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Abstract

In this work, we study the existence and uniqueness of the solution to the stochastic
differential equation of the double Heston model which is defined by two independent variance
processes with non-Lipschitz diffusions. Besides, we present a Monte Carlo algorithm based
on the Euler discretization method to price the Lookback options under this model.
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1 Introduction

The Black-Scholes option pricing model based on Brownian motion and normal distribution is one
of the most popular option pricing model in the financial theory. Although, this model due to its
specific assumptions can be used as an effective approximation, researches have widely shown the
limitations associated with this model. In particular, assuming constant volatility across different
option strike prices is one of the most significant ones. In fact, the volatility smile observed in
the real life does not allow to deal with a constant volatility. To model the smile effectively, one
remedy is to use stochastic volatility models.

The Heston model [11] as a stochastic volatility model assumes that market’s volatility follows
a mean reverting Cox-Ingersoll-Ross (CIR) process. It is motivated by the two following features:
First, the market’s volatility is stochastic and second, the distribution of risky asset returns has
heavier tails than those of the normal distribution. But along with all the advantages of the
original Heston model, empirical studies demonstrate that this model is not always able to fit the
implied volatility smile very well for options with short maturities [8]. To deal with this issue some
alternative models such as a time-dependent Heston model [3, 7, 16, 22] have been proposed. In
[13] and [15], respectively, it is presented a fractional and mixed fractional Heston model. Another
suggested model is to add additional parameters to the Heston model which makes the model more
flexible. Representative generalizations include the Bates model [2] in which the Heston model is
enhanced with a jump process, the double Heston model [5] which defines a two-factor structure
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for the volatility, and the Wishart model [6, 10], where the Cox-Ingersoll-Ross variance process is
replaced by a Wishart process.

There are strong reasons to confirm that the double Heston model in comparison to the original
Heston model is more compatible with the real market [19]. The asset price dynamic under the
double Heston model is defined as follows:

dSt = rSt dt +
√

V 1
t St dW 1

t +
√

V 2
t St dW 2

t ,

dV 1
t = κ1(θ1 − V 1

t ) dt + σ1

√
V 1

t dB1
t , V 1

0 > 0,

dV 2
t = κ2(θ2 − V 2

t ) dt + σ2

√
V 2

t dB2
t , V 2

0 > 0,

dW 1
t dB1

t = ρ1,

dW 2
t dB2

t = ρ2,

dW 1
t dB2

t = 0,

dW 2
t dB1

t = 0, (1.1)

where St and V i
t , i = 1, 2, represent the price and volatilities of the underlying asset and also,

W 1
t , B1

t and W 2
t , B2

t are the Brownian motions with correlations ρ1 and ρ2, respectively. Besides,
the parameters κi, θi, and σi, i = 1, 2, are the mean reversion speed of the volatility, the long-run
mean, and the volatility of volatility, respectively. r is the interest rate. It is widely acknowledged
that, if the parameters of the volatility processes obey the condition 2κiθi > σ2

i , i = 1, 2, known
as the Feller condition, then V i

t , i = 1, 2, are strictly positive [1].
The main goal of this work is to investigate the uniqueness and existence of solutions to the

double Heston model equations. We follow this aim in Section 2. Besides, we numerically study
the price of the Lookback options under this model. Despite the fact that there are many different
algorithms, such as [4, 12, 17, 21, 23, 24], to further this aim, we perform the Monte Carlo algorithm
based on the different discretization schemes, i.e. Euler, Milstein, Transform Volatility (TV)
schemes [20].

Before the birth of the Lookback options, as a type of the exotic options, there was no way that
could help investors to cope with a problem called ”regret”, which all investors caught up with.
Regret selling too early and regret holding on for too long to be suddenly swept by a correction.
Since Lookback call options would allow investors to buy at the lowest price during the life of the
options while Lookback put options would allow investors to sell at the highest price, these options
act as an insurance against regret. With Lookback options, investors would never again face the
punishing decision of timing an entry or exit. There are two kinds of Lookback options: Lookback
option with floating and fixed strike price. In Section 3, we study the price of these kinds of the
option under double Heston model. Besides, we provide some numerical results in Section 4.

