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a b s t r a c t

The goal of this work is to present a fast and viable approach for the numerical
solution of the high-contrast state problems arising in topology optimization. The
optimization process is iterative, and the gradients are obtained by an adjoint analysis,
which requires the numerical solution of large high-contrast linear elastic problems
with features spanning several length scales. The size of the discretized problems
forces the utilization of iterative linear solvers with solution time dependent on the
quality of the preconditioner. The lack of clear separation between the scales, as
well as the high-contrast, imposes severe challenges on the standard preconditioning
techniques. Thus, here we propose new methods for the high-contrast elasticity equation
with performance independent of the high-contrast and the multi-scale structure of
the elasticity problem. The solvers are based on two-levels domain decomposition
techniques with a carefully constructed coarse level to deal with the high-contrast
and multi-scale nature of the problem. The construction utilizes spectral equivalence
between scalar diffusion and each displacement block of the elasticity problems and,
in contrast to previous solutions proposed in the literature, is able to select the
appropriate dimension of the coarse space automatically. The new methods inherit
the advantages of domain decomposition techniques, such as easy parallelization and
scalability. The presented numerical experiments demonstrate the excellent performance
of the proposed methods.

Published by Elsevier B.V.

1. Introduction

Topology optimization [1] is an iterative design process aiming to find close to optimal material distribution by
inimizing an objective function and fulfilling a set of constraints. More precisely, the discrete optimization problem,
onsidered here, can be written as

minimizeρ : g0 (ρ,u) = fTu (1)

s.t. : r (ρ,u) = 0, u ∈ Uad (2)

g1 (ρ) = vT
eρ − V ∗

≤ 0 (3)

ρ ∈ Dad (4)
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where g0 (ρ,u) is the objective function equal to the compliance of the mechanical system, r (ρ,u) = 0 represents the
associated physical problem or the state equations written in residual form, and g0 (ρ,u) ≤ 0 is an additional constraint
on the volume of the solid material distributed in the design domain. The vectors u and ρ represent the state solution and
the material distribution respectively. As the focus here is on linear elastic problems discretized using the finite element
method, the state equations r (ρ,u) = 0 can be written as

K (ρ)u = f (5)

where f is the vector with the external forces applied on the system and K (ρ) is the so-called stiffness matrix obtained
using standard finite element assembly. The computational domain is discretized using finite elements and a density
value, bounded between zero and one, is assigned to each of them. Void elements are modeled by assigning the density
to zero, and parts occupied with solid material are modeled with density values equal to one. All density variables, or
also called design variables, are collected in the density vector ρ. The density values are allowed to vary continuously
between zero and one in order to utilize gradient optimization techniques for finding a material distribution fulfilling the
constraints and minimizing the objective. The vector ve collects all areas/volumes of the discrete finite elements.

The actual physical material distribution ρp is calculated by a set of transformations applied on the original density field
ρ, e.g., [2]. The first transformation is usually obtained by convoluting the density distribution with a filter function [1]
resulting in the so-called filtered density field ρf and providing a mesh independent solution of the optimization problem.
The filtered density can be utilized directly for modeling the stiffness by using the SIMP [3] (Solid Isotropic Material with
Penalization) material interpolation scheme where the modulus of elasticity for every element is computed as

Ee = Emin + ρp
e (Emax − Emin) (6)

where Emax is the modulus of elasticity of the solid material and Emin ≪ Emax is a small regularization parameter
ensuring the existence of a solution to the associated linear elastic problem, and p is a penalization parameter often
taken to be equal to p = 3. Alternatively, as the filtered field consists of many elements with densities between zero
and one, additional projection step [2] can provide a sharper transition between void and solid. Here, the physical
density is modeled directly by the filtered field, however, the presented preconditioning techniques can be applied
to formulations with projections, penalization techniques different than SIMP [1], to the so-called robust formulation
in topology optimization [4], and other problems with high-contrast and multi-scale coefficients like level-set type of
topology optimization formulations, simple parametric studies, and simulations [5].

As stated earlier, the solution of the topology optimization problem is obtained iteratively. The optimization process
starts with some admissible initial design ρ ∈ Dad. The state solution u is computed by solving (5) and the gradients of
the objective are evaluated by solving an adjoint equation [1] in the general case. For the minimum compliance problem,
the gradients of the objective are given as

∂g0
∂ρe

= −uT ∂K
∂ρe

u (7)

where e refers to the element index. The densities are usually updated using the Method of Moving Asymptotes (MMA) [6]
or the optimality criteria method (OC) [1]. For a more detailed introduction to topology optimization, the interested
readers are referred to [1] and [7].

