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a b s t r a c t

Recently, Wu et al. [S.-L. Wu, T.-Z. Huang, X.-L. Zhao, A modified SSOR iterative method for
augmented systems, J. Comput. Appl. Math. 228 (1) (2009) 424–433] introduced amodified
SSOR (MSSOR) method for augmented systems. In this paper, we establish a generalized
MSSOR (GMSSOR) method for solving the large sparse augmented systems of linear
equations, which is the extension of the MSSOR method. Furthermore, the convergence
of the GMSSOR method for augmented systems is analyzed and numerical experiments
are carried out, which show that the GMSSOR method with appropriate parameters has a
faster convergence rate than the MSSOR method with optimal parameters.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

For solving the large sparse augmented systems of linear equations
A B
BT 0


x
y


=


b
q


, (1)

where A ∈ Rm×m is a symmetric and positive definitematrix and B ∈ Rm×n is a matrix of full column rank. It appears inmany
different applications of scientific computing, such as constrained optimization [1], the finite element method for solving
the Navier–Stokes equation [2–4], and constrained least squares problems and generalized least squares problems [5–8].
There have been several recent papers for solving the augmented system (1). Santos et al. [6] studied preconditioned
iterative methods for solving the augmented system (1) with A = I . Yuan and Iusem [7,8] proposed several variants of
the SORmethod and preconditioned conjugate gradient methods for solving general augmented system (1) arising from the
generalized least squares problems where A can be symmetric and positive semidefinite and B can be rank deficient. The
SOR-like method requires less arithmetic work per iteration step than other methods but it requires choosing an optimal
iteration parameter in order to achieve a comparable rate of convergence. Golub et al. [9] presented SOR-like algorithms for
solving system (1). Darvishi and Hessari [10] studied the SSORmethod for solving the augmented systems. Bai et al. [11–14]
presented the GSOR method, parameterized Uzawa (PU) and the inexact parameterized Uzawa (PIU) methods for solving
systems (1). Zhang and Lu [15] showed the generalized symmetric SOR method for augmented systems. Peng and Li [16]
studied unsymmetric block overrelaxation-type methods for saddle point. Bai and Golub [17–22] presented splitting
iteration methods such as the Hermitian and the skew-Hermitian splitting (HSS) iteration scheme and its preconditioned
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variants, Krylov subspace methods such as preconditioned conjugate gradient (PCG), preconditioned MINRES (PMINRES)
and restrictively preconditioned conjugate gradient (RPCG) iteration schemes, and preconditioning techniques related to
Krylov subspace methods such as HSS, block-diagonal, block-triangular and constraint preconditioners and so on. Bai and
Wang’s 2009 LAA paper [22] and Chen and Jiang’s 2008 AMC paper [14] studied some general approaches about the relaxed
splitting iterationmethods. Recently,Wu et al. [23] presented amodified SSOR (MSSOR)method for augmented systems (1).

In this paper, we establish a generalized MSSOR (GMSSOR) method for augmented systems and analyze convergence of
the correspondingmethod. Moreover, numerical experiments show that the GMSSORmethod with appropriate parameters
has a faster convergence rate than the MSSOR method with optimal parameters for solving augmented linear systems.
However, the relaxed parameters of the GMSSOR method are not optimal and only lie in the convergence region of the
method.

2. Generalized MSSOR method

Recently, for the coefficient matrix of the augmented system (1), Wu et al. [23] make the following splitting

A =


A B

−BT 0


= D − L − U, (2)

where

D =


A 0
0 Q


, L =


0 0

BT 1
2
Q


, U =


0 −B

0
1
2
Q


, (3)

and Q ∈ Rn×n is a nonsingular and symmetric matrix.
Let

L = D−1L =


0 0

Q−1BT 1
2
In


, U = D−1U =


0 −A−1B

0
1
2
In


, Ω =


ωIm 0
0 τ In


, (4)

where ω and τ are two nonzero real numbers, Im ∈ Rm×m and In ∈ Rn×n arem×m and n× n identity matrices, respectively.
Then we can obtain following generalized MSSOR method:

zk+
1
2 = F zk + (I − ΩL)−1D−1Ωu, (5)

where

F = (I − ΩL)−1(I − Ω + ΩU) =

 (1 − ω)Im −ωA−1B
2τ(1 − ω)

2 − τ
Q−1BT In −

2τω

2 − τ
Q−1BTA−1B

 , (6)

and

u =


b

−q


. (7)