2 Existence and Uniqueness

In this section, we show the existence and uniqueness of the solution to the double Heston model.
Let us state the following conditions that guarantee the existence and uniqueness of the solution

to the stock price equation of the double Heston model.
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Assumption 2.1. Locally Lipschitz condition. For every integer n ≥ 1, there exists a positive
constant Cn such that for all t ∈ [0, T ] and all x, x̄, y, ȳ, z, z̄ ∈ Rd with |y| ∨ |ȳ| ∨ |z| ∨ |z̄| ≤ n, we
have

|f(t, x, y, z)− f(t, x̄, ȳ, z̄)|+ |g1(t, x, y, z)− g1(t, x̄, ȳ, z̄)|
+ |g2(t, x, y, z)− g2(t, x̄, ȳ, z̄)|
≤ Cn

(
|x− x̄|+ |y − ȳ|+ |z − z̄|

)
, (2.1)

Linear growth condition. There exists a positive constant C such that

|f(t, x, y, z)|+ |g1(t, x, y, z)|+ |g2(t, x, y, z)| ≤ C
(
1 + |x|+ |y|+ |z|

)
, (2.2)

for all (t, x, y, z) ∈ [0, T ]× Rd × Rd × Rd.

Theorem 2.2. Let (Ω,F , F, P) be a complete probability space with a filtration F = {Ft, t ≥ 0}
satisfying the usual assumptions, that is, right continuous and increasing while F0 contains all
P-null sets. Let Wt = (W 1

t ,W 2
t ), for all t ≥ 0, be a vector of two-dimension independent Brownian

motion on this probability space. Let Z be a random variable which is independent of the σ-algebra
F generated by Wt and such that E[|Z|2] <∞. Let coefficients f(., ., ., .), g1(., ., ., .), and g2(., ., ., .)
apply to Assumption 2.1 . Then, for every t ∈ [0, T ], the stochastic differential equation

dSt = f(t, St, V
1
t , V 2

t ) dt + g1(t, St, V
1
t , V 2

t ) dW 1
t + g2(t, St, V

1
t , V 2

t ) dW 2
t , (2.3)

where S0 = Z and V 1
t , V 2

t > 0, has a unique solution S adopted to the filtration FZ generated by

Z and Ws = {(W 1
s , W 2

s ); s ≤ t}. Moreover, E[
∫ T

0
|St|2 dt] <∞.

Proof. First, we show that the solution of (2.3) is unique. To do so, let Ŝt and S̄t are two solutions
of equation (2.3) with initial values Ẑ and Z̄ respectively, i.e. Ŝ(0, ω) = Ẑ(ω) and S̄(0, ω) = Z̄(ω),
ω ∈ Ω. For every integer n ≥ 1, define

τ̂n := inf{t ∈ [0, T ] : |V 1
t | ≥ n},

and also,

τ̄n := inf{t ∈ [0, T ] : |V 2
t | ≥ n}.
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Set τn = τ̂n ∧ τ̄n. Then

E[|Ŝt∧τn − S̄t∧τn |2]

= E
[∣∣Ẑ − Z̄ +

∫ t∧τn

0

(
f(u, Ŝu, V 1

u , V 2
u )− f(u, S̄u, V 1

u , V 2
u )

)
du

+

∫ t∧τn

0

(
g1(u, Ŝu, V 1

u , V 2
u )− g1(u, S̄u, V 1

u , V 2
u )

)
dW 1

u

+

∫ t∧τn

0

(
g2(u, Ŝu, V 1

u , V 2
u )− g2(u, S̄u, V 1

u , V 2
u )

)
dW 2

u

∣∣2]

≤ E
[
4|Ẑ − Z̄|2 + 4

∣∣
∫ t

0

(
f(u, Ŝu, V 1

u , V 2
u )− f(u, S̄u, V 1

u , V 2
u )

)
du

∣∣2

+ 4
∣∣
∫ t

0

(
g1(u, Ŝu, V 1

u , V 2
u )− g1(u, S̄u, V 1

u , V 2
u )