1.1. Physical problem and its discretization

The systems considered here (represented above as r (ρ,u) = 0 and simplified to (5)) are linear elastic and their
response is obtained by solving the Navier–Cauchy partial differential equation

−divσ (u (x)) = f (x) x ∈ Ω

σ (u (x)) = C (x) : ε (u (x)) (8)

where σ (x) is the stress tensor, ε (x) is the strain tensor given by

ε =
1
2

(
∇u + ∇

Tu
)

(9)

and C (x) is an elastic material properties tensor, u ∈ Rd denotes the displacement field and f ∈ Rd is the input supplied
to the system, i.e., distributed and concentrated forces. The mechanical system occupies the bounded physical domain
Ω ⊂ Rd. The boundary Γ = ΓDi ∪ ΓNi , i = 1, . . . , d, is decomposed into two disjoint subsets for each component
i = 1, . . . , d, ΓDi with prescribed displacements ui = 0, and ΓNi with prescribed traction ti.

The elastic material properties tensor C (x) is isotropic, and for a point x in the computational domain is computed as

C (x) = E (x) C0. (10)

In the above equation, C0 is a constant tensor obtained for predefined Poisson ratio ν and modulus of elasticity one.
For a point located in an element Ke the elastic modulus is obtained using (6). We refer to [8,9] for design for domain
decomposition preconditioners for the elasticity equation in the general case.
2
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Fig. 1. Design domain and topology optimization of a 2D plane stress problem with homogeneous Dirichlet boundary conditions and distributed
force over the domain.

The variational formulation [10] of (8) reads

Find u ∈ V0 s.t. a (u, v) = l (v) for all v ∈ V0 (11)

ith bilinear form a and linear form l

a (u, v) =

∫
Ω

(C : ε (u)) : ε (v) dx

l (v) =

∫
ω

(f · v) dx +

∫
ΓN

(t · v) ds (12)

here V0 =

{
v ∈

[
H1 (Ω)

]d
: vi = 0 onΓDi , i = 1, . . . , d

}
⊂ V =

[
H1 (Ω)

]d. The weak formulation is discretized using
inite element space Vh ⊂ V0 with vector valued shape function defined on a uniform mesh T h. Each basis function is a
calar bilinear Lagrange function in one of the components and zero in the other. Substituting the shape functions in the
ntegrals given by (12) for all finite elements in the mesh T h leads to the linear system of equations previously introduced
s (5).

.2. Iterative solvers in topology optimization

Topology optimization is a computationally heavy process. The resolution of the obtained designs depends both on the
ransformation of the design field and the discretization of the design domain. Fine discretization is capable of representing
mall design features which leads to better utilization of the design freedom and at the same time to a larger system on
inear equations. The total computational time is usually proportional to the number of design iterations. Every update of
he design requires a negligible amount of time compared to the time necessary for solving the state problem [11]. The
olution of the linear system (5) dominates the computational cost and requires careful selection of a solution algorithm
nd scalable implementation for large 3D problems [12].
Factorization techniques are serial by nature and hard to parallelize. On the other hand, iterative linear solvers [13]

re relatively easy to parallelize and provide a scalable alternative to direct factorization techniques. The convergence
ate depends on the condition number of the stiffness matrix and the clustering of the eigenvalues. The introduction of
eak background material, with a modulus of elasticity orders of magnitude softer than the distributed solid, leads to an

ll-conditioned system of linear equations. More precisely the condition number is of order ηh−2 where h is a characteristic
easure of the mesh size, and η measures the contrast in the coefficients η = Emax/Emin ≫ 1. Furthermore, the optimal
esign often consists of multiscale segments, see Fig. 1, which together with the bad condition number makes the solution
f the linear system extremely challenging [14–16].
Preconditioning techniques alleviate the slow convergence speed. Therefore, the art of solving large sparse linear

ystems in parallel lies in the construction of computationally cheap, parallelizable and effective preconditioners. A
reconditioned system M−1Ku = M−1f is obtained from (5) by premultiplication with a preconditioner M. The most
ffective preconditioner M−1 is the exact inverse of the stiffness matrix K. However, direct construction requires
atrix factorization which as already discussed is not scalable and is extremely expensive for large problems. Thus, a
reconditioner in the form of a multigrid procedure [17] or a domain decomposition [18] provides the most efficient
olution procedure.
3
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1.3. High-contrast coefficients in topology optimization

The focus here is on domain decomposition preconditioners, in particular, on two-levels domain decomposition
echniques. The classical variants of these preconditioners [18] do not perform well for high-contrast problems [16].
he condition number estimates for the traditional domain decomposition case depends on the contrast η if the high-
onductivity regions are not aligned with the coarse mesh of the decomposition. We refer to [8,9,16,19] where it is
emonstrated that if the material properties with local variations are enclosed in a coarse block the performance of the
tandard preconditioner is not affected by the contrast. However, for cases with several extended high-conductivity areas
high stiffness regions for linear elasticity) crossing the coarse block boundaries, the performance deteriorates significantly.
hat is precisely the case for topology optimized linear elastic structures. These design features can be observed in Fig. 1
s well as in previous articles on the topic [20–22].
We apply the Generalized Multiscale Finite Element methods (GMsFEM) framework introduced in [15,19,23] to

