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a b s t r a c t

We reconsider Newton’s method and two fixed-point methods for finding the minimal
positive solution of a nonsymmetric algebraic Riccati equation arising from transport
theory. We rewrite the subproblem of the Newton and fixed-point iterative schemes into
an equivalent form with some special structure. By the use of the particular structure
of the subproblem, we then present low memory and low complexity versions of these
iterative methods with a factored alternating-direction-implicit iteration. Some properties
of eigenvalues for iterative coefficient matrices in solving the subproblem are derived and
the convergence of the proposedmethods is established. Numerical experiments show that
the new iterative schemes are highly efficient to obtain the minimal positive solution. The
proposed low memory and low complexity Newton’s method is particularly efficient for
solving large scale Riccati equation arising from transport theory.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In transport theory related to the transmission of a particle beam in a solid medium, an integrodifferential equation
can be transformed, by the use of Gauss–Legendre quadrature formula, into the following nonsymmetric algebraic Riccati
equation (NARE) [1–3]

R(X) = XCX − AX − XD + B = 0, (1.1)

where B, C ∈ Rn×n are rank one matrices of the forms

B = eeT , C = qqT (1.2)

with

e = (1, 1, . . . , 1)T , q = (q1, q2, . . . , qn)T , qi =
ci
2ωi

, i = 1, 2, . . . , n
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and A,D ∈ Rn×n are some summations of diagonal matrices and rank one matrices. Specifically, they take the forms

A = ∆ − eqT , D = Γ − qeT (1.3)

with

∆ = Diag(δ1, δ2, . . . , δn), Γ = Diag(γ1, γ2, . . . , γn),

δi =
1

cωi(1 + α)
, γi =

1
cωi(1 − α)

, i = 1, 2, . . . , n,

and α ∈ [0, 1), c ∈ (0, 1]. The two parameter sets {ωi}
n
i=1 and {ci}ni=1 denote the nodes and weights, respectively, of the

Gauss–Legendre formula satisfying

0 < ωn < · · · < ω1 < 1 (1.4)

and
n

i=1 ci = 1 with ci > 0. It is easy to see that the diagonal elements of ∆ and Γ defined above satisfy

0 < δ1 < δ2 < · · · < δn and 0 < γ1 < γ2 < · · · < γn. (1.5)

The minimal positive solution of Eq. (1.1) is of great interest in physics. The existence of the minimal positive solution
has been well studied in [1,3]. The corresponding numerical iterative methods for finding the minimal positive solution of
NARE (1.1) have also been extensively studied [4–9,2,10–15]. Among these methods, Newton’s method and the fixed-point
methods are two important classes of iterative schemes. In [16], Guo and Laub developed the following Newton’s method
in the matrix form for solving NARE (1.1)

(A − X (k)C)X (k+1)
+ X (k+1)(D − CX (k)) = B − X (k)CX (k), k = 0, 1, . . . , X0 = 0. (1.6)

The complexity at each step, when using the Bartels–Stewart algorithm [17], is about O(n3) flops. Lu [18] further converted
Eq. (1.6) into a linear equation of scale 2n and reused Newton’s method (1.6) for solving NARE (1.1), but the complexity at
each iteration, unfortunately, still remained in O(n3) flops. Recently, Bini, Iannazzo and Poloni [19] suggested employing
the Gohberg–Kailath–Olshevsky (GKO) algorithm [20] for solving the structured linear system given by Lu [18], so that the
complexity at each step can be down to O(n2) flops. The fixed-pointmethods are another class of effective iterativemethods
for solving (1.1). Guo and Laub [16] studied the following uniform fixed-point iteration format for solving NARE (1.1):

A1X (k+1)
+ X (k+1)D1 = X (k)CX (k)

+ A2X (k)
+ X (k)D2 + B, k = 0, 1, . . . , X0 = 0, (1.7)

where matrices A1 and A2,D1 and D2 were some regular splitting of matrices A and D, respectively, in the sense that
A = A1 − A2 and D = D1 − D2 with A−1

1 ≥ 0, A2 ≥ 0, D−1
1 ≥ 0 and D2 ≥ 0; see [21] for details. Lu [22] transformed

Eq. (1.7) into a couple of vectors and devised a simple iteration (SI) with the complexity about 4n2 flops per iteration. Bai,
Gao and Lu [23] further designed a class of nonlinear splitting iteration methods, including the nonlinear block Jacobi (NBJ)
and the nonlinear block Gauss–Seidel (NBGS) iteration methods, which share the same complexity with SI iteration but can
obtain faster convergence.

In this paper, we reconsider Newton’s method (1.6) and the fixed-point methods (1.7) to compute the minimal positive
solution of (1.1). Especially for the fixed-point methods, we take A1 = ∆,D1 = Γ and A1 = A,D1 = D in (1.7) since they
respectively correspond to the simplest iteration format and the fastest convergent iteration format among a class of fixed-
point iterations in [16]. Our purpose is to further reduce the complexity of these two class of methods. We first notice that,
by introducing two vectors

u(k)
= X (k)q + e and v(k)

= (X (k))Tq + e. (1.8)

Newton’s method and two fixed-point methods can be respectively rewritten as

Newton : (∆ − u(k)qT )X (k+1)
+ X (k+1)(Γ − q(v(k))T ) = (e, e − u(k))(e, v(k)

− e)T , (1.9)

FP1 : 1X (k+1)
+ X (k+1)Γ = u(k)(v(k))T , (1.10)

FP2 : (∆ − eqT )X (k+1)
+ X (k+1)(Γ − qeT ) = (e, u(k)

− e)(e, v(k)
− e)T . (1.11)

This shows when u(k) and v(k) are obtained at the k-th step, a Sylvester equation of the form

FX + XG = E (1.12)

is required to be solved. If the scale of (1.12) is small, a direct method such as in [17] is enough. As the scale of (1.12) grows,
the alternating-direction-implicit (ADI) like methods are more preferred. Bai, Guo and Xu [24] combined alternate splitting
and successive approximating about a nonlinear operator to devise an alternately linearized implicit (ALI) method to solve
NARE (1.1). This method was motivated by the Hermitian and skew-Hermitian splitting (HSS) iterations in [25] for solving
non-Hermitian positive definite linear systems. In spirit of the HSS iteration, Bai [26] further developed a matrix variant of
HSS iteration to solve the Sylvester equation (1.12) and provided its convergence. Here we observe that the subproblem
(1.12) of iterations (1.9)–(1.11) has some attractive characteristics as below.
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• The coefficient matrices F and G are diagonal or diagonal-plus-rank-one matrices. Both of them belong to a special class
of the generalized companion matrices introduced in [27].

• All eigenvalues of F and G, as will be shown in Theorem 4.2, are real positive numbers and can be evaluated in O(n) flops
by existing methods such as those in [27] or [28].

• The matrix E on the right-hand side is of rank one or two, much less than the dimension of the Sylvester equation in
general.

These nice structured properties urge us to use the well-developed factored alternating-direction-implicit (FADI) itera-
tion [29,30] to solve the Sylvester equation (1.12) and, in this case, the solution of (1.12) can be approximated by

Y = SJΛJT T
J ,

where ΛJ ∈ RJ×J is a diagonal matrix, SJ and TJ ∈ Rn×J are thin and tall matrices since J is far less than n [29]. As a result,
vectors in (1.8) can be approximated by

u(k)
≈ Y (k)q + e and v(k)

≈ (Y (k))Tq + e,

and the complexity of iterations (1.9)–(1.11) is desirable to be further reduced as J ≪ n. We will see later in the numer-
ical experiments that the customary Newton and fixed-point methods (1.9)–(1.11) with incorporating into a low memory
version FADI iteration work very well for computing the minimal positive solution of NARE (1.1). They are particularly very
efficient for solving middle and large scale equations.