)
dW 1

u

∣∣2

+ 4
∣∣
∫ t

0

(
g2(u, Ŝu, V 1

u , V 2
u )− g2(u, S̄u, V 1

u , V 2
u )

)
dW 2

u

∣∣2]. (2.4)

Using Jensen inequality, we get

E[|Ŝt∧τn − S̄t∧τn |2] ≤ 4E
[
|Ẑ − Z̄|2

]

+ 4E
[∣∣

∫ t

0

f(u, Ŝu, V 1
u , V 2

u )− f(u, S̄u, V 1
u , V 2

u ) du
∣∣2]

+ 4E
[∣∣

∫ t∧τn

0

g1(u, Ŝu, V 1
u , V 2

u )− g1(u, S̄u, V 1
u , V 2

u ) dW 1
u

∣∣2]

+ 4E
[∣∣

∫ t∧τn

0

g2(u, Ŝu, V 1
u , V 2

u )− g2(u, S̄u, V 1
u , V 2

u ) dW 2
u

∣∣2]. (2.5)

By the Ito isometry,

E[|Ŝt∧τn − S̄t∧τn |2] ≤ 4E
[
|Ẑ − Z̄|2

]

+ 4t E
[ ∫ t

0

∣∣f(u, Ŝu, V 1
u , V 2

u )− f(u, S̄u, V 1
u , V 2

u )
∣∣2 du

]

+ 4E
[ ∫ t∧τn

0

∣∣g1(u, Ŝu, V 1
u , V 2

u )− g1(u, S̄u, V 1
u , V 2

u )
∣∣2 du

]

+ 4E
[ ∫ t∧τn

0

∣∣g2(u, Ŝu, V 1
u , V 2

u )− g2(u, S̄u, V 1
u , V 2

u )
∣∣2 du

]

≤ 4E
[
|Ẑ − Z̄|2

]
+ 4t C2

n

∫ t∧τn

0

E[|Ŝu − S̄u|2] du

+ 4C2
n

∫ t∧τn

0

E[|Ŝu − S̄u|2] du + 4C2
n

∫ t∧τn

0

E[|Ŝu − S̄u|2] du

= 4E
[
|Ẑ − Z̄|2

]
+ 4(t + 2)C2

n

∫ t

0

E[|Ŝu∧τn − S̄u∧τn |2] du. (2.6)
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Thus the function
G(t) = E

[
|Ŝt∧τn − S̄t∧τn |2

]
, 0 ≤ t ≤ T,

satisfies

G(t) ≤ F + A

∫ t

0

G(u) du,

where F = 4E
[
|Ẑ−Z̄|2

]
and A = 4(t+2)C2

n. Now assume that Ẑ = Z̄. By the Gronwall inequality
[18] and since limn→∞ τn =∞, it follows that

E
[∣∣Ŝt − S̄t

∣∣2] = E
[
lim inf
n→∞

∣∣Ŝt − S̄t

∣∣2] ≤ lim inf
n→∞

E
[∣∣Ŝt − S̄t

∣∣2] = 0.

Consequently, by continuity of t→
∣∣Ŝt − S̄t

∣∣ we get

P
[∣∣Ŝt(ω)− S̄t(ω)

∣∣ = 0, ∀ t ∈ [0, T ]
]

= 1,

and the uniqueness is proved.

To prove the existence of the solution, we define S
(0)
t = S0 and S

(k)
t = S

(k)
t (ω) inductively as

follows

S
(k+1)
t = S0 +

∫ t

0

f(u, S(k)
u , V 1

u , V 2
u ) du

+

∫ t

0

g1(u, S(k)
u , V 1

u , V 2
u ) dW 1

u +

∫ t

0

g2(u, S(k)
u , V 1

u , V 2
u ) dW 2

u . (2.7)

Then, similar computation as the uniqueness, we have

E
[
|S(k+1)

t∧τn
− S

(k)
t∧τn
|2

]
≤ 4(t + 2)C2

n

∫ t

0

E
[
|S(k)

u∧τn
− S

(k−1)
u∧τn

|2
]

du, (2.8)

for k ≥ 1, t ≤ T and

E
[
|S(1)

t − S
(0)
t |2

]