onstruct robust and fast solution algorithms adapted to linear elasticity. Similar to the constructions of diffusion type
ultilevel domain decomposition preconditioners, the proposed design depends on the behavior of the coefficient inside

ocal coarse node neighborhoods. We demonstrate that the preconditioned solvers perform, in terms of iterations and
ondition number estimates, independently of the contrast in the media properties.
The most important part of the construction of a multilevel domain decomposition preconditioner is well known to

e the coarse level. The coarse level of the preconditioner has to provide a good local approximation of the kernel of the
lasticity operator [24]. Also, it should contain all eigenmodes with corresponding eigenvalues dependent on the contrast
f the coefficient. Thus, an adequately chosen eigenvalue problem is constructed and solved locally to ensure the desired
ehavior.
Two major approaches can be identified in the current literature. For coarse spaces with standard dimension (for scalar

roblems that is, one basis function per coarse node and diffusion coefficient κ) it is imperative to have coarse basis
unctions φ such that κ|ϵ(φ)|2 is bounded independently of the contrast. For high-conductivity regions (high stiffness
egions for linear elasticity) restricted within the coarse element, i.e., there are not any long channels crossing the edges
f the coarse element, the above requirement is fulfilled by classical multiscale finite element basis functions obtained by
nergy minimization [8]. For high-contrast coefficients with extended channels, even for isotropic problems, the above
ondition cannot be fulfilled. Therefore, to achieve robust behavior, an enrichment procedure is implemented by adding
asis functions that approximate the contrast dependent eigenmodes of the operator locally.
Apart from the fact that the material coefficients in topology optimization show multiscale variations combined

ith high-contrast, an additional complication comes from the fact that throughout the optimization iteration the
ensity field and correspondingly E(x) are changing as the optimization converges to the optimized design. A topology
epresented by a particular density distribution evolves with the iterations leading to iteration dependent multiscale
tructure. High-contrast channels may break apart or joint together during the optimization iterations within a globally
onnected subdomainΩmat restricted to a coarse neighborhood. Dealing with such an additional complication requires re-
omputation of the preconditioner as the optimization iteration advances towards the final solution. Similar to [20,22], we
ay extra attention to the building cost of the preconditioner, especially to the construction of the coarse level. Therefore,
wo new alternatives are proposed to reduce the cost of recomputing the basis functions for the coarse space:

• Computation of eigenvalue problems using a randomized algorithm. The randomized approximation of the local
eigenvalue problems for GMsFEM is proposed in [19,25] and realizes a significant reduction of the cost of computing
the coarse basis functions that generate the coarse space. A detailed introduction can be found in the overview
article [26].

• The utilization of a preconditioner constructed for the heat equation in a similar high-contrast multiscale media
to precondition the elasticity equation. Here, we follow the ideas presented in [27,28] for homogeneous media.
More precisely, we utilize the coarse spaces generated for the heat equation with a diffusion coefficient defined
using the solid material region Ωmat . The local eigenvalue problem is related to the diffusion operator and not to
the elasticity equation operator. Therefore, the local eigenvalue problem, for the same resolution, is twice smaller
in two-dimensions and three times smaller in three dimensions reducing the computational cost significantly. The
combination with randomized algorithm results in a solver for the topology optimization an order of magnitude
faster than the one presented earlier in [22].

emark 1. An unexpected advantage of using the heat equation to precondition the elasticity equation in the context of
MsFEM framework is that in the case of the heat operator it is easier to define threshold strategies for the decay of the
ocal eigenvalues, and therefore adaptivity to coefficients is easier to obtain.

.4. Topology optimization example

To demonstrate the performance of the preconditioner we consider a square 2D plane stress example with homoge-
eous Dirichlet boundary condition and distributed force over the domain, as shown in Fig. 1. The setup even though
ifficult to find in the engineering practice is an excellent example to test preconditioners as the optimization results
4
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Fig. 2. Decomposition of the computational domain into non-overlapping coarse blocks (subdomains) Di .

n a highly sophisticated multiscale design. The design domain is partitioned on 400 × 400 square mesh elements with
0 × 20 coarse elements. The maximum number of eigenvectors per coarse neighborhood is taken to be 6. The topology
ptimization algorithm was set to stop at 300 iterations.
As the focus here is on the effective preconditioning techniques, we limit the topology optimization problems to the

ne presented in Fig. 1. The presented topology is obtained using the standard and the preconditioned solvers presented
ere. Depending on the preconditioner update strategy, the number of the iterations reduced an order of magnitude. The
astest total solution time is obtained by employing the strategy presented in [22], i.e., either updating the preconditioner
fter a fixed number of optimization iterations or updating it after the number of the iterations of the local iterative solver
xceeds a predefined threshold. More extensive 3D topology optimization studies will be presented in the following
rticles, and here we will focus on demonstrating the numerical properties of the developed preconditioners and the
ssociated computational complexity.
The proposed replacement of a standard elasticity with a diffusion solver for the local eigenvalue problem results in

time reduction factor of 33. The above result emphasizes the contribution of the local solves to the total solution time
nd is in line with the theoretical predictions. The diffusion problem is three times smaller compared to the elasticity,
nd the cost of the local eigenvalue solves is proportional to n3, where n is the number of local degrees of freedom.
he randomized solver reduces further the computational cost resulting in an additional factor of two to three. It should
e pointed out that the problems considered here are 2D, and the randomized modification is expected to have a more
ignificant effect on the preconditioner time in larger 3D problems.