The rest of this paper is organized as follows. We review the FADI iteration in Section 2 and present the lowmemory and
low complexity iterative schemes in Section 3. Section 4 is devoted to some properties of eigenvalues of iterative matrices
and the convergence of the proposed algorithms. In Section 5, we do some numerical experiments to test the proposed
methods and compare their performances with those of the recently developed NBGS method in [23] and the fast Newton
method in [19].

Somewords for notations. Throughout this paper, we use ‘‘◦’’ to denote the Hadamard product of vectors or matrices. Let
Ir and I be the identitymatrices of order r and n, respectively. Formatrix A ∈ Rn×n, we denote by σ(A) and ρ(A) its spectrum
and spectral radius, respectively. For a diagonal matrix D ∈ Rn×n and a vector d ∈ Rn, diag(D) represents the vector whose
elements are the diagonal entries of D and, diag(d) represents the diagonal matrix whose diagonal entries are elements of
d. We abbreviate the block diagonal matrix


D1 0
0 D2


as Diag[ D1,D2 ].

2. The FADI iteration for the Sylvester equation with a low rank structure

The alternating-direction-implicit (ADI) iteration, described below, is an effective method for solving Sylvester equation
with coefficient matrices large and sparse [21].

Given two sets of ADI parameters {fj} and {gj} and the initial guess Y (0)
= 0. For j = 1, 2, . . . until convergence, proceed

the iteration
(F + fjI)Y (j−1/2)

= Y (j−1)(fjI − G) + E,

Y (j)(G + gjI) = (gjI − F)Y (j−1/2)
+ E.

It is not difficult to see that Y (j) can be expressed by Y (j−1) explicitly. Specifically, we have

Y (j)
= (gjI − F)(F + fjI)−1Y (j−1)(fjI − G)(G + gjI)−1

+ (fj + gj)(F + fjI)−1E(G + gjI)−1. (2.1)

When the matrix E in Sylvester equation (1.12) has a low rank structure, i.e. E = UV T with U, V ∈ Rn×r and r ≪ n, the
ADI iteration can be implemented in a more economic way, called factored ADI (FADI) iteration as below [29].

Let S1 = (F + f1I)−1U, T1 = (GT
+ g1I)−1V , Λ1 = (g1 + f1)Ir . For j = 2, 3, . . . until convergence, compute

Sj = [(F + fjI)−1U, (gjI − F)(F + fjI)−1Sj−1],

Tj = [(GT
+ gjI)−1V , (fjI − GT )(GT

+ gjI)−1Tj−1],
Λj = Diag[(gj + fj)Ir , Λj−1],

Y (j)
= SjΛjT T

j .

Since the order of the ADI parameters {gj} and {fj} makes no significance to the ADI iteration [29,30], the FADI iteration
with parameters of reverse order, after J step, can be reformulated as

SJ = [SJ1 , (g1I − F)(F + f2I)−1SJ1 , . . . , (gJ−1I − F)(F + fJ I)−1SJJ−1 ],

TJ = [TJ1 , (f1I − GT )(GT
+ g2I)−1TJ1 , . . . , (fJ−1I − GT )(GT

+ gJ I)−1TJJ−1 ],

ΛJ = Diag[(g1 + f1)Ir , . . . , (gJ + fJ)Ir ],
Y (J)

= SJΛJT T
J

(2.2)

with SJ1 = S1, TJ1 = T1, SJj+1 = (gjI − F)(F + fj+1I)−1SJj and TJj+1 = (fjI − GT )(GT
+ gj+1I)−1TJj for j = 1, . . . , J − 1.
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It should be noted that the convergence of FADI iteration relies heavily on the choice of ADI parameters {fj}
J
j=1 and {gj}

J
j=1,

which is usually hard to determine for cases such as in [29,31,32]. For the subproblem (1.12) of iterations (1.9)–(1.11), the
nice structure of coefficient matrices buys quite a lot in obtaining the optimal ADI parameters via Wachspress’s method
[33,34]. Furthermore, the storage of the SJ and TJ in (2.2) is unnecessary since only twomatrix–vector products are required
per iteration. Therefore, iterations (1.9)–(1.11) can progress in a low complexity and low memory way as described in the
next section.

3. Lowmemory and low complexity iterative schemes

3.1. Low memory and low complexity Newton–FADI iteration method

For the subproblem of Newton iterative scheme (1.9), the two factor matrices SJ and TJ in (2.2) of the FADI iteration can
be reformulated as some Hadamard products among vectors.

Proposition 3.1. Let SJ and TJ be factor matrices generated by the FADI iteration for solving (1.9). For each i = 1, 2, . . . , J ,
denote by (s2i−1, s2i) and (t2i−1, t2i) the i-th pair of vectors in SJ and TJ , respectively. For i = 1, 2, . . . , J , define vectors

d∆i = diag[(∆ + fiI)−1
], dΓi = diag[(Γ + giI)−1

] (3.1)

and scalars

h1i =
qT (∆ + fiI)−1e

1 − qT (∆ + fiI)−1u(k)
, h2i =

qT (∆ + fiI)−1(e − u(k))

1 − qT (∆ + fiI)−1u(k)
, (3.2)

ĥ1i =
qT (Γ + giI)−1e

1 − qT (Γ + giI)−1v(k)
, ĥ2i =

qT (Γ + giI)−1(v(k)
− e)

1 − qT (Γ + giI)−1v(k)
. (3.3)

For i = 2, 3, . . . , J , define vectors

d̂Γi = diag[(fi−1I − Γ )(Γ + giI)−1
], d̂∆i = diag[(gi−1I − ∆)(∆ + fiI)−1

] (3.4)

and scalars

hs2i−1 =
qT (∆ + fiI)−1s2i−1

1 − qT (∆ + fiI)−1u(k)
, hs2i =

qT (∆ + fiI)−1s2i
1 − qT (∆ + fiI)−1u(k)

, (3.5)

ĥt2i−1 =
qT (Γ + giI)−1t2i−1

1 − qT (Γ + giI)−1v(k)
, ĥt2i =

qT (Γ + giI)−1t2i
1 − qT (Γ + giI)−1v(k)

. (3.6)

Then we have for i = 2, . . . , J

[s1, s2] = [d∆1 ◦ (e + h11u
(k)), d∆1 ◦ (e + (h21 − 1)u(k))], (3.7)

[t1, t2] = [dΓ1 ◦ (e + ĥ11v
(k)), dΓ1 ◦ (e + (1 − ĥ21)v

(k))], (3.8)

[s2i−1, s2i] = [d̂∆i ◦ (s2i−3 + hs2i−1u
(k)) + hs2i−1u

(k), d̂∆i ◦ (s2i−2 + hs2iu
(k)) + hs2iu

(k)
], (3.9)

[t2i−1, t2i] = [d̂Γi ◦ (t2i−1 + ĥt2i−1v
(k)) + ĥt2i−1v

(k), d̂Γi ◦ (t2i + ĥt2iv
(k)) + ĥt2iv

(k)
]. (3.10)

Proof. By using the Sherman–Morrison–Woodbury formula (see, e.g. [35]) to matrices

(∆ + fiI − u(k)qT )−1 and (Γ + giI − q(v(k))T )−1,

equalities (3.7)–(3.10) hold true. �

Once the factor matrices SJ and TJ are constructed by Proposition 3.1, we can use matrix Y (J)
= SJΛJT T

J with ΛJ =

Diag[ (g1 + f1)I2, . . . , (gJ + fJ)I2 ] as an approximation to the exact k-th step Newton iteration matrix X (k). Moreover, each
Newton step can be implemented in a low memory way since two vectors (u(k) and v(k)), rather than two matrices (SJ
and TJ ), are required to be updated and stored. We give all steps of the low memory and low complexity Newton–FADI
iteration in Algorithm 1. The storage and the complexity of the algorithm will be given in the last part of this section (see
Table 3.1).
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Algorithm 1. Low Memory and Low Complexity Newton-FADI Algorithm.
Inputs: Vectors δ, γ , q and initial guess u(1) and v(1). Outputs: u, v ∈ Rn.
01. For k = 1, 2, 3, . . . , until convergence, do
02. u(k)

old := u(k), u(k)
old := u(k).