≤ 3t2C2
(
1 + E

[
|S0|2 + |V 1

0 |2 + |V 2
0 |2

])
+ 2× 3tC2

(
1 + E

[
|S0|2 + |V 1

0 |2 + |V 2
0 |2

])

≤ A1t, (2.9)

where the constant A1 only depends on C, T and E
[
|S0|2 + |V 1

0 |2 + |V 2
0 |2

]
. By induction on k we

have

E
[
|S(k+1)

t − S
(k)
t |2

]
≤ Ak+1

2 tk+1

(k + 1)!
, k ≥ 0, t ∈ [0, T ], (2.10)

for some suitable constant A2 depending only on C,Cn, T and E
[
|S0|2 + |V 1

0 |2 + |V 2
0 |2

]
. The

required assertion now follows from the Doob martingale inequality and the Fatou lemma.

In what follows, we use the local Lipschitz condition and the linear growth condition [14] to
verify the existence and uniqueness of solutions to the volatility equations satisfying the CIR
dynamics

dV i
t = κi(θi − V i

t ) dt + σi

√
V i

t dBi
t, i = 1, 2.
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Theorem 2.3. Assuming κiθi >
σ2

i

2 , i = 1, 2, the volatility equations of the double Heston model
have unique positive solutions V 1

t , V 2
t where t ∈ [0, T ].

Proof. Theorem 2.3.4 of [14] guarantees the existence of solutions to the volatility equations.

To prove the uniqueness of the solutions, let V̂ i(t, ω) and V̄ i(t, ω), i = 1, 2, be solutions of the
volatility equations with initial values γ. For every integer n ≥ 1, define

τ̂n := T ∧ inf{t ∈ [0, T ] : |V̂ i
t | ≥ n, i = 1, 2},

and also,
τ̄n := T ∧ inf{t ∈ [0, T ] : |V̄ i

t | ≥ n, i = 1, 2}.
Set τn = τ̂n ∧ τ̄n . Then, for i = 1, 2

E
[
|V̂ i

t∧τn
− V̄ i

t∧τn
|2

]

= E
[∣∣

∫ t∧τn

0

(
− κi(V̂

i
u − V̄ i

u)
)

du +

∫ t∧τn

0

σi(

√
V̂ i

u −
√

V̄ i
u) dBi

u

∣∣2]

≤ 2 E
[∣∣

∫ t∧τn

0

(
− κi(V̂

i
u − V̄ i

u)
)

du
∣∣2] + 2 E

[∣∣
∫ t∧τn

0

σi(

√
V̂ i

u −
√

V̄ i
u) dBi

u

∣∣2]

≤ 2tκ2
i E

[ ∫ t∧τn

0

|V̂ i
u − V̄ i

u

∣∣2 du
]
+ 2σ2

i E
[ ∫ t∧τn

0

∣∣
√

V̂ i
u −

√
V̄ i

u

∣∣2 du
]
. (2.11)

Given local condition, there exists ϵ > 0, so that

E
[
|V̂ i

t∧τn
− V̄ i

t∧τn
|2

]
≤ 2Tκ2

i E
[ ∫ t∧τn

0

|V̂ i
u − V̄ i

u|2 du
]
+

2σ2
i

ϵ2
E

[ ∫ t∧τn

0

|V̂ i
u − V̄ i

u|2 du
]
, (2.12)

and from the local Lipschitz condition [14] we have

E
[
|V̂ i

t∧τn
− V̄ i

t∧τn
|2

]
≤ 2

(
Tκ2

i +
σ2

i

ϵ2
)
C2

n

∫ t

0

E
[
|V̂ i

u∧τn
− V̄ i

u∧τn
|2 du

]
. (2.13)

We now apply the Gronwall inequality to conclude that {V̂ i
t∧τn

; 0 ≤ t ≤ T} and {V̄ i
t∧τn

; 0 ≤ t ≤ T}
are modification of each another and thus are indiscernible. Letting n→∞ we see that the same
is true for {V̂ i

t ; 0 ≤ t ≤ T} and {V̄ i
t ; 0 ≤ t ≤ T}.