. GMsFEM two-levels domain decomposition for the elasticity equation

The focus in this section is on the utilization of GMsFEM coarse spaces in the construction of two-levels domain
ecomposition preconditioners. In particular, we show that the proposed preconditioners yield a contrast-independent
ondition number, and thus they are optimal in terms of physical parameters. Additional theoretical details can be found
n [14,29] and further extensions of the results to multilevel methods are presented in [30].

The computational domain, shown in Fig. 2, is partitioned into finite elements which are agglomerated into larger
on-overlapping blocks Di. Based on the above decompositions an overlapping decomposition, shown in Fig. 3, denoted
s {D′

i}
N
i=1 is obtained from an original non-overlapping decomposition {Di}

N
i=1 by enlarging each subdomain Di to

D′

i = Di ∪ {x ∈ D, dist(x,Di) < δi}, i = 1, . . . ,N, (13)

here dist (·) is some distance function. The overlapping subdomains {D′

i} and the coarse triangulation T H are not related
n general settings. Two partitions of unity covering the whole computational domain, one for {D′

i} and one for T H , can
e chosen independently of each other. However, in the numerical experiments presented later in the paper, we assume
hat the overlapping subdomains {D′

i} coincide with the coarse vertex neighborhoods {ωi} of T H , and in this case δ ≍ H ,
here δ = max1≤i≤N δi is the overlapping parameter.
Based on the above decomposition, the preconditioned operator is M−1

EE K, and the preconditioner matrix is defined as

M−1
= M−1

+ M−1 , (14)
EE E,1 E,2

5
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Fig. 3. Definition of overlapping domain decomposition and a neighborhood ωj of a coarse node yj .

he part corresponding to the first level is

M−1
E,1r =

N∑
i=1

R⊤

i K
−1
i Rir, (15)

here Ki = RiKRT
i , 1 ≤ i ≤ N , and the part corresponding to the second (or coarse) level is

M−1
E,2r = R⊤

0 K
−1
0 R0r

here K0 = R0KRT
0 . The matrix RT

0 : V0 → V consists of vectors defining the so-called coarse space V0 which is obtained
y interpolating the coarse functions onto the fine mesh. The matrices RT

i : Vi → V are rectangular and consist of zeros
nd ones and utilized to extract the degrees of freedom that lie inside the subdomains D′

i .
The fine-scale linear system (5) is solved iteratively with the preconditioned conjugate gradient (PCG) method. The

pplication of the preconditioner involves solving a coarse-scale system M−1
E,2r and solving a set of local problems M−1

E,1r in
ach iteration. The main goal is to reduce the number of iterations in the solution process. Without the coarse space R0,
he preconditioner usually acts as a smoother and the convergence depends on the number of the coarse blocks. Thus, the
ppropriate construction of the coarse space V0 plays a crucial role in obtaining robust iterative domain decomposition
ethods and ensures iteration number independent on the contrast and the characteristic mesh size. See [16,18,19]

.1. Generalized multiscale coarse finite element spaces for the elasticity equation

The construction of the coarse space V0 ⊂ V for linear elasticity follows the strategy outlined in [29,31] for the diffusion
equation. The process starts with the selection of an initial set of basis functions χi that form a partition of unity and are
ssociated with the coarse domains ωi. Additional sets of coarse basis functions ψi,l are defined with respect to the fine
esh Th. These are computed by solving a local eigenvalue problem

− divσ
(
ψi,l (x)

)
= λlE (x)ψi,l (x) , x ∈ ωl (16)

ith homogeneous Neumann boundary condition on ∂ωl and Dirichlet boundary condition on ∂ωl ∩ ∂D if ∂ωl ∩ ∂D is not
mpty. In matrix form we have

Kl
Eφ = λMlφ (17)

ith eigenvalues and the eigenvectors denoted as
{
λ
ωl
i

}
and

{
φ
ωl
i

}
respectively. The eigenvalues are ordered as

λ
ωl
1 ≤ λ

ωl
1 ≤ λ

ωl
1 ≤ · · · ≤ λ

ωl
j ≤ . . . (18)

he multiscale coarse basis functions are constructed by multiplying selected eigenfunctions
{
ψ
ωl
j