By backward generalized SOR we compute zk+1 from zk+
1
2 as

zk+1
= Gzk+

1
2 + (I − ΩU)−1D−1Ωu, (8)

where

G = (I − ΩU)−1(I − Ω + ΩL) =

(1 − ω)Im −
2ωτ

2 − τ
A−1BQ−1BT

−ωA−1B

2τ
2 − τ

Q−1BT In

 . (9)

We eliminate zk+
1
2 from (5) and (8), so we have generalized MSSOR (GMSSOR) method, which is as follows:

zk+1
= Hzk + M, (10)

where

H = GF

=

(1 − ω)2Im −
4ωτ(1 − ω)

2 − τ
A−1BQ−1BT

[
−ω(2 − ω)Im +

4ω2τ

2 − τ
A−1BQ−1BT

]
A−1B

4τ(1 − ω)

2 − τ
Q−1BT In −

4τω

2 − τ
Q−1BTA−1B

 ,
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and

M = (I − ΩU)−1(2I − Ω)(I − ΩL)−1D−1Ωu

=

ω(2 − ω)A−1
−

4ω2τ

2 − τ
A−1BQ−1BTA−1

−
4ωτ

2 − τ
A−1BQ−1

4ωτ

2 − τ
Q−1BTA−1 4τ

2 − τ
Q−1

 .

Generalized MSSOR method: Let Q ∈ Rn×n be a nonsingular and symmetric matrix. Given initial vectors x(0)
∈ Rm and

y(0)
∈ Rn, and two relaxed parameters ω > 0 and τ > 0. For k = 0, 1, 2, . . . until the iteration sequence {((xk)T , (yk)T )T }

converges, computeyk+1
= yk +

4τ
2 − τ

Q−1BT
[(1 − ω)xk − ωA−1Byk + ωA−1b] −

4τ
2 − τ

Q−1q,

xk+1
= (1 − ω)2xk − ωA−1B[yk+1

+ (1 − ω)yk] + ω(2 − ω)A−1b

and Q is an approximate (preconditioning) matrix of the Schur complement matrix BTA−1B.

Remark 2.1. When the relaxed parameters τ = ω, the GMSSOR method reduces to the MSSOR method, so the GMSSOR
method is the generalization of the MSSOR method. Furthermore, the GMSSOR method with appropriate parameters has a
faster convergence rate than the MSSOR method with optimal parameters, which is shown by numerical experiments.

Remark 2.2. The GMSSOR iteration scheme is not suitable for solving large problems, as its computing cost is at least twice
of that of SOR and GSOR iteration schemes due to solving two subsystems with respect to Q and three subsystems with
respect to A at each step of MGSSOR.

3. Convergence of the GMSSOR method

Now, we will analyze convergence region for parameters τ and ω, in the generalized MSSOR (GMSSOR) method to solve
augmented systems (1).

Theorem 3.1. Suppose that µ is an eigenvalue of Q−1BTA−1B, if λ satisfies

[λ − (ω − 1)2](1 − λ)(2 − τ) = 4τωλ(2 − ω)µ, (11)

then λ is an eigenvalue of H . Conversely, if λ is an eigenvalue of H such that λ ≠ 1 and λ ≠ (1 − ω)2, and µ satisfies (11),
then µ is a nonzero eigenvalue of Q−1BTA−1B.

Proof. Suppose that λ and u are the eigenvalue and eigenvector of H , respectively. Then we can obtain

Hu = λu

or

[I − (I − ΩU)−1(2I − Ω)(I − ΩL)−1ΩD−1A]u = λu

hence

(1 − λ)(I − ΩU)u = (2I − Ω)(I − ΩL)−1ΩD−1Au

so

(1 − λ)


Im ωA−1B

0
2 − τ

2
In


x1
x2


=


ω(2 − ω)Im ω(2 − ω)A−1B

(2ωτ − 2τ)Q−1BT 2ωτQ−1BTA−1B


x1
x2


from this we have the following system of two equations

[(ω − 1)2 − λ]x1 = ω(λ + 1 − ω)A−1Bx2,

(1 − λ)
2 − τ

2
x2 = (2ωτ − 2τ)Q−1BT x1 + 2ωτQ−1BTA−1Bx2

so from the first equation, we can obtain

x1 =
ω(λ + 1 − ω)

(ω − 1)2 − λ
A−1Bx2
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setting x1 in the second equation, yields

(1 − λ)
2 − τ

2
x2 − 2ωτQ−1BTA−1Bx2 = 2τ(ω − 1)Q−1BT ω(λ + 1 − ω)

(ω − 1)2 − λ
A−1Bx2,

equivalently

(1 − λ)(2 − τ)

2
x2 =

[
2ωτ −

2τω(ω − 1)(ω − λ − 1)
(ω − 1)2 − λ

]
Q−1BTA−1Bx2.