3 Lookback option pricing

Assuming T > 0 as the time to maturity, we simulate the equations of the double Heston model
over the time interval [0, T ], given a discretization as 0 = t1 < t2 < · · · < tn = T , where the time
increments are equally spaced with width dt and tk = k dt, for all k = 1, 2, · · · , n. The volatility
processes in (1.1), V i

t , i = 1, 2, are written in integral form as

V i
t+dt = V i

t +

∫ t+dt

t

κi(θi − V i
u) du +

∫ t+dt

t

σi

√
V i

u dBi
u, i = 1, 2.
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The Euler discretization approximates the integrals using the left-point rule

∫ t+dt

t

κi(θi − V i
u) du ≈ κi(θi − V i

t ) dt

∫ t+dt

t

σi

√
V i

u dBi
u ≈ σi

√
V i

t (Bi
t+dt −Bi

t)

= σi

√
V i

t dtZi
v,

where Zi
v, i = 1, 2, are two standard normal random variables. The right hand side involves

(θi − V i
t ) rather than (θi − V i

t+dt) since it is indistinct the value of V i
t+dt at time t. Thus we have

V i
t+dt = V i

t + κi(θi − V i
t ) dt + σi

√
V i

t dtZi
v.

Here, the volatility processes stay positive provided σ2
i < 2κiθi. Unfortunately, this is rarely

satisfied and for this reason, it is applied, as common approaches, the full truncation scheme where
V i

t is replaced with V i+
t = max(0, V i

t ) or the reflection scheme where V i
t is replaced with |V i

t |. In
this work, we exert the full truncation scheme.

To simulate the asset price process in (1.1), we write this process in exponential form. By the
Ito lemma, we obtain

d lnSt =
(
r − V 1

t + V 2
t

2
) dt +

√
V 1

t dW 1
t +

√
V 2

t dW 2
t ,

or in integral form

ln St+dt = lnSt +

∫ t

0

(
r − V 1

u + V 2
u

2

)
du +

∫ t

0

√
V 1

u dW 1
u +

∫ t

0

√
V 2

u dW 2
u .

Consequently, the Euler discretization of the lnSt is as follows

ln St+dt = lnSt +
(
r − V 1

t + V 2
t

2

)
dt +

√
V 1

t

(
W 1

t+dt −W 1
t

)
+

√
V 2

t

(
W 2

t+dt −W 2
t

)

= lnSt +
(
r − V 1

t + V 2
t

2

)
dt +

√
V 1

t dt Z1
s +

√
V 2

t dt Z2
s .

To discrete the asset price process St we set

St+dt = St exp

((
r − V 1

t + V 2
t

2

)
dt +

√
V 1

t dt Z1
s +

√
V 2

t dt Z2
s

)
,

where Zi
s, i = 1, 2 are, as usual, two standard normal random variables. Again, to handle the

volatilities when they become negative, we must apply the full truncation or reflection schemes by
replacing V i

t , i = 1, 2, everywhere with V i+
t or with

∣∣V i
t

∣∣.
The payoff of the lookback option is dependent on the maximum or minimum of the asset price

achieved during the life of the option. This allows the holder to look back over time to determine
the payoff. Lookback option is categorized as a path dependent securities since its payoff depends

7



on the path followed by the price of the underlying asset and not just on its final value. The payoff
of the lookback option with a fixed strike price K is the maximum difference between the optimal
underlying asset price and the strike. For the call option, the holder prefer to exercise the option at
the point when the underlying asset price is at its highest level and for the put option, the holder
prefer to exercise at the lowest price of the underlying asset. Finally, by defining τ = T − t, the
value of the lookback call and put options with fixed strike price K are described as

Lookback Call = e−rτ max(Gt −K, 0),

Lookback Put = e−rτ max(K −Ht, 0),

where Gt and Ht are, respectively, the maximum and the minimum of the price process over the
time interval [0, T ]. Moreover, the payoff of the lookback option with a float strike price is the
maximum difference between the market asset’s price at maturity and the floating strike. For the
call, the strike price is fixed at the asset’s lowest price during the option’s life, and, for the put,
it is fixed at the asset’s highest price. Note that these options are not really options, as they will
be always exercised by their holder. In fact, the option is never out-of-the-money, which makes it
more expensive than a standard option. Again, by defining τ = T − t, the value of the lookback
call and put options with floating strike price are described as

