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Abstract

In this work, we study the existence ana "1ir queness of the solution to the stochastic
differential equation of the double Heston ~oadel \ hich is defined by two independent variance
processes with non-Lipschitz diffusions. Be ta.> we present a Monte Carlo algorithm based
on the Euler discretization method to nrice ti.~» Lookback options under this model.
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1 Introduction

The Black-Scholes option pri ing 1. '« based on Brownian motion and normal distribution is one
of the most popular option . *cing model in the financial theory. Although, this model due to its
specific assumptions can be usea . ~ an effective approximation, researches have widely shown the
limitations associated w'on his model. In particular, assuming constant volatility across different
option strike prices is e f the most significant ones. In fact, the volatility smile observed in
the real life does not allow *o deal with a constant volatility. To model the smile effectively, one
remedy is to use st cha‘ ¢ic volatility models.

The Heston mol ! |11] s a stochastic volatility model assumes that market’s volatility follows
a mean revertine “ox-l._ rsoll-Ross (CIR) process. It is motivated by the two following features:
First, the mar et’s vo. tility is stochastic and second, the distribution of risky asset returns has
heavier tails tl.~u tho e of the normal distribution. But along with all the advantages of the
original He- .ca mouel, empirical studies demonstrate that this model is not always able to fit the

implied vc atility : nile very well for options with short maturities [3]. To deal with this issue some
alternative model” such as a time-dependent Heston model [3, 7, 16, 22] have been proposed. In
[13] ar ' 151 respectively, it is presented a fractional and mixed fractional Heston model. Another

suggest. 1 r odel is to add additional parameters to the Heston model which makes the model more
flexible. } vresentative generalizations include the Bates model [2] in which the Heston model is
enhanced with a jump process, the double Heston model [5] which defines a two-factor structure



for the volatility, and the Wishart model [6, 10], where the Cox-Ingerso.. Ross variance process is
replaced by a Wishart process.

There are strong reasons to confirm that the double Heston mor el ir cow.parison to the original
Heston model is more compatible with the real market [19]. The «. °t price dynamic under the
double Heston model is defined as follows:

dSt = TSt dt+ \/ St dWl —+ Q/ S 7\7[/2
AV} = k1 (01 — V2) dt + o1y /Vi TRY, V>0,

dV? = ka(0y — V) dt + 02\/\/3 w2 Vi >0,

dW} dB} = p1,

AW} dB} = pa,

dW} dB? =0,

dW? dB} =0, (1.1)

where S; and V}!, i = 1,2, represent the ~rice .nd volatilities of the underlying asset and also,
W}, Bl and W2, B? are the Brownian mot. . wich correlations p; and pa, respectively. Besides,
the parameters k;, 6;, and g;, i = 1,2, ~ve the mean reversion speed of the volatility, the long-run
mean, and the volatility of volatility, res,. ~tiveiy. r is the interest rate. It is Widely acknowledged
that, if the parameters of the Volatlhty processes obey the condition 2k;0; > o2, i = 1,2, known
as the Feller condition, then V}', i - .,?. are strictly positive [1].

The main goal of this work s to inwv« stigate the uniqueness and existence of solutions to the
double Heston model equatiors. v, fol'ow this aim in Section 2. Besides, we numerically study
the price of the Lookback opt ons inder this model. Despite the fact that there are many different
algorithms, such as [4, 12, 17, , 1], to further this aim, we perform the Monte Carlo algorithm
based on the different di cretiz. i o schemes, i.e. FEuler, Milstein, Transform Volatility (TV)
schemes [20].

Before the birth of the Look. ack options, as a type of the exotic options, there was no way that
could help investors ‘o ¢ pe with a problem called ”regret”, which all investors caught up with.
Regret selling too e. v .nd regret holding on for too long to be suddenly swept by a correction.
Since Lookback c7 1 optic °s would allow investors to buy at the lowest price during the life of the
options while Lo ,kbe _k p11t options would allow investors to sell at the highest price, these options
act as an insurawn. ~ aga’ st regret. With Lookback options, investors would never again face the
punishing des..on of  .ning an entry or exit. There are two kinds of Lookback options: Lookback
option with doating and fixed strike price. In Section 3, we study the price of these kinds of the
option under 1oublr Heston model. Besides, we provide some numerical results in Section 4.