03. Compute extremal eigenvalues λ
(k)
1 and λ

(k)
n of ∆ − u(k)

oldq
T and τ

(k)
1 and τ

(k)
n of Γ − q(v(k)

old)
T .

04. Determine the number of ADI iterations Jk and the optimal parameters {fj}
Jk
j=1, {gj}

Jk
j=1.

05. d∆ := d∆1 , dΓ := dΓ1 with d∆1 , dΓ1 defined in (3.1).
06. Compute h1 := h11 , h2 := h21 , ĥ1 := ĥ11 , ĥ2 := ĥ21 with (3.2) and (3.3).
07. [s1, s2] := d∆ ◦ [(1 + h1)u

(k)
old + e, (h2 − 1)u(k)

old + e].
08. [t1, t2] = dΓ ◦ [(1 + ĥ1)v

(k)
old + e, (ĥ2 + 1)v(k)

old − e].
09. u(k)

:= (g1 + f1)(tT1 qs1 + tT2 qs2).
10. v(k)

:= (g1 + f1)(sT1qt1 + sT2qt2).
11. For i = 2, 3, . . . , Jk, do
12. d∆ := d̂∆i , dΓ := d̂Γi with d̂∆i , d̂Γi defined in (3.4).
13. Compute h1 := hs2i−1 , h2 := hs2i , ĥ1 := ĥt2i−1 , ĥ2 := ĥt2i with v(k)

= v
(k)
old and u(k)

= u(k)
old in (3.5) and (3.6).

14. [s1, s2] := [d∆ ◦ (s1 + h1u
(k)
old) + h1u

(k)
old, d∆ ◦ (s2 + h2u

(k)
old) + h2u

(k)
old].

15. [t1, t2] := [dΓ ◦ (t1 + ĥ1v
(k)
old) + ĥ1v

(k)
old , dΓ ◦ (t2 + ĥ2v

(k)
old) + ĥ2v

(k)
old ].

16. u(k)
:= u(k)

+ (gi + fi)(tT1 qs1 + tT2 qs2).
17. v(k)

:= v(k)
+ (gi + fi)(sT1qt1 + sT2qt2).

18. End
19. u(k)

:= u(k)
+ e. v(k)

:= v(k)
+ e.

20. If max{ ∥u(k)
−u(k)

old∥

∥u(k)∥
,

∥v(k)
−v

(k)
old∥

∥v(k)∥
} < tol, then u := u(k+1), v := v(k+1), stop.

21. End

3.2. Low memory and low complexity FP-FADI iteration methods

For subproblems of FP iterations (1.10)–(1.11), the concise representations of the factor matrices SJ and TJ can be derived
in a similar way to that of Proposition 3.1.

Proposition 3.2. Let SJ and TJ be the factor matrices generated by the FADI iteration.

(i) FP1 iteration. For i = 1, 2, . . . , J , denote by si and ti the i-th vector in SJ and TJ respectively, and d∆i , dΓi , d̂∆i and d̂Γi be the
same as those in Proposition 3.1. Then we have

s1 = d∆1 ◦ u(k), t1 = dΓ1 ◦ v(k) (3.11)

and for i = 2, 3, . . . , J

si = d̂∆i ◦ si−1, ti = d̂Γi ◦ ti−1. (3.12)
(ii) FP2 iteration. For i = 1, 2, . . . , J , denote by (s2i−1, s2i) and (t2i−1, t2i) the i-th pair of vectors in SJ and TJ respectively, and

d∆i , dΓi d̂∆i and d̂Γi be the same with Proposition 3.1. Define

h1i =
qT (∆ + fiI)−1e

1 − qT (∆ + fiI)−1e
, h2i =

qT (∆ + fiI)−1(u(k)
− e)

1 − qT (∆ + fiI)−1e
, (3.13)

ĥ1i =
qT (Γ + giI)−1e

1 − qT (Γ + giI)−1e
, ĥ2i =

qT (Γ + giI)−1(v(k)
− e)

1 − qT (Γ + giI)−1e
(3.14)

for i = 1, 2, . . . , J and

hs2i−1 =
qT (∆ + fiI)−1s2i−1

1 − qT (∆ + fiI)−1e
, hs2i =

qT (∆ + fiI)−1s2i
1 − qT (∆ + fiI)−1e

, (3.15)

ĥt2i−1 =
qT (Γ + giI)−1t2i−1

1 − qT (Γ + giI)−1e
, ĥt2i =

qT (Γ + giI)−1t2i
1 − qT (Γ + giI)−1e

(3.16)

for i = 2, 3, . . . , J . Then we have

[s1, s2] = [d∆1 ◦ (1 + h11)e, d∆1 ◦ (u(k)
+ (h21 − 1)e)], (3.17)

[t1, t2] = [dΓ1 ◦ (1 + ĥ11)e, dΓ1 ◦ (v(k)
+ (ĥ21 − 1)e)], (3.18)
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and for i = 2, 3, . . . , J

[s2i−1, s2i] = [d̂∆i ◦ (s2i−3 + hs2i−1e) + hs2i−1e, d̂∆i ◦ (s2i−2 + hs2ie) + hs2ie], (3.19)

[t2i−1, t2i] = [d̂Γi ◦ (t2i−1 + ĥt2i−1e) + ĥt2i−1e, d̂Γi ◦ (t2i + ĥt2ie) + ĥt2ie]. (3.20)

Incorporating (3.11)–(3.12) into (2.2) and (3.17)–(3.20) into (2.2) respectively yields the FP1-FADI iteration and FP2-FADI
iteration whose steps, with the low memory implementation as above, are listed in Algorithms 2 and 3.

Algorithm 2. Low Memory and Low Complexity FP1-FADI Algorithm.
Inputs: Vectors δ, γ , q and initial guess u(1) and v(1). Outputs: u, v ∈ Rn.
01. Determine the iteration number J and the optimal ADI parameters {fj}

J
j=1 and {gj}

J
j=1.

02. For k = 1, 2, 3, . . . , until convergence, do
03. u(k)

old := u(k), v
(k)
old := v(k).

04. d∆ := d∆1 , dΓ := dΓ1 .
05. s := d∆ ◦ u(k)

old, t := dΓ ◦ v
(k)
old .

06. u(k)
:= (f1 + g1)tTqs, v(k)

:= (f1 + g1)sTqt .
07. For i = 2, 3, . . . , J , do
08. d∆ := d̂∆i , dΓ := d̂Γi .
09. s := d∆ ◦ s, t := dΓ ◦ t .
10. u(k)

:= u(k)
+ (fi + gi)tTqs.

11. v(k)
:= v(k)

+ (fi + gi)sTqt .
12. End
13. u(k)

:= u(k)
+ e, v(k)

:= v(k)
+ e.

14. If max{ ∥u(k)
−u(k)

old∥

∥u(k)∥
,

∥v(k)
−v

(k)
old∥

∥v(k)∥
} < tol, then u := u(k), v := v(k), stop.

15. End

Algorithm 3. Low Memory and Low Complexity FP2-FADI Algorithm.
Inputs: Vectors δ, γ , q and initial guess u(1) and v(1). Outputs: u, v ∈ Rn.
01. Compute the extremal eigenvalues of ∆ − eqT and Γ − qeT .
02. Determine the number of FADI iteration J and the optimal parameters {fj}

J
j=1, {gj}

J
j=1.

03. For k = 1, 2, 3, . . . , until convergence, do
04. u(k)

old := u(k), u(k)
old := u(k).