Lookback Call = e−rτ max(ST −Ht, 0),

Lookback Put = e−rτ max(Gt − ST , 0),

where ST is the underlying asset’s price at maturity time T . These equations are used to produce
Algorithm 1 for the Monte Carlo simulation of a Lookback call option with fixed and floating strike
price under double Heston model.
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Algorithm 1 Monte Carlo simulation of a Lookback call option with fixed and floating strike.

m← number of path
n← number of steps
sumfix ← 0
sumfloat ← 0
for j = 1, · · · ,m do

S ← initial price of asset
V 1 ← initial value of the first volatility process
V 2 ← initial value of the second volatility process
for i = 1, · · · , n do

Z1
s ← randn;

u1 ← randn;
Z1

v = Z1
s ∗ ρ1 + u1 ∗

√
1− ρ2

1;
Z2

s ← randn;
u2 ← randn;
Z2

v = Z2
s ∗ ρ2 + u2 ∗

√
1− ρ2

2;

S(i + 1) = S(i) ∗ exp

((
r − max(V 1(i), 0) + max(V 2(i), 0)

2

)
∗ dt

+
√

max(V 1(i), 0) ∗ dt ∗ Z1
s +

√
max(V 2(i), 0) ∗ dt ∗ Z2

s

)
;

V 1(i + 1) = V 1(i) + κ1 ∗ (θ1 −max(V 1(i), 0)) ∗ dt + σ1 ∗
√

max(V 1(i), 0) ∗ dt ∗ Z1
v ;

V 2(i + 1) = V 2(i) + κ2 ∗ (θ2 −max(V 2(i), 0)) ∗ dt + σ2 ∗
√

max(V 2(i), 0) ∗ dt ∗ Z2
v ;

end for
G← the maximum value of the asset path
H ← the minimum value of the asset path
sumfix = sumfix + e−rτ max(G−K, 0);
sumfloat = sumfloat + e−rτ max(S(n + 1)−H, 0);

end for
valuefix = sumfix/m;
valuefloat = sumfloat/m;
return valuefix

return valuefloat
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4 Numerical result

In what follows, we present some simulation test to examine how the parameters of the double
Heston model affect it. All our numerical results have been performed with the parameters in the
Table 1 which are selected from [9].

Table 1: Parameters used for simulation

initial price of asset 100
interest rate 0.04

initial volatility 1 0.05
initial volatility 2 0.03

volatility of volatiliy 1 0.3
volatility of volatiliy 2 0.1

mean reversion 1 4
mean reversion 2 2
long-run mean 1 0.05
long-run mean 2 0.03

correlation 1 -0.5
correlation 2 0.5

In Table 2, it is presented the price of the Lookback call option with fixed strike under the
double Heston model with various values of the time maturity T and strike price K. Results show
that a higher value is obtained for the price of the option when the maturity time increases and
the strike price decreases (see Figure 1).

In Table 3, it is presented the price of the Lookback call option with fixed strike under the
double Heston model with various values of the time maturity T and strike price K. Results show
that a higher value is obtained for the price of the option when the maturity time increases and
the strike price decreases (see Figure 2).

In the Tables 4, 5, and 6, we point to the effect of the parameters time to maturity T , interest
rate r, and strike price K on the value of the Lookback option with fixed strike price by considering
the Euler, Milstein, and TV discretization schemes.

In the following, we investigate the impact of the parameters of the volatility processes to the
double Heston model on the implied volatility surface (See Figure 3).

The parameters ρ1 and ρ2 will produce asymmetric volatility smiles that look more like skews
(It is obtained a symmetric smile with ρ = 0). This effect is illustrated in Figure 4.

The parameters volatility of volatility σ1 and σ2 and parameters mean reversion κ1 and κ2

affect the smile effect but results show that the effect of them opposes each other. Figure 5
demonstrates the duty of the parameters σ1 and σ2 where it can be identified that increasing these
parameters will magnify the smile effect. Besides, Figure 6 illustrates that increasing the value of
the parameters κ1 and κ2 will result in lower effect.