2 E.-isteace and Uniqueness
In th - sr ction, we show the existence and uniqueness of the solution to the double Heston model.

Let s state the following conditions that guarantee the existence and uniqueness of the solution
to the stock price equation of the double Heston model.



Assumption 2.1. Locally Lipschitz condition. For every integer n > 1, therc exists a positive
constant C,, such that for allt € [0,T] and all x,%,y,7, 2,2 € R with |, V |y " |z| V |2] < n, we
have

|f(tz,y,2) — f(t, 2,9, 2)| + |91 (t, 2, y,2) — g1 £, 2,9, = |
+|92(taxay’ )707(17; 1 )|
Collz =24 |ly— o 1z —2]), (2.1)

Linear growth condition. There exists a positive constant C such that
[ty )| + 191t 2y, 2)] + lga(t, 2,0, 201 7 C(1+ || + [y| + |2]), (22)

for all (t,x,y,2) € [0,T] x R? x R? x R?,

Theorem 2.2. Let (, F,F,P) be a complete  obubility space with a filtration F = {F;, t > 0}
satisfying the usual assumptions, that is, aqn. continuous and increasing while Fo contains all
P-null sets. Let W, = (W}, W2), for allt > 0, .~ a vector of two-dimension independent Brownian
motion on this probability space. Let 7 “» a random variable which is independent of the o-algebra
F generated by W; and such that EI'Z|?] < o. Let coefficients f(.,.,.,.), g1(.s- ), and ga(., ., .,.)
apply to Assumption 2.1 . Then, for ~very € [0,T], the stochastic differential equation

dSt = f(ta St, V;l Vt / i =+ g1 (ta Sta ‘/tl, ‘/;2) th1 + g?(t, Sta ‘/tl, V?) th23 (23)

where So = Z and V;}, V2 > 0, has a unique solution S adopted to the filtration FZ generated by
Z and Wy = {(WL, W2 ; s lt}. Moreover, E[fOT |S¢]? dt] < oc.

Proof. First, we sl “aat * ae solution of (2.3) is unique. To do so, let St and S; are two solutions
of equation (2 3) ~ith 1.+ al values Z and Z respectively, i.e. S(0, w) Z(w) and S(0,w) = Z(w),
w € Q. For eve 'y integ °r n > 1, define

=inf{t € [0,T] : |V}}| > n},

and aln,

7, :=inf{t € [0,T] :|V;*| > n}.



Set 7, = 7, A Tr,. Then
EHSt/\Tn - St/\‘mP]
tATn R q
:E[|Z¥Z+/ (f(u, Sy, VL VE) = f(o Sy, vt VD)) du
0
tATh . _ .
+ / (91 (s S, VI, VE) = g1 (u, 8r 71 VE)) AW
0
tATH . B Y
+/ (920, 80, VA V2) = ga(c SV, V2)) dW2[7]
0
t
< B2 2 +a] [ (fln S VA V) - 5V VD)
0
t
+4|/ (02 (s 5, VIV — o 5, VI VE)) aWl |
0
t
] [ a8V = o 8V V) w2
0

Using Jensen inequality, we get
]EHSMT” — Sipr, 7] < 4}3“2 _ Z'2}

t
+4]E[| / f(uabuvvi}?VuQ)_f(uvsvquz}aV»f) du|2}

i

+41T'|/ 1(t, 80, VE V) = g1(u, S, VI V2 dWL]

uy Yy Vu uy Vs Vu

t/ n . _
-4IE<‘L|/ 92(t, 84, VI, V2) = go(u, S, VI, V2) dW2]?].