05. d∆ := d∆1 and dΓ := dΓ1 .
06. h1 := h11 , h2 := h21 , ĥ1 := ĥ11 , ĥ2 := ĥ21 with formulas (3.13) and (3.14).
07. Compute [s1, s2] and [t1, t2] by (3.17) and (3.18).
08. u(k)

= (g1 + f1)(tT1 qs1 + tT2 qs2).
09. v(k)

= (g1 + f1)(sT1qt1 + sT2qt2).
10. For i = 2, 3, . . . , J , do
11. d∆ := d̂∆i , dΓ := d̂Γi .
12. h1 := hs2i−1 , h2 := hs2i , ĥ1 := ĥt2i−1 , ĥ2 := ĥt2i with formulas (3.15) and (3.16).
13. Compute [s1, s2] and [t1, t2] by (3.19) and (3.20).
14. u(k)

:= u(k)
+ (gi + fi)(tT1 qs1 + tT2 qs2).

15. v(k)
:= v(k)

+ (gi + fi)(sT1qt1 + sT2qt2).
16. End
17. u(k)

:= u(k)
+ e, v(k)

:= v(k)
+ e.

18. If max{ ∥u(k)
−u(k)

old∥

∥u(k)∥
,

∥v(k)
−v

(k)
old∥

∥v(k)∥
} < tol, then u := u(k+1), v := v(k+1), stop.

19. End

Once the outputs u and v are obtained by Algorithms 1–3, the minimal positive solution X∗ of NARE (1.1) can be approx-
imated readily by (X̄)i,j =

uivj
δi+γj

. On the other hand, one important issue in Algorithms 1–3 is how to compute the extremal
eigenvalues, the number of inner iterations and the optimal ADI parameters.Wedwell on these details in thenext subsection.

3.3. Computation of the extremal eigenvalues, the number of inner iterations and the optimal ADI parameters

Extremal eigenvalues. For Algorithm 1, Theorem 4.2 (see later) clearly shows the intervals where the two pairs of extremal
eigenvalues lie in. Thus at each outer iteration, they can be computed by a hybrid Newton–secant iteration as in [28]. In
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Table 3.1
Storage and computational flops of Algorithms 1–3 at the k-th outer iteration.

STORAGE COST FLOPS
EIGENVALUES FADI

ALG. 1 11n 40Kkn 40n + 50(Jk(n) − 1)n
ALG. 2 7n 0 10n + 10(J(n) − 1)n
ALG. 3 11n 0 36n + 48(J(n) − 1)n

addition, the so-called ‘‘warm start’’ strategy is also adopted in our algorithm to proceed the successive iterations. That
is, except at the first iteration, the currently obtained minimal (maximal) eigenvalue is chosen as the initial guess in the
iterative process for the next minimal (maximal) eigenvalue. It is also noted that the above computation of eigenvalues is
required not at all for Algorithm 2 since the coefficient matrices in (1.10) are diagonal and only one time for Algorithm 3 as
the extremal eigenvalues are needed before the start of the outer iterations.

The number of inner iterations. Let Y ∗ be the true solution of (1.12). It follows from (2.1) that the iterative error after J
steps takes the form

Y (J)
− Y ∗

=


J

i=1

(giI − F)(F + fiI)−1


(Y (0)

− Y ∗)


J

i=1

(fiI − G)(G + giI)−1


.

This implies that we should choose parameters {fi}
J
i=1 and {gi}

J
i=1 such that the error ∥Y (J)

− Y ∗
∥ is as small as possible,

which results in the following min–max problem [29,33,34]

min
gi,fi

max
x∈σ(F)
y∈σ(G)

J
i=1

 (gi − x)(fi − y)
(x + fi)(y + gi)

 . (3.21)

Generally, it is very difficult to solve the min–max optimal problem (3.21). In practice, one may try to find the suboptimal
solution by numerical methods such as the heuristics; see, e.g. [29,36]. However, for the subproblem (1.12) in (1.9)–(1.11),
matrices F and G are real matrices and their eigenvalues locate in two different real intervals (see Theorem 4.2). Thus the
Sylvester equation (1.12) falls into the so called ‘‘model problem’’ which was solved perfectly by Wachspress [33]. Here we
follow his way to give the number of inner FDAI iterations.

For the prescribed accuracy ϵ which the error ∥Y (J)
− Y ∗

∥ intend to attain, denote the minimal and maximal real
eigenvalues of F (or G) by a and ā (or b and b̄), respectively. Let real constants l =

√
1 − l′2 and l′ = d − 1 −

√
d(d − 2) be

the elliptic modulus and the complementary modulus with d =
2(a+b̄)(ā+b)
(a+b)(ā+b̄)

. Then the number of inner FADI iterations can
be computed as

J =


ϵ

ln g


, (3.22)

where g = exp

−

π2

ln(4/l′)


and the symbol [[x]] denotes the minimal integer greater than x.

Remark. It should be pointed out that the computation of the number of inner iterations J is associated with the scale n of
the NARE (1.1). In fact for different n, the two pairs of extremal eigenvalues (a, ā) and (b, b̄) are distinct. So from (3.22) we
know that J is various with n. In this sense, the number of inner FADI iterations will be denoted as J(n) to describe flops for
each algorithm in the next subsection. But we will see from numerical experiments in Section 5 that the increase of J is not
obvious even for remarkable rise of n. This is also the reason why we call Algorithms 1–3 are low complexity algorithms.

The optimal ADI parameters. The optimal ADI parameters also follow fromWachspress’smethod [33] and Jordan’s bi-linear
transformation [37]. Define the complete elliptic integral by

L =

 1

0

dθ
(1 − θ2)(1 − l2θ2)

.

The optimal ADI parameters after J steps in the interval [l′, 1] are given by

ω̄j = dn(rjL, l), j = 1, 2, . . . , J, (3.23)

where rj =
2j−1
2J for j = 1, 2, . . . , J and dn(·, ·) is the elliptic function [38]. Then the optimal ADI parameters in intervals

(a, ā) and (b, b̄) are determined by

fj =
β1ω̄j − β2

−β3ω̄j + β4
and gj =

β1ω̄j + β2

β3ω̄j + β4
, (3.24)
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where
β1 = ād̄ − a(1 + l′), β2 = a(1 + l′) − ād̄l′, β3 = d̄ − 1 − l′, β4 = 1 + l′ − d̄l′

with the real constant d̄ =
2(a+b̄)
ā+b .

Remark. In practical applications, the value of the elliptic function (3.23) at each rjL (j = 1, . . . , J) is usually approximated
by

dn(rjL, l) ≈
√
l′q′

2rj−1
4

1 + q′1−rj + q′1+rj

1 + q′rj + q′2−rj

with approximately complementary nome q′
= z(1+ z4) and z =

1−
√
l

2(1+
√
l)
[33]. Such an approximation is also conducted in

our numerical experiments in Section 5.

3.4. Storage and flops for Algorithms 1–3

The storage and the computational flops of Algorithms 1–3 at the k-th outer iteration are listed in Table 3.1.
The column ‘‘STORAGE COST’’ in Table 3.1 records the approximative storage of each outer iteration for Algorithms 1–3.

The last two columns give the computational flops of Algorithms 1–3 at each outer iteration. Specifically, ‘‘EIGENVALUES’’
represents the complexity of each algorithm for computing the two pairs of extremal eigenvalues of coefficient matrices at
the k-th outer iteration. The ‘‘FADI’’ column summarizes the total complexity of each algorithm for solving the subproblem
via FADI iteration, where Jk(n) and J(n) stand for the total number of inner iterations for Algorithms 1–3 at the k-th outer
iteration.

For Algorithm 1, the computation of two pairs of extremal eigenvalues needs about 40Kkn flops, where Kk denotes the
average number of iterations to obtain one of the extremal eigenvalues via the hybrid Newton–secant algorithm [28]. Note
that such computation of eigenvalues is unnecessary for Algorithm 2 and is required only once for Algorithm 3 before the
outer iteration, the related flops are of course zero.