The initial volatilities V 1
0 and V 2

0 and their long-run mean volatilities θ1 and θ2, in addition to
the smile effect, will impact the level of the smile. This effect is illustrated in Figure 7.
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Table 2: Lookback call option price with fixed strike under the double Heston model.

T (years) 0.5 1 1.5 2
K = 90 26.3363 34.2185 40.9113 46.8507
K = 95 21.3909 29.2172 35.9271 42.2614
K = 100 16.3910 24.3322 30.9304 37.3559
K = 105 12.1534 20.2324 26.8817 33.1380
K = 110 8.8112 16.4168 22.8718 29.2039

Figure 1: Lookback call option price surface with fixed strike under the double Heston model.

Table 3: Lookback put option price with fixed strike under the double Heston model.

T (years) 0.5 1 1.5 2
K = 90 5.6707 9.4989 12.0791 14.1583
K = 95 8.8162 12.9955 15.8293 17.6736
K = 100 13.0097 17.2249 20.0535 21.9678
K = 105 17.8711 21.9838 24.6868 26.5135
K = 110 22.8230 26.8653 29.3836 31.0167
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Figure 2: Lookback put option price surface with fixed strike under the double Heston model.

Table 4: The value of the Lookback call option with fixed strike price under the double Heston
model by different discretization schemes.

Methods T = 1/12 T = 4/12 T = 8/12 T = 1
Euler 6.3097 13.1465 19.2434 24.4866

Milstein 6.2944 13.0964 19.3189 24.4010
TV 6.2333 13.2351 19.3439 24.4894

Table 5: The value of the Lookback call option with fixed strike price under the double Heston
model by different discretization schemes.

Methods r = 0.01 r = 0.03 r = 0.05 r = 0.07
Euler 22.6792 23.9604 25.0815 26.3310

Milstein 22.5938 23.9330 25.1265 26.3142
TV 22.4587 23.8900 25.6935 26.2591

Table 6: The value of the Lookback call option with fixed strike price under the double Heston
model by different discretization schemes.

Methods K = 90 K = 95 K = 100 K = 105 K = 110
Euler 34.3228 29.3635 24.4110 19.9880 16.4348

Milstein 34.1877 29.4644 24.3092 20.0471 16.3936
TV 34.1535 29.2037 24.4062 20.0142 16.3394
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Figure 3: Implied volatility surface from double Heston model.

Figure 4: Implied volatility surface from double Heston model whit changed correlations.
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Figure 5: Implied volatility surface from double Heston model whit changed volatility of volatilities.

Figure 6: Implied volatility surface from double Heston model whit changed mean reversions.
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Figure 7: Implied volatility surface from double Heston model whit changed long-run volatilities.

5 Conclusion

The main goal of this paper is to examine the existence and uniqueness of solutions of the double
Heston model. Generally, Lipschitz and linear growth are conditions which guarantee the existence
and uniqueness of the solution. However, our under consideration model is defined based on two
stochastic volatility processes which follow the CIR processes. Thus, it is replaced the Lipschitz
condition by the local Lipschitz condition. Besides, we numerically study the value of the Lookback
options under the double Heston model by applying the Monte Carlo algorithm. We use different
discretization schemes, i.e. Euler, Milstein, and transform volatility schemes, to evaluate the
Lookback option price under this model and verify the effect of the some parameters on the
results. Finally, since, among the stochastic volatility models, the double Heston model is one of
the simple yet powerful model to present the smile volatility, we study the behaviour of the smile
volatility generated by this model under the related parameters. But one of the limitations of this
study is that, as there is not an analytic pricing formula for the Lookback options under the double
Heston model, we present our results based on a numerical experiments, of course, providing such
a formula is one of the our noticeable end in the future.

References

[1] H. Albrecher, P. Mayer, W. Schoutens, J. Tistaert, The Little Heston Trap, Wilmott Magazine,
8392, 2007.

15



[2] D.S. Bates, Jumps and stochastic volatility: The exchange rate processes implicit in deutsche
mark options, Rev. Financ. Stud. 9 (1996), pp. 69-107.