Since µ is an eigenvalue of Q−1BTA−1B, then we have

(1 − λ)(2 − τ)[(ω − 1)2 − λ] = {4ωτ [(ω − 1)2 − λ] − 4τω(ω − 1)(ω − λ − 1)}µ

so

[λ − (ω − 1)2](1 − λ)(2 − τ) = 4τωλ(2 − ω)µ.

We can prove the second assertion by reversing the process. �

Lemma 3.2 ([24]). Consider the quadratic equation x2 − bx+ c = 0, where b and c are real numbers. Both roots of the equation
are less than one in modulus if and only if |c| < 1 and |b| < 1 + c.

Theorem 3.3. Suppose that B has full rank, and A and Q are both symmetric and positive definite. Assume that all eigenvalues
µ of Q−1BTA−1B are real. Then if µ > 0, the generalized MSSOR (GMSSOR) method converges if the parameters ω satisfies
0 < ω < 2 and two relaxed parameters ω and τ satisfy the following condition

0 < τ <
2 + 2(ω − 1)2

2ω(2 − ω)µ + 1 + (ω − 1)2
.

Proof. After some manipulations on Theorem 3.1, we have

λ2
−

[
1 + (ω − 1)2 −

4τω(2 − ω)

2 − τ
µ

]
λ + (ω − 1)2 = 0.

By setting

b = 1 + (ω − 1)2 −
4τω(2 − ω)

2 − τ
µ

and

c = (ω − 1)2.

By Lemma 3.2, |λ| < 1 if and only if

|(ω − 1)2| < 1 (12)

and 1 + (ω − 1)2 −
4τω(2 − ω)

2 − τ
µ

 < 1 + (ω − 1)2. (13)

From (12) we have

0 < ω < 2, (14)

and the relation (13) changes to the following inequalities:

− 1 − (ω − 1)2 < 1 + (ω − 1)2 −
4τω(2 − ω)

2 − τ
µ < 1 + (ω − 1)2 (15)

it follows that

4τω(2 − ω)

2 − τ
µ > 0, (16)

and

2 + 2(ω − 1)2 −
4τω(2 − ω)

2 − τ
µ > 0. (17)
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Table 1
Choices of matrix Q .

Case no. Matrix Q Description

I BT Â−1B Â = tridiag(A)

II BT Â−1B Â = diag(A)

We see that the inequality (16) is true if τ
2−τ

> 0, so

0 < τ < 2.

And the inequality (17) is equal to

0 < τ <
2 + 2(ω − 1)2

2ω(2 − ω)µ + 1 + (ω − 1)2
.

Obviously

0 < τ <
2 + 2(ω − 1)2

2ω(2 − ω)µ + 1 + (ω − 1)2
= 2 ×

1 + (ω − 1)2

2ω(2 − ω)µ + 1 + (ω − 1)2
< 2.

Then, we have

0 < τ <
2 + 2(ω − 1)2

2ω(2 − ω)µ + 1 + (ω − 1)2
.

This completes the proof. �

Remark 3.1. Obviously, Theorem 3 in [25] is included in Theorem 3.3 with the new conditions.

Corollary 3.4 ([23]). Suppose that µ is an eigenvalue of Q−1BTA−1B, if λ satisfies

[λ − (ω − 1)2](1 − λ) = 4τωλµ, (18)

then λ is an eigenvalue of H with τ = ω. Conversely, if λ is an eigenvalue of H such that λ ≠ 1 and λ ≠ (1 − ω)2, and µ
satisfies (18), then µ is a nonzero eigenvalue of Q−1BTA−1B.

4. Numerical examples

In this section, we give two examples to compare the performance of the GMSSOR method and MSSOR method. All
numerical examples are carried out in Matlab 7.0. We report the number of iterations and norm of absolution residual
vectors. Here, RES is defined as

RES =


‖b − Axk − Byk‖2

2 + ‖q − BT xk‖2
2

with {((xk)T , (yk)T )T } the final approximate solution. Here, we choose the right-hand vector (bT , qT )T ∈ Rm+n such that the
exact solution of the augmented linear system (1) is ((x∗)T , (y∗)T )T = (1, 1, . . . , 1)T ∈ Rm+n. All numerical results show
that the GMSSORmethod with appropriate parameters has a faster convergence rate than the MSSORmethod with optimal
parameters. Furthermore, the relaxed parameters of the GMSSOR method is not optimal and only lies in the convergence
region of the method.