It should be pointed out that the computational flops of Algorithms 1–3 should contain the cost to compute the number
of inner iterations and the optimal ADI parameters. However, as we have got their explicit expressions in (3.22) and (3.24),
the related computational flops can be neglected. On the other hand, although we see from Table 3.1 that the complexity of
each outer iteration is about O(Jk(n)n) for Algorithm 1 and O(J(n)n) for Algorithms 2–3, our numerical results in Section 5
show J(n) ≪ n in particular for large scale problems. Hence Algorithms 1–3 possess lower complexity than the methods
in [23,19].

4. Eigenvalue properties and convergence

4.1. Eigenvalue properties

In this subsection, we will give some eigenvalue properties of coefficient matrices of iterations (1.9)–(1.11). Without
specification, we always assume that the subproblem (1.12) is solved accurately throughout this subsection. The following
theorem collects some well-known results about the eigenvalues of a matrix related to NARE (1.1); see [39,8,40,3] and
references therein for details.

Theorem 4.1. Let

M =


D −C

−B A


with each n × n block defined by (1.2) and (1.3). Then M is a nonsingular M-matrix or a singular irreducible M-matrix. Let
H = Diag(I, −I)M. Then H has 2n real eigenvalues {−λn, . . . ,−λ1, τ1, . . . , τn} with the order

−λn < · · · < −λ2 < −λ1 ≤ 0 ≤ τ1 < τ1 < · · · < τn.

Moreover, the minimal positive solution X∗ of Eq. (1.1) is such that σ(D−CX∗) = {τ1, . . . , τn} and σ(A−X∗C) = {λ1, . . . , λn}.

For Newton’s method (1.9), we give the order of eigenvalues of coefficient matrices at each iterative step as follows.

Theorem 4.2. For each k = 1, 2, . . . , the coefficient matrices ∆− u(k)qT and Γ − q(v(k))T at the k-th Newton step have distinct
eigenvalues {λ

(k)
i }

n
i=1 and {τ

(k)
i }

n
i=1, respectively. Moreover, they satisfy the following inequalities:

λ1 < λ
(k)
1 < δ1 < λ

(k)
2 < δ2 < · · · < λ(k)

n < δn,

τ1 < τ
(k)
1 < γ1 < τ

(k)
2 < γ2 < · · · < τ (k)

n < γn,

where λ1 and τ1 are the minimal nonnegative eigenvalues defined by Theorem 4.1, and δi and γi, i = 1, 2, . . . , n are diagonal
elements of matrices ∆ and Γ respectively.
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Proof. Let

φ(k)(x)
△
= 1 +

n
i=1

u(k)
i qi

x − δi
= 0 (4.1)

be the secular equation of ∆ − u(k)qT − xI [41]. Then φ(k)(x) is a strictly monotonically decreasing function with respect
to x in the interval (δi, δi+1), i = 1, . . . , n − 1. Since for each i = 1, . . . , n − 1, limx→δ+

i
φ(k)(x) = +∞ and limx→δ−

i+1

φ(k)(x) = −∞, Eq. (4.1) has a unique real root in the open interval (δi, δi+1). On the other hand, as the Newton matrix
sequence {X (k)

}
∞

k=1 is strictly monotonically increasing and is convergent to the minimal positive solution X∗ (see Theorem
2.1 in [16]), so {u(k)

}
∞

k=1 monotonically converges to u∗
= X∗q+ e by noticing (1.8). This together with the fact λ1 < δ1 (see

Lemma 2.1 in [3]) yields

φ(k)(λ1) = 1 +

n
i=1

u(k)
i qi

λ1 − δi
> 1 +

n
i=1

u∗

i qi
λ1 − δi

= 0,

where the last equality holds because the equation

1 +

n
i=1

u∗

i qi
x − δi

= 0

is the secular equation of ∆ − u∗qT − xI . So the last real root of φ(k)(x) lies in the interval (λ1, δ1) due to limx→δ−

1
φ(k)(x) =

−∞. This shows the relations among the eigenvalues of ∆ − u(k)qT and the diagonal elements of ∆.
The relations among the eigenvalues of Γ − q(v(k))T and the diagonal elements of Γ can be derived in a similar way. �

For FP1 iteration (1.10), it is clear that the eigenvalues of coefficient matrices are just the diagonal elements of matrices
∆ and Γ . While for FP2 iteration (1.11), we have the following corollary analogous to Theorem 4.2.

Corollary 4.3. The coefficient matrices∆− eqT and Γ −qeT of FP2 iteration (1.11) have distinct eigenvalues {λ̄i}
n
i=1 and {τ̄i}

n
i=1,

respectively. Moreover, they satisfy the following inequalities:
0 < λ̄1 < δ1 < λ̄2 < δ2 < · · · < λ̄n < δn,
0 < τ̄1 < γ1 < τ̄2 < γ2 < · · · < τ̄n < γn,

where δi and γi, i = 1, 2, . . . , n are diagonal elements of matrices ∆ and Γ respectively.

We can further say another interesting property of the minimal eigenvalues of the coefficient matrices at each Newton
iterative step.

Theorem 4.4. For Newton’s method (1.9), let {λ
(k)
1 }

+∞

k=1 and {τ
(k)
1 }

+∞

k=1 be the minimal eigenvalues of the coefficient matrix
sequences {∆ − u(k)qT }+∞

k=1 and {Γ − q(v(k))T }+∞

k=1 , respectively. Then we have
λ1 < · · · < λ

(k+1)
1 < λ

(k)
1 < · · · < λ

(1)
1 < δ1,

τ1 < · · · < τ
(k+1)
1 < τ

(k)
1 < · · · < τ

(1)
1 < γ1,

where λ1 and τ1 are the same as those in Theorem 4.1.

Proof. Let φ(k)(x) be defined by (4.1). By the strict monotonicity of the sequence {u(k)
}
+∞

k=1 , we immediately have

φ(k)(λ
(k+1)
1 ) = 1 +

n
i=1

u(k)
i qi

λ
(k+1)
1 − δi

> 1 +

n
i=1

u(k+1)
i qi

λ
(k+1)
1 − δi

= φ(k+1)(λ
(k+1)
1 ) = 0 = φ(k)(λ

(k)
1 ).

This implies λ
(k+1)
1 < λ

(k)
1 because φ(k)(x) is a strictly monotonically decreasing function in the open interval (λ1, δ1).

Similarly, we can derive the monotone property of the sequence of eigenvalues {τ
(k)
1 }

∞

k=1. �

Theorem4.4 shows themonotonicity andboundedness of theminimal eigenvalues of the coefficientmatrices inNewton’s
method. Intuitively, we think that similar results should be true for the maximum (and all other) eigenvalues of the
coefficient matrices. Our numerical experiments also show this possibility. However, at the moment, we could not prove it
theoretically. We leave it as an open problem.