[3] E. Benhamou, E. Gobet, and M. Miri, Time dependent Heston model, SIAM J. Financ. Math.
1 (2010), pp. 289-325.

[4] K. W. Chau et al., ”Reliability and performance-based design by artificial neural network,”
Advances in Engineering Software 38 (3): 145-149, 2007.

[5] P. Christoffersen, S. Heston, and K. Jacobs, The shape and term structure of the index option
smirk: Why multifactor stochastic volatility models work so well, Manage. Sci. 55, pp. 1914-
1932, 2009.

[6] J. Da Fonseca, M. Grasselli, and C. Tebaldi, Option Pricing When Correlations are Stochas-
tic: An Analytical Framework, Working paper, September 2006, Available at SSRN:
http://ssrn.com/abstract=982183 or http://dx.doi.org/10.2139/ssrn.982183.

[7] A. Elices, Affine concatenation, Wilmott J. 1, pp. 155-162, 2009.

[8] J. Gatheral, The volatility surface a practitioners guide, Wiley Finance, New York, 2006.

[9] P. Gauthier and P. Possama, Efficient Simulation of the Double Heston Model, The IUP
Journal of Computational Mathematics, Vol. IV, No. 3, September 2011, pp. 23-73.

[10] C. Gourieroux, Continuous time Wishart process for stochastic risk, Economet. Rev. 25, pp.
177-217, 2007.

[11] S. L. Heston, A closed-form solution for options with stochastic volatility with applications to
bond and currency options, Rev. Financ. Stud. 6, pp. 327-343, 1993

[12] S. M. R. Kazemi et al., ”Novel genetic-based negative correlation learning for estimating soil
temperature,” Engineering Applications of Computational Fluid Mechanics 12 (1): 506-516,
2018.

[13] E. Lepinette and F. Mehrdoust, A fractional version of the Heston model with Hurst parameter
H ∈ ( 1

2 , 1), Dynamic Systems and Applications 26, 535-548, 2017.

[14] X. Mao, stochastic Differential Equation and Applications, Horwood, Chichester, UK, 1997.

[15] F. Mehrdoust, A.R. Najafi, S. Fallah, O. Samimi, Mixed fractional Heston model and the
pricing of American options, Journal of Computational and Applied Mathematics, Volume
330, 141-154, 2018.

[16] S. Mikhailov and U. Nogel, Hestons stochastic volatility model: Implementation, calibration
and some extensions, Wilmott J. 7, pp. 74-79, 2003.

[17] R. Moazenzadeh et al., ”Coupling a firefly algorithm with support vector regression to predict
evaporation in northern Iran,” Engineering Applications of Computational Fluid Mechanics
12 (1): 584-597, 2018.

[18] J. A. Oguntuase, On an inequality of Gronwall. J. Ineq. Pure and Appl. Math, 2(1), 2001.

16



[19] Pricing Partners, Pricing Partners implements Double-Heston Model for its Equity
Module, News and Events, 2009, 9. http://www.pricingpartners.com/news&events/press-
release/167.html..

[20] F. Rouah, The Heston model and its extensions in Matlab and C #, Hoboken, New Jersey :
John Wiley & Sons, Inc., Wiley finance series, 2013.

[21] R. Taormina et al., ”Neural network river forecasting through baseflow separation and binary-
coded swarm optimization”, Journal of Hydrology 529 (3): 1788-1797, 2015.

[22] L. Teng, M. Ehrhardt, and M. Gnther, The dynamic Correlation model and its application to
the Heston model, Preprint 14/09, University of Wuppertal, 2014. J. Gatheral, The volatility
surface a practitioners guide, Wiley Finance, New York, 2006.

[23] C. L. Wu et al., ”Rainfall-Runoff Modeling Using Artificial Neural Network Coupled with
Singular Spectrum Analysis”, Journal of Hydrology 399 (3-4): 394-409, 2011.

[24] S. W. Zhang et al., ”Dimension Reduction Using Semi-Supervised Locally Linear Embedding
for Plant Leaf Classification,” Lecture Notes in Computer Science 5754: 948-955, 2009.

17