}
with the partition of

nity function χl associated with subdomain ωl. The coarse GMsFEM space for the entire problem is defined by

V0,E = span
{
Ψi,l = χlψ

ωl
i,l , i = 1, . . . ,N, l = 1, . . . , L

}
(19)

here N and L denote the number of eigenvectors and the number of coarse blocks ωl respectively.
For the diffusion case, the contrast dependent eigenvalues are well separated, i.e., a clear jump can be observed between
he contrast dependent and the rest of the eigenmodes computed on a given patch ωl. Thus, selecting the low order

6
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Fig. 4. Two disconnected high-stiffness regions and their contrast dependent modes. Three for each region corresponding to the RBMs. The next
mode is contrast independent as observed in our numerical tests. Note that, restricted to high-contrast regions, these contrast dependent modes
correspond to linearly independent rigid body motions.

contrast dependent modes results in a preconditioner which provides a condition number for the preconditioned operator
independent of the contrast. However, for the linear elastic case, such behavior for the low order modes is difficult to be
observed. The optimal number of low order modes is related to the disconnected high-stiffness regions and the RBM
(rigid body motion) of the region [16]. We illustrate this fact in Fig. 4 where we picture a coarse node neighborhood with
two disconnected high-stiffness regions and its contrast dependent modes. There are three modes for each high-stiffness
region, and these correspond to the rigid body modes. The next mode, the one corresponding to the eigenvalue number
seven in increasing order, is contrast independent as observed in our numerical tests. Note that, restricted to high-contrast
regions, the first 6 modes correspond to three linearly independent rigid body modes per inclusion. The space RBM of
rigid body modes on a set Ω ⊂ Rd is defined for d = 2, by

RBM(Ω) =

{
v ∈ [L2(Ω)]2 : v = a + b

(
−x2
x1

)
, a ∈ R2, b ∈ R, x ∈ Ω

}
.

Remark 2. In most of our numerical experiments using the eigenvalue problems in (17) we did not find any automatic
way to implement a threshold to select the adequate number of modes in each coarse neighborhood. The numerical
experiments were performed by specifying the number of basis functions based on the number of disconnected high-
stiffness regions present in the specific coarse node neighborhood. Later we will introduce the use of GMsFEM basis
functions constructed for the heat equations where an automatic threshold can be implemented to select the adequate
number of basis functions in each coarse neighborhood (see Fig. 5).

For the elasticity problem the GMsFEM approximate the solution on the coarse grid as,

u0 =

N∑
i,ℓ

ci,ℓΦi,ℓ

where ci are the unknown constants. The coarse matrix is constructed,

K0 = R0KR⊤

0 ,

where

R⊤
= [Φ Φ · · · Φ ].
0 1 2 Nc

7
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Fig. 5. Basis function construction for an element of the domain. To illustrate the process only one displacement component, along the x-direction,
f the eigenvector is shown in the coarse region. The values for the other components are obtained following the same procedure.

nd the multiscale finite element solution is the finite element projection of the fine-scale solution on V0,E , that is, R0u0
where

K0u0 = f0,

and f0 = R⊤

0 f.

3. A randomized algorithm for eigenvalues computation

Inspired by [26], randomized algorithms have been introduced in GMsFEM in [25,31]. See also [32]. The basic idea is
to utilize random sampling to generate low-rank approximations to the set of matrices utilized for finding the coarse
shape functions (17). The main difference between deterministic factorization techniques is the convergence criteria.
For randomized algorithms, the converge is probabilistic. However, as stated in [26], the probability of failure is often
negligible of order 10−15. Therefore, for practical applications involving singular values or eigenvalues decompositions, a
randomized algorithm offer a computationally cheap alternative to direct factorization methods.

The algorithm for finding approximations of the eigenvalues and the eigenvectors starts with dimension reduction. For
each subdomain ωi, i = 1, . . . ,Ns the following sequence of steps is executed in parallel

• Generate forcing terms f1, f2, . . . , fM using (for instance) an uniform random distribution and
∫
ωi
f (x) dx = 0.

• Compute local solutions Ki
Eul = fl, l = 1, . . . ,M

• Generate Wi = {span {ul} ∪ RBM (ωi)}

• Solve a reduced eigenvalue problem K̃i
E φ̃ = λ̃M̃i

E φ̃

The reduced size matrices are generated as:

K̃i
E = UT

i K
i
EUi (20)

M̃i
E = UT

i M
i
EUi (21)

here every column of Ui is a vector from Wi. The approximations of the eigenvalues and the eigenvectors are computed
s

λωi = λ̃ωi (22)
8
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φωi = Uiφ̃
ωi . (23)

sually, the matrix Ui holds several vectors obtained by singular value decomposition (SVD) of the snapshot matrix
u1,u2, . . . ,uM ] enriched with the three rigid body modes in 2D and six in 3D. The actual number of vectors depends on
he desired number of shape functions. As discussed in [26], see also [25], for a target number of shape functions k, the
ank of Ui can be selected to be as low as k+5. The computational time of a standard generalized eigenvalue algorithm is
roportional to n3, where n is the size of the problem. Thus, the reduced problem offers significant speed up. However, the
ost associated with the solution of the linear system cannot be reduced further. A possible speed up based on splitting
f the displacement field is discussed in the following section.

