and N = 2

m. We thus obtain, for t = nh, formulae of the type∫ t

t−τ̃
ψ(s)ds ≈

n∑
jb=n−2m

hW [R]n−jψ(t − τ̃ + jh), h = τ̃ /2m, with Nτ̃ = 2m. (B.2)

(Note the restricted form of h.) Further, the rth Gregory rule GNτ̃r (using Nτ̃ + 1 abscissae, and with r ≤ Nτ̃ ) gives for t = nh
an approximation∫ t

t−τ̃
ψ(s)ds ≈

n∑
j=n−Nτ̃

hW [G]n−jψ(jh) (t = nh, τ̃ = Nτ̃h, G ≡ G
Nτ̃
r ) (B.3)

in whichW [G]n−j = W
[G]
j , for j ∈ {0, 1, . . . ,Nτ̃ }. These rules include the Newton–Cotes case (for r = Nτ̃ ), so the weights need

not be positive, as we require.
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