Example 4.1 ([11]). Let the augmented system (1) in which

A =


I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I


∈ R2p2×2p2 , B =


I ⊗ F
F ⊗ I


∈ R2p2×2p2

and

T =
1
h2

tridiag(−1, 2, −1) ∈ Rp×p, F =
1
h
tridiag(−1, 1, 0) ∈ Rp×p,

with ⊗ is the Kronecker product symbol and h =
1

1+p and S = tridiag(a, b, c) is a tridiagonal matrix with Si,i = b, Si−1,i =

a, Si,i+1 = c for appropriate i.
For this example, we set m = 2p2 and n = p2. Hence, the total number of variables is m + n = 3p2. We choose the

matrix Q as an approximation to the matrix BTA−1B, according to the cases listed in Table 1. In our experiments, all runs
with respect to both the MSSOR method and GMSSOR method are started from initial vector ((x(0))T , (y(0))T )T = 0, and
terminated if the current iteration satisfies RES < 10−6.
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Fig. 1. Reduction of residual 2-norm with Case I,m + n = 192 and Case I, m + n = 768.

Fig. 2. Reduction of residual 2-norm with Case I,m + n = 1728 and Case II,m + n = 192.

Table 2
Spectral radius, IT and RES for Example 4.1.

m 128 512 152
n 64 256 576
m + n 192 768 1728

Case I MSSOR ωopt 0.3081 0.1848 0.1316
ρ(H(ωopt )) 0.6919 0.8152 0.8684
IT 58 114 174
RES 6.7036 × 10−7 9.2395 × 10−7 9.4418 × 10−7

GMSSOR τ 0.2489 0.1140 0.1106
ω 0.3600 0.1980 0.1436
ρ(H(τ , ω)) 0.6400 0.8020 0.8564
IT 48 99 148
RES 8.3087 × 10−7 9.5781 × 10−7 8.6868 × 10−7

Case II MSSOR ωopt 0.2375 0.1367 0.0960
ρ(H(ωopt )) 0.7625 0.8633 0.9040
IT 96 172 231
RES 8.2794 × 10−7 9.2069 × 10−7 8.8999 × 10−7

GMSSOR τ 0.1510 0.1057 0.0660
ω 1.7160 0.1727 0.1250
IT 76 119 172
RES 8.4689 × 10−7 8.2134 × 10−7 9.0700 × 10−7

In Table 2, we list ωopt and (τ , ω), the corresponding ρ(H(ωopt)) and ρ(H(τ , ω)) of the MSSOR method and GMSSOR
method for various problem sizes (m, n), respectively. We also list the numerical results with respect to IT and RES for
the testing methods for varying m and n, where ρ(H(ωopt)) denotes the spectral radius of iterative matrix of the MSSOR
method when choosing optimal parameter and ρ(H(τ , ω)) denotes the spectral radius of iterative matrix of the GMSSOR
method when choosing general parameters which are not optimal. Furthermore, Figs. 1–3 also show the history of residual
reduction. Since twomethods have the same computational complexity, we do not report the computing time. They clearly
show that the GMSSORmethod has a faster convergence rate than the MSSORmethod. However, the relaxed parameters of
GMSSOR method are not optimal and only lie in the convergence region of the method.
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Fig. 3. Reduction of residual 2-norm with Case II,m + n = 768 and Case II,m + n = 1728.

Fig. 4. Eigenvalues distributions of the MSSOR method with respect to ωopt = 0.1367 (the left) and the GMSSOR method with respect to τ = 0.1057,
ω = 0.1727 (the right) with Case I,m + n = 768 for Example 4.1.

Fig. 5. Eigenvalues distributions of the MSSOR method with respect to ωopt = 0.1848 (the left) and the GMSSOR method with respect to τ = 0.1140,
ω = 0.1980 (the right) with Case II,m + n = 768 for Example 4.1.

We also report the eigenvalues distributions of the MSSOR method with respect to ωopt = 0.1367 and the GMSSOR
method with respect to τ = 0.1057, ω = 0.1727 with Â = tridiag(A),m + n = 768, and the eigenvalues distributions of
the MSSOR method with respect to ωopt = 0.1848 and the GMSSOR method with respect to τ = 0.1140, ω = 0.1980 with
Â = diag(A),m + n = 768, please see Figs. 4 and 5. These figures show that the eigenvalues distributions of the GMSSOR
method with appropriate parameters are the same clustered as those of the MSSOR method with optimal parameters.