184 B. Yu et al. / Journal of Computational and Applied Mathematics 250 (2013) 175–189

Table 5.1
Test results for (α, c) = (0.99, 0.01).

n Method (α, c) = (0.99, 0.01)
ALG. 1 ALG. 2 ALG. 3 FNM NBGS

32

CPU 0.00 0.00 0.015 0.265 0.015
IT 11/3 10/4 11/3 3 3
ERR 0.00e+00 1.77e−15 0.00e+00 4.85e−17 3.12e−17
RES 6.24e−17 6.24e−17 6.24e−17 2.56e−16 2.28e−16

64

CPU 0.00 0.00 0.015 0.265 0.015
IT 12/3 11/4 12/3 3 3
ERR 0.00e+00 1.77e−15 0.00e+00 4.85e−17 3.12e−17
RES 5.89e−17 5.89e−17 5.89e−17 2.56e−16 2.39e−16

128

CPU 0.00 0.00 0.015 0.078 0.000
IT 13/3 13/4 13/3 3 3
ERR 0.00e+00 1.81e−15 0.00e+00 6.24e−17 3.98e−17
RES 5.89e−17 5.89e−17 5.89e−17 3.00e−16 2.51e−16

256

CPU 0.00 0.00 0.015 0.265 0.015
IT 15/3 15/4 15/3 3 3
ERR 0.00e+00 1.83e−15 0.00e+00 5.46e−17 3.64e−17
RES 5.37e−17 5.37e−17 5.37e−17 3.85e−16 2.51e−16

512

CPU 0.00 0.00 0.015 0.921 0.015
IT 17/3 16/4 17/3 3 3
ERR 0.00e+00 1.84e−15 0.00e+00 4.64e−17 6.07e−17
RES 5.11e−17 2.05e−16 5.11e−17 4.40e−16 2.53e−16

1024

CPU 0.031 0.015 0.015 3.571 0.075
IT 18/3 18/4 18/3 3 3
ERR 0.00e+00 1.84e−15 0.00e+00 5.70e−17 4.57e−17
RES 5.11e−17 2.05e−16 5.11e−17 5.93e−16 2.51e−16

2048

CPU 0.046 0.015 0.046 14.53 0.390
IT 20/3 20/4 20/3 3 3
ERR 0.00e+00 1.84e−15 0.00e+00 5.67e−17 4.28e−17
RES 4.68e−17 4.69e−17 4.68e−17 8.33e−16 8.33e−16

4096

CPU 0.125 0.031 0.171 66.95 2.51
IT 21/3 21/4 21/3 3 3
ERR 0.00e+00 1.84e−15 0.00e+00 5.54e−17 2.54e−16
RES 2.34e−16 2.05e−16 2.34e−16 1.08e−15 1.08e−15

4.2. Convergence of Algorithms 1–3

In this subsection, we construct the convergence of Algorithms 1–3with the solution of subproblem (1.12) approximated
by the FADI iteration. We first define a vector wT

= (uT , vT ) and two matrices [42]

L(w) =


diag(Pv) 0

0 diag(Qu)


and K(w) =


diag(Pv) diag(u)P
diag(v)Q diag(Qu)


with P := (P)ij =

qj
δi+γj

and Q := (Q )ij =
qj

δj+γi
. It is clear that L(w) and K(w) are both linear operators ofw and there exist

lc > 0 and kc > 0 such that

∥L(w)∥ ≤ lc∥w∥ and ∥K(w)∥ ≤ kc∥w∥. (4.2)

Then the Riccati equation (1.1) can be reformulated as

R(w) = w − L(w)w − e2n = 0,

with eT2n = (eT , eT ). Note that the first and the second F-derivative of R at w are given by

R′(w) = I2n − K(w) and R′′(w)(·, w) = K(w),

and the second F-derivative R′′(w)(·, ·) is independent of w. We now turn to the convergence of Algorithms 1–3.
For Algorithm 1, denote by w

(k−1)
NA the (k − 1)-th iteration point generated by Newton–FADI iteration and by w

(k)
NS the

exact solution of the k-th Newton’s equation, i.e.

w
(k)
NS = w

(k−1)
NA − (R′(w

(k−1)
NA ))−1R(w

(k−1)
NA ), (4.3)

provided that R′(w
(k−1)
NA ) is nonsingular. Since the optimal ADI parameters can be derived, it follows from the inner FADI

iteration process that the error between w
(k)
NA and w

(k)
NS can satisfy

∥w
(k)
NA − w

(k)
NS ∥ < η(k−1)

∥w
(k−1)
NA − w

(k)
NS ∥, (4.4)
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Table 5.2
Test results for (α, c) = (0.5, 0.5).

n Method (α, c) = (0.5, 0.5)
ALG. 1 ALG. 2 ALG. 3 FNM NBGS

32

CPU 0.000 0.015 0.015 0.031 0.000
IT 21/5 21/22 21/10 5 9
ERR 4.85e−17 3.86e−15 1.85e−15 1.51e−16 6.43e−16
RES 2.12e−16 1.85e−15 2.55e−16 2.60e−16 2.02e−16

64

CPU 0.000 0.015 0.015 0.046 0.000
IT 23/5 23/22 23/10 5 9
ERR 3.12e−17 3.81e−15 1.87e−15 1.21e−16 6.33e−16
RES 2.52e−16 1.87e−15 2.92e−16 2.50e−16 2.18e−16

128

CPU 0.015 0.015 0.015 0.156 0.000
IT 24/5 24/21 24/10 5 9
ERR 4.39e−17 1.65e−14 1.86e−15 1.74e−16 6.30e−16
RES 7.95e−16 7.89e−15 6.97e−16 3.12e−16 2.27e−16

256

CPU 0.015 0.015 0.031 0.375 0.015
IT 26/4 26/21 26/10 4 8
ERR 3.28e−14 1.65e−14 1.85e−15 3.29e−16 5.06e−14
RES 1.07e−15 7.93e−15 8.72e−16 4.91e−16 1.00e−15

512

CPU 0.015 0.031 0.031 1.312 0.062
IT 28/4 28/20 28/9 4 8
ERR 3.28e−14 7.15e−14 5.90e−14 3.29e−14 5.06e−14
RES 1.47e−15 3.42e−14 3.80e−15 4.91e−16 1.57e−15

1024

CPU 0.031 0.046 0.078 5.203 0.218
IT 29/4 29/20 29/9 4 8
ERR 3.28e−14 7.15e−14 5.90e−14 3.29e−14 5.06e−14
RES 5.13e−15 3.42e−14 5.00e−15 6.30e−16 1.19e−15

2048

CPU 0.078 0.109 0.187 20.85 1.078
IT 30/4 31/19 30/9 4 8
ERR 3.29e−14 3.09e−13 5.90e−14 3.31e−14 5.06e−14
RES 1.61e−14 1.48e−13 1.31e−14 1.20e−15 1.36e−15

4096

CPU 0.218 0.281 0.468 92.26 6.015
IT 32/4 32/19 32/9 4 8
ERR 3.28e−14 3.09e−13 5.90e−14 3.31e−14 5.06e−14
RES 1.72e−14 1.47e−13 1.40e−14 1.58e−15 1.56e−15

where η(k−1) is the solution of the min–max problem in (3.21) and the RHS in (4.4) means the last outer iteration point
w

(k−1)
NA is just the initial iteration point at current inner iteration. Then the convergence of Algorithm 1 can be described as

below.

Theorem 4.5. Let B(w∗, ζ ) be a sufficient small ball of radius ζ about w∗ and {w
(k)
NA }

∞

k=1 be the sequence generated by Algo-
rithm 1 to solve NARE (1.1)with α ≠ 0, c ≠ 1. Given the initial iteration w

(1)
NA ∈ B(w∗, ζ ), if there exist a constant CF > 0 such

that η(k)
≤ CF∥w

(k)
NA − w∗

∥, then the sequence {w
(k)
NA }

∞

k=1 generated by Algorithm 1 is quadratically convergent to the minimal
positive solution w∗.

Proof. Weprove the theorem by showing that if the current iteration vectorw
(k)
NA ∈ B(w∗, ζ ), then the next iteration vector

satisfies ∥w
(k+1)
NA − w∗

∥ < ∥w
(k)
NA − w∗

∥. In fact, it follows from [18] that R′(w∗) is a nonsingular matrix and we can choose
a sufficiently small ζ such that

∥I − R′(w
(k)
NA )(R′(w∗))−1

∥ ≤ ∥(R′(w∗))−1
∥ · ∥K(w

(k)
NA − w∗)∥ ≤ ζkc∥(R′(w∗))−1

∥ < 1/2.