. Displacement field splitting preconditioner

The basic idea behind the proposed preconditioner for linear elastic isotropic problems is presented in [27,28,33,34].
he displacement vector is split in two blocks (three blocks in 3D) using the displacement components aligned with x,
nd y-directions, i.e., u =

[
ux,uy

]T. Following the above decomposition, the stiffness matrix and the load vector f, from
5), can be written in a block form as[

Kxx Kxy
KT

xy Kyy

][
ux
uy

]
=

[
fx
fy

]
. (24)

he displacement split preconditioner matrix is constructed by keeping only the diagonal block matrices.

CEL =

[
Kxx 0
0 Kyy

]
. (25)

s demonstrated in [27,28], the condition number of the preconditioned operator depends only on the Poisson’s ratio and
s given as

κ
(
C−1
EL K

)
=

2
1 − ν̃

(26)

here ν̃ =
ν

1−ν . Furthermore, the condition number does not depend on the contrast of the materials distributed in the
omputational domain. The latter makes the block diagonal preconditioner perfect for topology optimization problems.
lose inspection of the diagonal block matrices reveals that they are equal for isotropic elastic problems Kxx = Kyy, and are
quivalent to a stiffness matrix obtained by the discretization of a scalar Laplace problem. The last property is utilized in
he proposed preconditioners to reduce further the computational cost. Instead of constructing the coarse bases by solving
he linear elastic eigenvalue problem given by (17), the idea here is to solve a reduced eigenvalue problem associated with
he Laplace problem.

The MsFEM preconditioner and the procedure for finding the coarse bases can be applied directly to the diagonal blocks,
an be combined with randomized algorithms, or can be utilized to form a coarse space and subsequently project the full
lastic matrix. The above options lead to different preconditioners discussed in detail in the following and numerically
ested in Section 5.

.1. Local problems and coarse basis from a diffusion operator

The first preconditioner derived from the field splitting preconditioner consists of a fine level block-diagonal precondi-
ioner constructed for the diffusion equation and a coarse-level part obtained from a coarse set of basis functions obtained
gain using an eigenvalue problem for the diffusion case. The preconditioner can be written as

M−1
HH =

[
M−1

H 0
0 M−1

H

]
+

[
RH
RH

]
K−1

E,0

[
RH
RH

]T

(27)

here

KE,0 =

[
RH
RH

]
KE

[
RH
RH

]T

(28)

nd KE is the stiffness matrix obtained by a finite element discretization of the Navier–Stokes equations for linear elasticity.
he index H denotes quantities obtained from the diffusion case and index E quantities obtained from the elasticity
quations. For instance, the image of the operator (or column space of the matrix) RT

H is the coarse space V0,H constructed
sing the GMsFEM procedure but starting with the diffusion operator −div(E(x)∇(·)). In this case the construction of
he coarse basis function is done component-wise (x- and y-direction displacements) and each of those uses the local
igenvalue problem

− div(κ(x)
(
ψ x

)
) = λ κ(x) x ψ x ∈ ω (29)
i,l ( ) l ( ) i,l l

9
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where κ = (TE) or some other quantity that captures the high-contrast and multiscale structure of E. This eigenvalue
problem is posed with homogeneous Neumann boundary condition on ∂ωl and Dirichlet boundary condition on ∂ωl ∩ ∂D
if ∂ωl ∩ ∂D is not empty. In this case we have

V0,H = span
{
χl[ψ

ωl
i,l , 0], χl[0, ψ

ωl
i,l ], i = 1, . . . ,N, l = 1, . . . , L

}
. (30)

ee Section 2.1 for comparison with the construction of V0,E that uses local elasticity eigenproblems. The cost of construct-
ng V0,H is less than that of constructing V0,E in (19) since we solve smaller local eigenvalue problems. Additionally, we
lso observed numerically that the selection of contrast-dependent modes can be performed automatically in the case of
he local heat operator eigenvalue problem which is harder to do in the case of the local elasticity operator eigenproblem.
or the numerical test, we consider the approximation of the eigenvalue problem (29) using a randomized method similar
o the one described in Section 3.

The first level of the preconditioner (27) contains the operator M−1
H that, in a similar manner to that of the construction

f the coarse basis, it denotes the additive first level of the preconditioner constructed for the diffusion operator
div(E(x)∇(·)). Applying M−1

H requires the solution of Dirichlet local diffusion equations and then add their extensions
y zero outside the corresponding subdomain.