By the Ito isometry,
E[|Siar, — Siar 1 <4EZ — Z|?]

t
+4tE[/ | f(u, S0, VI V) = f(u, S, VL V)| dul
0
tATR
+4E[/ |91 (u, S, VL VE) = g1, S, Vi V)| du]
0
tAT,
+4E[/ |92 (1, 8, VI, V2) = ga(u, 8, VI, VAP du]
0

tATh R _
<AE[|Z - Z]*] + 4t C,%/ E[|S, — Sul?] du
0

(=)

(2.5)



Thus the function R B
G(t) = E[lst/\m - SMT"

7, 0<t<T.
satisfies

G(t)<F+A/tG(u) du
0

where F = 4E[|Z — Z[?] and A = 4(t+2)C?. Now assume that Z - - Z. B, the Gronwall inequality
[18] and since lim,,_, o, 7, = 00, it follows that

E[|8; — 5|°] = E[liminf |, — 5,|"] <limim &][$ — 5,°] = 0.
n—oo n- o)
Consequently, by continuity of t — ’5} - 5}‘ we get
P[[Si(w) — Se(w)| =0, Vi 0,7]] =1,

and the uniqueness is proved.
To prove the existence of the solution, we ¢ "=~ S\ = Sy and St(k) = Sgk)(w) inductively as
follows

S = 5, +/ Flu, 88 VLV

+/ g1(u, S, VIV AW+ / go(u, S, VL V2) dW2. (2.7)
Then, similar computation as the v .iquenc 's, we have
t
k41 ’ k k—1
BlIsike) - 50, ] < we+ 203 [ BlIsi,, - S0P du (28)

for k>1,t<T and
ElS - 571
<32C% (1~ So + (Vi 2+ [VEP]) + 2 x 3tC% (L + E[|So* + Vo > + [VE*])

where the constant A; nly depends on C, T and E[|So|? + [Vi'[? + [V#[?]. By induction on k we
have

k+11k+1
S _gmpy <A T s e 2.10
T - sOP) < B k20 teT, (2:10)
for some suitabic =~ stant Ay depending only on C,C,,T and E[|So|*> + [Vi'[? + |[V@|?]. The
required a sertior now follows from the Doob martingale inequality and the Fatou lemma. O
In what “llor s, we use the local Lipschitz condition and the linear growth condition [14] to
verify .. ~vistence and uniqueness of solutions to the volatility equations satisfying the CIR

dynamic
dVi = ki(0; — V) dt + 04\/ Vi dBi, i=1,2.



Theorem 2.3. Assuming r;0; > %, i = 1,2, the volatility equations oy "“e double Heston model
have unique positive solutions V!, Vt where t € [0,T].

Proof. Theorem 2.3.4 of [141] guarantees the existence of solutions .  ne volatility equations.

To prove the uniqueness of the solutions, let Vi(t, w) and Vv (t,w) 4 = 1,2, be solutions of the
volatility equations with initial values . For every integer n . 1, defii e

Foo=T Ainf{t € [0,T] : |Vi| > n, i — 1,2},

and also, N
Tp =T ANinf{t €[0,T] : |V} >. i=1,2}.

Set 7, = 7 ATpn . Then, for i =1,2
E [|‘/Ytl}\T,L ‘/t/\‘rn

t/\‘l’n AtATH
=E[ |/ (= ri(Vi = VD)) Au+ / oi(\/ Vi —\/Vi) dBi|?
t/\Tn tATH
<2IE|/ (— ral '—’ma'2+2E\/ oi(\/ Vi =/ Vi) dB|?
tATH o . tATH = — 5
g2m$1E[/ Vi—o d |—20§E[/ Vi =\ Vi du]. (2.11)
0 0

Given local condition, there exists = . 0, so that
. o tATR o - 20_2 tATR o o
B[Vivr, ~ Vi Pl <202 B| V- ViR da] 4 SB[ -ViP ), (212)
0 0
and from the local Lipschi*z cc diti’ n [14] we have
B[V, — Vi, 2] < 2(Tw + %)C2 / E[|Vin, — Vinr, | du). (213)

We now apply the Gre. = all inequality to conclude that {‘ZJAT, 0<t<T}and{V},;0<t<T}
are modification < ¢ each a.other and thus are indiscernible. Letting n — oo we see that the same
is true for {V}; 1< <7} and {V}; 0<t<T}. O
3 Looback option pricing

Assumir, 1’ > 0 as the time to maturity, we simulate the equations of the double Heston model

over th. time i1 serval [0,T], given a discretization as 0 = t; < to < --- < t,, = T, where the time
incremern. - are cqually spaced with width dt and ¢, = k dt, for all k = 1,2,---  n. The volatility
pro. . ~~in (1.1), V!, i = 1,2, are written in integral form as