Then R′(w
(k)
NA ) is nonsingular by Banach lemma (see, e.g. [43]) and

∥(R′(w
(k)
NA ))−1

∥ ≤
∥(R′(w∗))−1

∥

1 − ∥I − R′(w
(k)
NA )(R′(w∗))−1∥

≤ 2∥(R′(w∗))−1
∥.

Therefore, the next Newton step is well defined and its exact solution w
(k+1)
NS satisfies

∥w
(k+1)
NS − w∗

∥ ≤ ∥(R′(w
(k)
NA ))−1

∥ · ∥R′(w
(k)
NA )(w

(k)
NA − w∗) − R(w

(k)
NA )∥

≤
1
2
∥(R′(w

(k)
NA ))−1

∥ · ∥K(w
(k)
NA − w∗)(w

(k)
NA − w∗)∥

≤ CN∥w
(k)
NA − w∗

∥
2 (4.5)
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Table 5.3
Test results for (α, c) = (0.01, 0.99).

n Method (α, c) = (0.01, 0.99)
ALG. 1 ALG. 2 ALG. 3 FNM NBGS

32

CPU 0.015 0.140 0.156 0.031 0.000
IT 27/8 22/269 22/131 8 67
ERR 3.40e−16 6.46e−15 6.60e−15 1.39e−15 5.25e−15
RES 1.04e−15 1.60e−14 1.07e−15 5.16e−16 2.31e−15

64

CPU 0.015 0.171 0.187 0.062 0.000
IT 29/8 23/262 24/128 8 65
ERR 2.54e−16 1.34e−14 1.26e−14 1.77e−15 1.31e−14
RES 1.51e−15 3.29e−14 2.01e−14 7.60e−16 5.74e−15

128

CPU 0.015 0.203 0.234 0.203 0.000
IT 31/8 25/255 26/125 8 64
ERR 5.09e−16 2.82e−14 2.47e−14 2.62e−15 2.07e−14
RES 2.38e−15 6.97e−14 3.74e−14 9.50e−16 9.40e−15

256

CPU 0.031 0.250 0.328 0.671 0.062
IT 32/8 27/249 28/122 8 62
ERR 2.15e−16 5.32e−14 4.81e−14 3.69e−15 5.19e−14
RES 8.77e−15 1.31e−13 6.83e−14 1.37e−15 2.24e−14

512

CPU 0.031 0.390 0.484 2.503 0.437
IT 34/8 29/242 29/119 8 61
ERR 1.00e−15 1.11e−13 9.37e−14 4.98e−15 8.21e−14
RES 1.08e−14 2.77e−13 1.56e−15 2.16e−15 3.61e−14

1024

CPU 0.062 0.640 0.921 9.730 1.640
IT 35/8 30/236 30/115 8 59
ERR 2.07e−15 2.10e−13 2.27e−13 7.12e−15 2.05e−13
RES 2.85e−14 5.21e−13 4.12e−13 3.10e−15 8.95e−14

2048

CPU 0.187 1.359 2.390 38.54 7.781
IT 36/8 32/229 32/112 8 58
ERR 3.31e−16 4.42e−13 4.41e−13 9.80e−15 3.24e−13
RES 7.77e−14 1.09e−12 6.81e−13 4.82e−15 1.14e−13

4096

CPU 0.593 3.265 5.500 162.71 42.12
IT 37/8 33/223 33/109 8 56
ERR 7.77e−16 8.34e−13 8.58e−13 1.25e−14 8.12e−13
RES 2.02e−13 2.06e−12 1.42e−12 3.21e−14 3.52e−13

with CN = 3kc∥(R′(w∗))−1
∥. By noting (4.4) and the assumption in the theorem, we have

∥w
(k+1)
NA − w∗

∥ ≤ ∥w
(k+1)
NA − w

(k+1)
NS ∥ + ∥w

(k+1)
NS − w∗

∥

≤ η(k)
∥w

(k)
NA − w

(k+1)
NS ∥ + CN∥w

(k)
NA − w∗

∥
2

≤ (CF + CFCNζ + CN)∥w
(k)
NA − w∗

∥
2. (4.6)

Now reduce ζ if needed such that (CF + CFCNζ + CN)ζ < 1. Then we have

∥w
(k+1)
NA − w∗

∥ ≤ (CF + CFCNζ + CN)ζ∥w
(k)
NA − w∗

∥ < ∥w
(k)
NA − w∗

∥,

which implies the sequence {w
(k)
NA }

∞

k=1 is convergent as w
(k+1)
NA ∈ B(w∗, ζ ). Moreover, we know from (4.6) that the conver-

gence is quadratic. �

As for the convergence of Algorithms 2 and 3, we similarly denote w
(k)
FA1 and w

(k)
FA2 the k-th iteration point generated by

Algorithms 2 and 3, respectively. Again, w(k)
FS1 and w

(k)
FS2 represent the exact solution from the k-th FP1 iteration equation

w
(k)
FS1 = L(w

(k−1)
FA1 ) + e2n

and FP2 iteration equation

(I − K(e2n))w
(k)
FS2 = (L(w

(k−1)
FA2 ) − K(e2n))w

(k−1)
FA2 + e2n,

respectively. Let the inner FADI iterations in Algorithms 2 and 3 satisfy

∥w
(k)
FAi − w

(k)
FSi ∥ < η(k−1)

∥w
(k−1)
FAi − w

(k)
FSi ∥, i = 1, 2, (4.7)

where η(k−1) is the solution of the min–max problem in (3.21). We then have the following convergence theorem of
Algorithms 2 and 3. As the proof is analogous to that of Theorem 4.5, we omit it.
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Table 5.4
Test results for (α, c) = (10−4, 1 − 10−4).

n Method (α, c) = (10−4, 1 − 10−4)

ALG. 1 ALG. 2 ALG. 3 FNM NBGS

32

CPU 0.062 1.281 1.437 0.046 0.031
IT 35/19 22/2389 22/1222 13 556
ERR 3.33e−15 7.07e−15 6.97e−15 6.51e−15 6.91e−15
RES 1.29e−15 1.94e−14 1.31e−14 7.76e−16 3.98e−15

64

CPU 0.015 1.359 1.687 0.109 0.031
IT 37/11 23/2320 24/1187 11 541
ERR 5.52e−15 1.41e−14 1.41e−14 1.20e−14 1.36e−14
RES 1.82e−15 3.80e−14 2.58e−14 1.23e−15 8.13e−15

128

CPU 0.031 1.650 2.093 0.265 0.125
IT 38/12 25/2251 26/1153 11 526
ERR 1.95e−14 2.84e−14 2.82e−14 1.63e−14 2.76e−14
RES 2.21e−15 7.62e−14 4.87e−14 1.86e−15 1.63e−16

256

CPU 0.046 2.218 3.000 0.921 0.546
IT 39/11 27/2182 28/1119 11 511
ERR 4.74e−14 5.67e−14 5.59e−15 1.89e−14 5.51e−14
RES 4.81e−15 1.52e−13 9.20e−14 2.92e−15 3.25e−14

512

CPU 0.062 3.421 4.546 3.343 3.421
IT 41/11 29/2113 29/1084 11 496
ERR 2.35e−14 1.13e−13 1.13e−13 1.16e−14 1.10e−13
RES 5.79e−15 3.06e−13 2.11e−13 4.08e−15 6.35e−14

1024

CPU 0.140 5.484 8.328 13.37 13.39
IT 42/11 30/2044 30/1050 11 481
ERR 8.07e−14 2.26e−13 2.25e−13 3.30e−14 2.20e−13
RES 9.42e−15 6.12e−13 4.83e−13 6.04e−15 1.27e−13

2048

CPU 0.281 11.64 21.37 53.24 62.28
IT 43/11 32/1975 32/1016 11 466
ERR 3.53e−14 4.54e−13 4.48e−13 2.48e−14 4.39e−13
RES 2.16e−14 1.22e−12 8.14e−13 8.60e−15 2.55e−13

4096

CPU 0.796 27.21 48.37 215.75 336.78
IT 44/11 33/1906 33/982 11 451
ERR 2.35e−14 9.07e−13 8.91e−13 4.16e−14 8.74e−13
RES 4.16e−14 2.45e−12 1.72e−12 1.11e−14 5.08e−13

Theorem 4.6. Let {w
(k)
FA1}

∞

k=1 and {w
(k)
FA2}

∞

k=1 be two sequences generated by Algorithms 2 and 3 respectively to solve NARE (1.1)
with α ≠ 0, c ≠ 1.