.2. Local problems and coarse basis from a diffusion operator with rigid body motions enrichment

The previous preconditioner includes the null space for the Laplace operator, which is capable of representing only
he rigid body translations. The null space of the elasticity operator is larger. The coarse space must be able to represent
ll rigid body modes to ensure convergence independent on the problem size [35]. Thus, the coarse space is enriched
ith additional vector in 2D for the rigid body rotations. The construction of the vector elements is based on the vector
=

[
rx, ry

]T which is the interpolation on the fine-grid of the vector function representing the rotation. Thus, to the basis
unctions previously constructed we add the vector

[
χirx, χiry

]
obtained for each coarse neighborhood. For 3D problems,

he coarse basis should include three additional rigid body rotational modes. The modified preconditioner, in this case, is
iven as

M−1
HH+Rot =

[
M−1

H 0
0 M−1

H

]
+

[
RH+Rot
RH+Rot

]
K−1

E,0

[
RH+Rot
RH+Rot

]T

(31)

where RH+Rot is the enriched coarse space and

KE,0 =

[
RH+Rot
RH+Rot

]
KE

[
RH+Rot
RH+Rot

]T

. (32)

4.3. Elasticity operator local problems and coarse basis from a diffusion operator

The diagonal blocks associated with every coarse partition are relatively small. Even though they are three times larger
compared to the diagonal blocks obtained for the Laplace problem, the computational time does not increase significantly.
Thus the diagonal blocks of the first part of the preconditioner can be obtained directly from the elastic operator. The
second part can be constructed similar to the previous two cases using a coarse space from the diffusion operator and
enriched coarse space with rotations. That is we have,

M−1
EH = M−1

E,1 +

[
RH
RH

]
K−1

E,0

[
RH
RH

]T

(33)

and

M−1
EH+Rot = M−1

E,1 +

[
RH+Rot
RH+Rot

]
K−1

E,0

[
RH+Rot
RH+Rot

]T

(34)

here we use the definitions in (28) and (32), respectively. The first level of the preconditioner, M−1
E,1, is defined in (15).

hese two cases complete the definitions of the preconditioners utilized in the numerical experiments. See Table 1 for a
ummary of all the implemented iterations.

. Numerical experiments and results

In addition to the topology optimized case discussed earlier, in order to demonstrate the contrast independence of
he above preconditioners, we utilize high-contrast material distribution as shown in Fig. 6. The computational domain is
artitioned applying 10 × 10 coarse mesh and each coarse-element is further partitioned utilizing 10 × 10 fine-mesh. The
ine discretization is performed with bilinear polynomials. Zero Dirichlet boundary conditions are applied to all boundaries
f the computational domain. The tests are performed with forcing terms shown in Fig. 7. Both forces are applied to the
olid-material subdomain which is the expected case for topology optimization problems. For the solution of the linear
10
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Fig. 6. Material distribution and coarse mesh for the numerical experiments.

Fig. 7. Forcing term for the numerical experiments.

Table 1
Information about the elasticity preconditioners used for numerical tests. All the methods solve an
elasticity coarse problem, the differences can be found in the local solvers (Column 3) and in the
construction of the coarse space where the changes correspond to the neighborhood eigenvalue problem
used and its numerical approximation (Column 4). Some methods need enrichment of the coarse space
(Column 5).
Notation Definition Level 1 Eigenproblem Enrichment

MEE Eq. (14) Elasticity Full elasticity (16) None

MHH Eq. (27) Heat (blocks) Full heat (29) None
MHH+Rot Eq. (31) Heat (blocks) Full heat (29) Rotations

MEH Eq. (33) Elasticity Full heat (29) None
MEH+Rot Eq. (34) Elasticity Full heat (29) Rotations

MEH+Rot;Rand Similar to Eq. (34) Elasticity Randomized heat (29) Rotations
MEE;Rand Similar to Eq. (14) Elasticity Randomized elasticity (16) None

system, we run PCG until the relative norm of the initial residual is reduced by a factor of 10−6. We use the Lanczos
connection method to estimate the condition number of the preconditioned operator; see [13, Chapter 6].

In Table 1 we present the results with the implemented preconditioners for the elasticity equation. After the
construction of the coarse basis functions, the second level of all the implemented methods consists in solving an elasticity
coarse problem. Some of the preconditioners differ in the level-one local solvers: they either use elasticity equation local
solvers or block diagonal heat equation local solvers. We then have several proposed coarse spaces constructions. The
different constructions correspond to the local eigenvalue problem used and its numerical approximation (Column 4). We
pose either a local elasticity eigenvalue problem or a local diffusion eigenvalue problem. For the numerical approximation
of the eigenvalues and eigenvectors we use either a full eigenvalue solver of the fine scale local eigenvalue problem or
the randomized method of Section 3. Some coarse spaces need to be enriched (in order to obtain the RBM) by adding
rotations multiplied by partition of unity functions as additional coarse basis functions (Column 5).
11
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Table 2
Results for the elasticity problem with contrast η = 100 . See Table 1 for the description
of the preconditioners.
Preconditioner Iterations Condition Coarse dim.