) , t+dt ) t4dt ,
Vvtl_’_dtzvtl-i-/ m(@,—VJ) du—l—/ O'i\/VJ' dB;, i=12.
t t



The Euler discretization approximates the integrals using the left-point ru..
tdt ‘ ‘
/ Hz(ez — qu) du =~ /11(61 — V?) dt
t
t+dt ‘
0i\/Vi dB! = 04/ V}! (BHdt By)
=0/ Vi dt'.;,

where Z!, i = 1,2, are two standard normal random v.viable~ [he right hand side involves
(0; — V) rather than (6; — V), ;,) since it is indistinct the vai. of V!, ;, at time ¢. Thus we have

t

A
Vf+dt Vi+ k(0 — V) au 70\ Vi dtZ}.

Here, the volatility processes stay positive provide. 72 < 2k;0;. Unfortunately, this is rarely
satisfied and for this reason, it is applied, as con—~an app.oaches, the full truncation scheme where
Vi is replaced with V;'" = max(0,V}) or the ret <ti n scheme where V; is replaced with [V/|. In
this work, we exert the full truncation schen ~

To simulate the asset price process in (1.1, w - wuite this process in exponential form. By the
Ito lemma, we obtain

Vf+Vf

dlnS, = (r — ) dt + £/ VL AW+ V2 dWE,

or in integral form

1 2 t
lnSt+dt:1HSt+ f (T V +V d +/ \/ d / \/WdW,E
0

Jo

Consequently, the Euler dis . ~tization of the In.S; is as follows

th "‘Vt2 1 2 2 2
InSprar =S - (1 - T) dt +\/VE (Whia = W) + V2 (Wiae — WP)
Vl V2
=1r 5 + (1 %) dt +\/ V' dt Z} +\/V? dt Z2.

To discrete the asseuv | rice process Sy we set

Vi + V2
Siyar = Si exp ((r— %) dt +/ Vit dt ZE + V2 dt Z§>,

where Z!, i = 1,. are, as usual, two standard normal random variables. Again, to handle the
volatilities -hen t'.ey become negative, we must apply the full truncation or reflection schemes by
replaci -~ Vi, ¢ = 1,2, everywhere with V;'* or with |[V}'|.

The ~ay ot of the lookback option is dependent on the maximum or minimum of the asset price
achieved « ring the life of the option. This allows the holder to look back over time to determine
the payoff. Lookback option is categorized as a path dependent securities since its payoff depends



on the path followed by the price of the underlying asset and not just on . = fina. value. The payoff
of the lookback option with a fixed strike price K is the maximum ¢ .... "ence Hetween the optimal
underlying asset price and the strike. For the call option, the holde pre’:r .. exercise the option at
the point when the underlying asset price is at its highest level ana . - the put option, the holder
prefer to exercise at the lowest price of the underlying asset. " inally. by defining 7 = T — ¢, the
value of the lookback call and put options with fixed strike pr ce K a1 : described as

Lookback Call = ¢~ max(G — K 0),
Lookback Put=e "7 max(k - dy, (),

where G; and H; are, respectively, the maximum and the 1. mimum of the price process over the
time interval [0,T]. Moreover, the payoff of the lou. hack or tion with a float strike price is the
maximum difference between the market asset’s pri.~ at .._.ourity and the floating strike. For the
call, the strike price is fixed at the asset’s lowest price ."-'ring the option’s life, and, for the put,
it is fixed at the asset’s highest price. Note thav hese options are not really options, as they will
be always exercised by their holder. In fact, the optic. is never out-of-the-money, which makes it
more expensive than a standard option. Aga 1, 0 < _fining 7 = T — ¢, the value of the lookback
call and put options with floating strike price a» described as

Lookback Call= -~ max(St — H¢,0),
Lookback r .*=¢ "7 max(Gy; — St,0),
where St is the underlying asset’s = “~e at maturity time 7". These equations are used to produce

Algorithm 1 for the Monte Carlo .mulat. m of a Lookback call option with fixed and floating strike
price under double Heston modeu.