(i) Given the initial iteration w
(1)
FP1 ∈ B(w∗, ζ ). If there exists a constant CF1 > 0 such that η(k)

≤ CF1∥w
(k)
FA1 − w∗

∥ and
η̄+ η̄lc + lc < 1with η̄ = supk{η

(k)
} and lc defined in (4.2), then the sequence {w

(k)
FA1}

∞

k=1 generated by Algorithm 2 is linearly
convergent to the minimal positive solution w∗.

(ii) Given the initial iteration w
(1)
FP2 ∈ B(w∗, ζ ). If there exists a constant CF2 > 0 such that η(k)

≤ CF2∥w
(k)
FA2 − w∗

∥ and η̄ + η̄C̄
+ C̄ < 1 with η̄ = supk{η

(k)
} and C̄ = ∥(I2n − K(e2n))−1

∥(∥L(w∗)∥ + lc(∥(w∗)∥ + ζ ) + ∥K(e2n)∥), then the sequence
{w

(k)
FA2}

∞

k=1 generated by Algorithm 3 is linearly convergent to the minimal positive solution w∗.

5. Numerical experiments

The purpose of this section is to show the effectiveness of Algorithms 1–3 in computation. Our algorithms were coded
by Matlab 7.1 and were run on a PC with 1.80 GHz AMD Sempron 3000+ processor and 512M RAM.

The test problem comes from [23]. The scalars ci and ωi, i = 1, 2, . . . , n, are given by the Gauss–Legendre quadrature
formula on the interval [0, 1]. Specifically, we first divide the interval [0, 1] into n/4 intervals of equal length and then apply
the 4-nodes Gauss–Legendre quadrature formula to each subinterval; see [19,16] for details.

The stopping criterion of iterations is the relative residual error

ERR = max


∥u(k)

− u(k−1)
∥1

∥u(k)∥1
,

∥v(k)
− v(k−1)

∥1

∥v(k)∥1


≤ n · eps (5.1)

or the total number of iterations is greater than 100 for Algorithm 1, or 20000 for Algorithms 2 and 3, where eps = 2−53
≈

1.1 × 10−16 is the relative accuracy of the floating point operation of the computer.
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Table 5.5
Test results for (α, c) = (10−6, 1 − 10−6).

n Method (α, c) = (10−6, 1 − 10−6)

ALG. 1 ALG. 2 ALG. 3 FNM NBGS

32

CPU 0.250 10.23 11.78 0.062 0.156
IT 43/100 24/19 439 22/10 060 14 4545
ERR 9.27e−13 7.09e−15 7.04e−15 4.45e−15 7.08e−15
RES 1.11e−13 1.95e−14 1.37e−14 1.60e−15 4.31e−15

64

CPU 0.250 10.92 13.71 0.328 0.250
IT 44/100 23/18 745 24/9710 37 4396
ERR 4.33e−13 1.41e−14 1.42e−14 8.75e−15 1.41e−14
RES 1.33e−13 3.84e−14 2.63e−14 2.20e−15 8.30e−15

128

CPU 0.312 13.31 17.07 0.578 1.000
IT 45/100 25/18 056 26/9366 24 4246
ERR 2.96e−13 2.83e−14 2.83e−14 1.67e−14 2.81e−14
RES 1.18e−13 7.73e−14 5.06e−14 2.63e−15 1.69e−14

256

CPU 0.421 17.67 23.35 1.343 4.375
IT 47/100 27/17 360 28/9019 16 4095
ERR 1.75e−13 5.68e−14 5.68e−14 4.35e−14 5.66e−14
RES 1.37e−13 1.54e−13 9.45e−14 4.27e−15 3.39e−14

512

CPU 0.625 26.64 35.07 5.171 27.25
IT 48/100 29/16 667 29/8674 17 3945
ERR 2.08e−13 1.13e−13 1.13e−13 7.97e−14 1.13e−13
RES 1.95e−13 3.10e−13 2.15e−13 6.01e−15 6.83e−14

1024

CPU 0.921 43.10 65.10 18.64 107.35
IT 49/79 30/15 975 30/8327 15 3795
ERR 2.20e−13 2.27e−13 2.27e−13 5.83e−14 2.26e−13
RES 2.11e−13 6.79e−13 4.93e−13 9.15e−15 1.35e−13

2048

CPU 0.421 90.68 169.59 67.45 492.70
IT 49/15 32/15 283 32/7981 14 3645
ERR 4.28e−13 4.54e−13 4.54e−13 3.80e−13 4.53e−13
RES 1.94e−13 1.22e−12 8.35e−13 1.20e−14 2.69e−13

4096

CPU 1.234 216.14 378.48 262.54 2610.03
IT 50/19 33/14 589 33/7635 18 3495
ERR 8.38e−13 9.08e−13 9.08e−13 4.25e−13 9.06e−13
RES 2.75e−13 2.47e−12 1.77e−12 5.33e−14 5.39e−13

We compared the performances of Algorithms 1–3 with that of the quite recent developed nonlinear block Gauss–Seidel
(NBGS) algorithm [23] and the fast Newton method (FNM) [19] for problems with different sizes and different parameters
α and c. All these methods were tested in CPU time, total number iterations as well as accuracy.

The obtained results are listed in Tables 5.1–5.5 where the ‘‘n’’ column gives the sizes of the problem, the ‘‘CPU’’ row
denotes the CPU time used in seconds, the ‘‘IT’’ row represents the maximal inner iterations and the total number of outer
iterations. The scalars in each ‘‘IT’’ line have the meaning ‘‘the maximal inner iteration/ the total number of the outer
iterations’’. The ‘‘ERR’’ row in the tables represents the final value of the relative errors defined by (5.1) and, the ‘‘RES’’
row reports the relative residual errors of NARE (1.1) defined by (see also in [6])

RES =
∥1X̄ + X̄Γ − (X̄q + e)(X̄Tq + e)T∥1

∥(X̄q + e)(X̄Tq + e)T∥1
,

where (X̄)i,j =
uivj

δi+γj
is the computed minimal positive solution.

We see from Tables 5.1–5.5 that in most cases, all the methods stopped regularly and the inequality ERR ≤ n · eps
was finally satisfied. Tables 5.1–5.2 shows that when the problem is far from the critical case, performances of Algorithms
1–3 were not much different. Specially for middle and large scale problems, Algorithms 1–3 performed better than NBGS
and FNM in CPU time. The results in Tables 5.3–5.5 show that when the problem is close to the critical case, Algorithm 1
performed better than Algorithms 2 and 3 both in CPU time and in the total outer number of iterations. Such a feature ismore
evident as NARE (1.1) approaches nearer to the critical case. On the other hand, for the problemwithmiddle and larger sizes,
all of Algorithms 1–3 needed less CPU time to attain the prescribed accuracy than theNGBS and the FNMdid. However, when
the problem is very close to the critical case, we also observe from Table 5.5 that Algorithm 1 failed to attain the prescribed
accuracy in 100 steps for the small scale problems. In our numerical experiments, we proceeded up the number of outer
iterations to 500 and found that the relative errors were not improved much. This seems to show that Algorithm 1 may be
more appropriate for solving the large size problems near to the critical cases.
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