None 293 3.2 × 103 –

MEE 14 4.6 243
MEE using twice as many eigenvectors 15 5.0 486

MHH 29 21.0 243
MHH+Rot 29 21.0 243

MEH 15 5.2 243
MEH+Rot 14 4.6 243

MEH+Rot;Rand with 10 snapshots 24 13.8 243
MEH+Rot;Rand with 15 snapshots 25 15.6 243
MEE;Rand with 10 snapshots 20 9.4 243
MEE;Rand with 15 snapshots 20 9.4 243

Table 3
Results for the elasticity problem with contrast η = 102 . See Table 1 for the description
of the preconditioners.
Preconditioner Iterations Condition Coarse dim.

None 1583 1.2 × 105 –

MEE 26 16.0 387
MEE using twice as many eigenvectors 19 7.7 774

MHH 86 2.4 × 102 387
MHH+Rot 81 42.4 × 102 387

MEH 35 72.0 387
MEH+Rot 28 18.3 387

MEH+Rot;Rand with 10 snapshots 32 26.8 387
MEH+Rot;Rand with 15 snapshots 33 27.0 387
MEE;Rand with 10 snapshots 30 22.9 387
MEE;Rand with 15 snapshots 30 22.8 387

Table 4
Results for the elasticity problem with contrast η = 104 . See Table 1 for the description
of the preconditioners.
Preconditioner Iterations Condition Coarse dim.

None >2000 1.2 × 106 –

MEE 53 113.8 387
MEE using twice as many eigenvectors 28 23.6 774

MHH 200 2.1 × 103 387
MHH+Rot 117 6.3 × 102 387

MEH 69 3.6 × 102 387
MEH+Rot 56 108.9 387

MEH+Rot;Rand with 10 snapshots 62 111.1 387
MEH+Rot;Rand with 15 snapshots 62 111.4 387
MEE;Rand with 10 snapshots 57 121.9 387
MEE;Rand with 15 snapshots 58 122.0 387

In Tables 2–5 we present iteration count and condition number estimates for the different iterations that have been
introduced as they behave with respect to the contrast. We summarized these results in Tables 6 and 7. We observe
that the methods that are robust with respect to the contrast are MEH+Rot , MEE+Rot , MEH+Rot;Rand and MEEt;Rand; see Table 1.
Therefore, they are computationally efficient alternatives to solve the elasticity equation and can be used in topology
optimization problems such as the one considered in this paper. As it was mentioned before, an advantage of MEH+Rot
is that, according to our numerical experiments and for general multiscale configurations, it allows us to identify the
contrast-asymptotically-vanishing eigenvalues and the corresponding eigenvectors.

6. Conclusions

In this paper we design and implement robust (with respect to the high-contrast and the multiscale structure) two-
levels domain decomposition preconditioners for the elasticity equation appearing in topology optimization problems.
Our design fits within the framework of the GMsFEM methodology where approximations of locally posed eigenvalue
12
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Table 5
Results for the elasticity problem with contrast η = 106 . See Table 1 for the description
of the preconditioners.
Preconditioner Iterations Condition Coarse dim.

None >2000 4 × 106 –

MEE 44 140.6 387
MEE using twice as many eigenvectors 26 15.1 774

MHH 141 2.2 × 104 387
MHH+Rot 110 5.4 × 102 387

MEH 58 1.8e2 387
MEH+Rot 58 140.8 387

MEH+Rot;Rand with 10 snapshots 69 276.7 387
MEH+Rot;Rand with 15 snapshots 69 276.5 387
MEE;Rand with 10 snapshots 63 141.0 387
MEE;Rand with 15 snapshots 63 141.1 387

Table 6
PCG iterations for different contrast values. See Table 1 for the description of the
preconditioners.
Preconditioner Contrast

1 1 × 10−2 1 × 10−4 1 × 10−6

None 292 1583 >2000 >2000
MEE 14 26 53 44
MEH+Rot 14 28 56 58
MEH+Rot;Rand 25 33 62 69
MEE;Rand 20 30 58 63

Table 7
Spectral condition number of M−1A for different contrast values. See Table 1 for the
description of the preconditioners.
Preconditioner Contrast

1 1 × 10−2 1 × 10−4 1 × 10−6

None 3.2e3 1.2×106 1.2×106 4×106

MEE 4.6 16 113.8 140.6
MEH+rot 4.6 18.3 140.8 140.8
MEH+rot;Rand 15.6 27 111.4 276.5
MEE;Rand 9.4 22.8 122 141.1

problems are used to construct the coarse space. We present several low cost constructions with similar number of
iterations. The computational cost related to the construction of the preconditioners is reduced an order of magnitude.
The presented numerical experiments demonstrate the quality and robustness of our iterations.
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