Algorithm 1 Monte Carlo simulation of a Lookback call option wit’. fixed nd floating strike.

m < number of path
n < number of steps
sum iz <0
SUM float < 0
for j=1,---,mdo
S < initial price of asset
V!« initial value of the first volatility process
V2 < initial value of the second volatility process
fori=1,---,ndo
Z! + randn;
uy 4 randn;
Zl=Z s« pr +up x /1 — pF;
Z2 < randn;
Uy — randn;

Z2=7%%py+ugx /1 — p;

nax (V' (i max(V?2(i
S(i+1) = (i) wexp (£ <V<>,0>; (V2@.0)y ,

+vm x(V1(i), o) xdt « Z1 + /max(V2(i),0) * di * Zf,);

Vii+1) =Vii) e (0 —max(V1(i),0)) * dt + oy % /max(V1(i),0) « dt x Z};

v

V2i+1)=V2()  wy% (0 —max(V?2(i),0)) * dt + o * \/max(V2(i),0) « dt  Z2;

end for
G + the maximu ~ vs .ue of the asset path
H < the minir am v’ e of the asset path
SuM iy = sum iz - - e~ "7 max(G — K, 0);
SUMfloat = SUn = Hqt + €77 max(S(n+1) — H,0);
end for
value iz = € iMfiz/i %
value froar = tMpie /M
return w.uefi;
return valuey, q




4 Numerical result

In what follows, we present some simulation test to examine hov the p« ~meters of the double
Heston model affect it. All our numerical results have been perforn. - with the parameters in the
Table 1 which are selected from [9].

Table 1: Parameters used for sim. 'ation

initial price of asset 107,
interest rate v.04
initial volatility 1 .00

initial volatility 2 0.3
volatility of vola*iliy . .3
volatility of volatilyy ? 0.1

mean rever .. . 4

mean reversion ? 2

long-ru: .. —~ 1 0.05

long-run . e.n 2 0.03

co. < 'ation 1 -0.5
correatic ~ 2 0.5

In Table 2, it is presented the price o. ‘he Lookback call option with fixed strike under the
double Heston model with various values of the time maturity 71" and strike price K. Results show
that a higher value is obtained fr . the | rice of the option when the maturity time increases and
the strike price decreases (see F., e 1).

In Table 3, it is presented the p. > of the Lookback call option with fixed strike under the
double Heston model with vr ciov . values of the time maturity 7 and strike price K. Results show
that a higher value is obteine. .or t e price of the option when the maturity time increases and
the strike price decreases see Figu.e 2).

In the Tables 4, 5, a'.d v, e point to the effect of the parameters time to maturity 7, interest
rate 7, and strike price ™ on the value of the Lookback option with fixed strike price by considering
the Euler, Milstein, - ad " V discretization schemes.

In the following, v. = avestigate the impact of the parameters of the volatility processes to the
double Heston mr del on v..2 implied volatility surface (See Figure 3).

The parame’ °rs ; ar 1 pp will produce asymmetric volatility smiles that look more like skews
(Tt is obtained a sy. me ric smile with p = 0). This effect is illustrated in Figure 4.

The parz neters vouatility of volatility o1 and o2 and parameters mean reversion ki and kKo
affect the s nile effe t but results show that the effect of them opposes each other. Figure 5
demonstrates .»~ 7 .ty of the parameters o1 and o2 where it can be identified that increasing these
parame’ ers wil' magnify the smile effect. Besides, Figure 6 illustrates that increasing the value of
the par. meters iy and ko will result in lower effect.

The i1 =" volatilities Vi and Vi and their long-run mean volatilities 6; and 62, in addition to
the . mue ™ ct, will impact the level of the smile. This effect is illustrated in Figure 7.
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Table 2: Lookback call option price with fixed strike under the <. ble 1. ston model.

T (years)

0.5

1

1.5

K =90

26.3363

34.2185

40.9113

*2.8501

K =95

21.3909

29.2172

35.9271

42.261°

K =100

16.3910

24.3322

30.9304

K =105

12.1534

20.2324

7355,

26.82. 23.1380

K =110

AP, e

253.--"""-:..

option price

Figure 1: LookF ick ca.’ aption price surface with fixed strike under the double Heston model.