Example 4.2 ([11]). Consider the augmented linear system (1) in which

A =


I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I


∈ R2p2×2p2 , B =


I ⊗ F
F ⊗ I


∈ R2p2×2p2
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Fig. 6. Reduction of residual 2-norm with Case I,m + n = 192 and Case I, m + n = 768.

Fig. 7. Reduction of residual 2-norm with Case II,m + n = 192 and Case II,m + n = 768.

and

T =
1
h2

tridiag(−1, 2, −1) ∈ Rp×p, F =
1
h
K ∈ Rp×p,

with

K = (ki,j) ∈ Rp×p, ki,j =
1

2
√
2π

e
−|i−j|2

8 , i, j = 1, 2, . . . , p,

where ⊗ denotes the Kronecker product symbol and 1
p+1 the discretization mesh-size. For this example, we set m = 2p2

and n = p2. Hence, the total number of variables is m + n = 3p2. We choose the matrix Q as an approximation to the
matrix BTA−1B, according to the cases listed in Table 1. In our experiments, all runs with respect to both the MSSORmethod
and GMSSOR method are started from initial vector ((x(0))T , (y(0))T )T = 0, and terminated if the current iteration satisfies
RES < 10−6.

Similar to Example 4.1, in Table 3, we list ωopt and (τ , ω), the corresponding ρ(H(ωopt)) and ρ(H(τ , ω)) of the MSSOR
method and GMSSOR method for various problem sizes (m, n), respectively. We also list the numerical results with respect
to IT and RES for the testing methods for varying m and n. Furthermore, Figs. 6 and 7 also show the history of residual
reduction. They clearly show that the GMSSOR method with appropriate parameters has a faster convergence rate than the
MSSOR method with optimal parameters. However, the relaxed parameters of the GMSSOR method are not optimal and
only lie in the convergence region of the method.

We also report the eigenvalues distributions of the MSSOR method with respect to ωopt = 0.1706 and the GMSSOR
method with respect to τ = 0.1536, ω = 0.1906 with Â = tridiag(A),m + n = 768, and the eigenvalues distributions of
the MSSOR method with respect to ωopt = 0.1250 and the GMSSOR method with respect to τ = 0.0920, ω = 0.1560 with
Â = diag(A),m + n = 768, please see Figs. 8 and 9. These figures show that the eigenvalues distributions of the GMSSOR
method with appropriate parameters are identically clustered as those of the MSSORmethod with optimal parameters. The
determination of optimum values of the parameters needs further studies.
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Table 3
Spectral radius, IT and RES for Example 4.2.

m 128 512
n 64 256
m + n 192 768

Case I MSSOR ωopt 0.2933 0.1706
ρ(H(ωopt )) 0.7067 0.8294
IT 59 122
RES 7.9432 × 10−7 5.1633 × 10−7

GMSSOR τ 0.2323 0.1536
ω 0.3793 0.1906
ρ(H(τ , ω)) 0.6207 0.8094
IT 47 105
RES 6.7956 × 10−7 6.1249 × 10−7

Case II MSSOR ωopt 0.2235 0.1250
ρ(H(ωopt )) 0.7765 0.8750
IT 91 193
RES 7.2396 × 10−7 9.5194 × 10−7

GMSSOR τ 0.1905 0.0920
ω 0.2505 0.1560
IT 71 129
RES 3.7897 × 10−7 8.7846 × 10−7

Fig. 8. Eigenvalues distributions of the MSSOR method with respect to ωopt = 0.1706 (the left) and the GMSSOR method with respect to τ = 0.1536,
ω = 0.1906 (the right) with Case I,m + n = 768 for Example 4.2.

Fig. 9. Eigenvalues distributions of the MSSOR method with respect to ωopt = 0.1250 (the left) and the GMSSOR method with respect to τ = 0.0920,
ω = 0.1560 (the right) with Case II,m + n = 768 for Example 4.2.

5. Conclusions

In this paper, we establish a generalized MSSOR (GMSSOR) method for solving the large sparse augmented systems
of linear equations, which is the extension of the MSSOR method. Furthermore, the convergence of the GMSSOR method
for augmented systems is analyzed and numerical experiments are carried out, which show that the GMSSOR method
with appropriate parameters has a faster convergence rate than the MSSOR method with optimal parameters. However,
the relaxed parameters of the GMSSOR method are not optimal and only lie in the convergence region of the method.
Furthermore, the determination of optimum values of the parameters needs further studies.
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