Table 3: wLookk ck put option price with fixed strike under the double Heston model.

8.8112

16.4168

228 18

29 2039

T (years) 0.5 1 1.5 2

K =90 5.6707 9.4989 12.0791 14.1583
K =95 88162 129955 15.8293 17.6736
K =100 13.0097 17.2249 20.0535 21.9678
K =105 178711 21.9838 24.6868 26.5135
K =110 22.8230 26.8653 29.3836 31.0167

11




option price

Figure 2: Lookback put option price su. ~ce with fixed strike under the double Heston model.

Table 4: The value of the Lookt .k ~ll option with fixed strike price under the double Heston
model by different discretizatior schemes

Method 7 =1,12 T=4/12 T=8/12 T =1

Eule.  6.2,97 13.1465 19.2434  24.4866
Mils ein 6 2944 13.0964  19.3189  24.4010
& 6.2333 13.2351 19.3439  24.4894

Table 5: The value . v. ¢ Lookback call option with fixed strike price under the double Heston
model by different ¢ scre ization schemes.

“Metuods r=0.01 r=0.03 r=005 r=0.07
~ Tuler 22.6792 23.9604 25.0815  26.3310
~ Tlilstein 22.5938  23.9330 25.1265  26.3142
TV 22.4587 23.8900 25.6935  26.2591

Table 6: The . ' _¢ of the Lookback call option with fixed strike price under the double Heston
model 1y diffe. ‘nt discretization schemes.

Methods K =90 K =95 K=100 K =105 K =110
Euler 34.3228 29.3635 24.4110  19.9880  16.4348
Milstein  34.1877 29.4644 24.3092  20.0471  16.3936
vV 34.1535 29.2037  24.4062  20.0142  16.3394

12



Implied volatility

Imnplied volatility

Implied vol surface from double Heston model

Time to maturity Strike

Figure 3: Implied volatility . "rface from double Heston model.

Implied | surface from double Heston model

0.85 —..

05—~

Tirme ta maturity

Strike

Figu = 4: Implied volatility surface from double Heston model whit changed correlations.
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0,65~
06~

0.55

[

045~

Implied volatility

]

Implied val surface from double Heston maodel

Time to maturity

Strike

Figure 5: Implied volatility surface from do. “le Heston model whit changed volatility of volatilities.

048

0.48 .-

047 ~4..

0.46 ..

o
.
=

Irnplied v olatility

0.42 ~4.5F

041 4.

04 =do

0.45 ..

0.43 ..~

I ied vol surface fram double Heston model

Time to maturity

Strike

Fig. ve 6: Implied volatility surface from double Heston model whit changed mean reversions.
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Irnplied vol surface from double Heston model

0.61

0B~ e

0.6 .

088~

057~

o]
In
a

Implied v olatility

Time to maturity

Strike

Figure 7: Implied volatility surface from do. “le Heston model whit changed long-run volatilities.

5 Conclusion

The main goal of this paper is t, ex mine the existence and uniqueness of solutions of the double
Heston model. Generally, Lipsc itz and inear growth are conditions which guarantee the existence
and uniqueness of the soluti n. Ho. » er, our under consideration model is defined based on two
stochastic volatility proces c. ~vhich follow the CIR processes. Thus, it is replaced the Lipschitz
condition by the local Lipschitz co. lition. Besides, we numerically study the value of the Lookback
options under the doub’: H. ston model by applying the Monte Carlo algorithm. We use different
discretization schemes, i.e Euler, Milstein, and transform volatility schemes, to evaluate the
Lookback option pri:e und-r this model and verify the effect of the some parameters on the
results. Finally, sir ce, 7 .nong the stochastic volatility models, the double Heston model is one of
the simple yet powe. © ( mc del to present the smile volatility, we study the behaviour of the smile
volatility geners' . by 1..s model under the related parameters. But one of the limitations of this
study is that, ¢ s there . - not an analytic pricing formula for the Lookback options under the double
Heston model, . = pres nt our results based on a numerical experiments, of course, providing such
a formula i une ot the our noticeable end in the future.
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