
Journal of Computational and Applied Mathematics 38 (1991) 231-253

North-Holland

231

Experiments with an ordinary differential
equation solver in the parallel solution
of method of lines problems on a shared-
memory parallel computer *

D.K. Kahaner

National Institute of Standards and Technology, Gaithersburg, MD 20899, United States

E. Ng

Oak Ridge National Laboratory, Oak Ridge, TN, United States

W.E. Schiesser

Lehigh University, Bethlehem, PA, United States

S. Thompson
Radford Uniuersity, Radford, VA, United States

Received 3 September 1990
Revised 1 June 1991

Abstract

Kahaner, D.K., E. Ng, W.E. Schiesser and S. Thompson, Experiments with an ordinary differential equation
solver in the parallel solution of method of lines problems on a shared-memory parallel computer, Journal of
Computational and Applied Mathematics 38 (1991) 231-253.

We consider method of lines solutions of partial differential equations on shared-memory parallel computers.
Solutions using the ordinary differential equation solver SDRIV3 (which is similar to the well-known LSODE
solver) are considered. It is shown that portions of the solver may be implemented in parallel. In particular,
formation of the Jacobian matrix and the linear algebra required to solve the corrector equations are natural
candidates for parallel implementation since these portions dominate the cost ,of solving large systems of
equations. A variant of Gaussian elimination is described which allows efficient parallel solution of systems of

* The research on which this paper is based was performed in Oak Ridge, Tennessee at the Mathematical Sciences
Section of the Oak Ridge National Laboratory, and supported by the Applied Mathematical Sciences subprogram
of the Office of Energy Research, US Department of Energy, under contract DE-AC05-840R21400 with
Martin-Marietta Energy Systems, Inc.

0377.0427/91/$03.50 0 1991 - Elsevier Science Publishers B.V. All rights reserved

232 D.K. Kahaner et al. / Method of lines on a parallel computer

linear equations. An implementation of SDRIV3 which performs the Jacobian related calculations in parallel
and which uses this variant of Gaussian elimination is described. The modified solver is used to solve a model
hyperbolic fluid flow problem. Timing results, obtained using a Sequent Balance parallel computer, are given
which demonstrate that substantial speedups are possible. Extensions of the techniques to sparse problems are
discussed and illustrated for a problem involving a humidification column which contacts air and water.

Keywords: Ordinary differential equations, ODE, numerical analysis, method of lines, MOL, mathematical
software.

1. Introduction

This paper is a sequel to [14] which considered the solution of method of lines (MOL)
problems on shared-memory parallel computers. A brief description of the method of lines is
provided in the Appendix. The basic idea is to implement portions of a standard ordinary
differential equation (ODE) solver in a parallel manner which takes advantage of the architec-
ture of such a computer. Most operations performed by ODE solvers are inherently sequential
in nature and do not lend themselves to parallel solution. There are important exceptions
however. The two operations which dominate the cost of using such a solver are the approxima-
tion of the Jacobian matrix, and the linear algebra necessary to solve the corrector equations.
This observation has generated considerable interest in the development of techniques which
exploit problem structure to reduce the costs associated with these operations. For example,
versions of the celebrated LSODE [ll] ODE solver now exist for banded or sparse problems as
well as several other types of problems (e.g., implicit equations). More recently, considerable
attention has been devoted to the question of using iterative methods for the solution of the
corrector equations [3].

Since these operations are amenable also to parallel implementation, it is natural to consider
the feasibility of parallel solutions. This question was addressed for a simplified ODE solver
and for LSODE in [14]. We will again consider this question in this paper. We chose to use the
SDRIV3 ODE solver [13] which is similar in construction and in spirit to its relative LSODE.
SDRIV3 will be used in conjunction with spatial differencing routines from [15] and parallel
Gaussian elimination software. Results will be presented for two representative model prob-
lems. The results demonstrate that an essentially linear speedup in the number of processors is
possible for such problems. Several techniques will be discussed including fully dense solutions,
mixed dense-sparse solutions and, finally, (almost) fully sparse solutions. Since solvers such as
LSODE and SDRIV3 (and their variants) currently represent the state-of-the-art for solving
ODES, any improvement in their performance is worthy of note. Even though we limit our
attention to the use of SDRIV3 in this paper, we emphasize that the techniques discussed are
applicable to most of the other well-known stiff ODE software. See [4] for a review of currently
available software to which the techniques discussed in this paper are applicable.

The remainder of this paper is organized as follows. Section 2 describes the parallel
Gaussian elimination techniques used. Section 3 describes the parallel method of lines
techniques used. Section 4 describes the two model problems which were used to test the
feasibility of solving method of lines problems in this context. Section 5 contains a discussion of
selected numerical results for these two problems.

D.K. Kahaner et al. / Method of lines on a parallel computer 233

2. Parallel Gaussian elimination

In this section we describe an algorithm for the solution of dense systems of linear equations
Ax = b on multiprocessors with shared memory. Since a description of the algorithm does not
appear elsewhere, considerable detail will be included herein. Here A is an y1 X II matrix and b
is an n-vector. Our approach is to factor the matrix using Gaussian elimination with row
interchanges. We denote the decomposition as

A = P,L,P,L, . . . P,_,L,_,U,

where Pk is an elementary permutation matrix, L, is a unit lower triangular matrix whose k th
column contains the multipliers at the k th step, and U is the upper triangular factor. This
section can be regarded as a sequel to [9] in which an algorithm was developed for solving
dense positive definite systems in such an environment. The computing regime we adopt
employs the notion of a pool of tasks whose parallel execution is controlled by a self-scheduling
discipline [12]. In our context, the tasks are those computations associated with columns of A,
and thus have a well-defined order associated with them.

In some parallel algorithms, specific tasks are mapped onto specific processors in advance of
initiating the computation. In this situation, effective (static) load balancing among the
processors requires that the distribution of work be reasonably uniform. Self-scheduling can be
regarded as a mechanism for implementing dynamic load balancing; p processes are initiated
to perform T tasks (p G T). When a given process completes a task, it checks to see if any
unassigned tasks remain, and if so, it is assigned to the next one. Thus, if a process happens to
have drawn a relatively small task, it will become free to perform another one sooner than a
process occupied by a larger task. In this way, processors tend to be kept busy even if the tasks
vary in their computational requirements. This self-scheduled pool-of-tasks approach is flexible
in that it is not very strongly dependent on the number of processors available. Furthermore,
this approach is appropriate for multiprocessors with shared memory since the pool of tasks
must be made available to each processor.

We first present a parallel algorithm for Gaussian elimination with partial pivoting on a
shared-memory multiprocessor. Parallel algorithms for the solution of AX = b using the
resulting triangular factors are then discussed.

A serial algorithm

The factorization algorithm we consider is column-oriented and is described below.

for j = 1 to y1 do
for k = 1 to j - 1 do

apply Pk to column j of A;
for i = k + 1 to y1 do

aii := aii - aik * akj;
determine P, and apply P, to column j of A;
for i=j+l to IZ do

aij := aij/ajj;

234 D.K. Kahaner et al. / Method of lines on a parallel computer

For convenience, we define exchange(j, k), cmod(j, k) and cdiv(j) as follows:
l exchangec j, k): the subtask of applying Pk to column j of A, k < j;
l cmod(j, k): the subtask of modifying column j by column k, k <j; and
l cdiv(j): the subtask of dividing column j by a scalar.

Using these subtasks, the factorization algorithm can be expressed in a compact form, as
shown below.

for j = 1 to y1 do
for k = 1 to j - 1 do

perform exchange(j, k);
perform cmod(j, k);

determine PI;

perform exchange(j, j);
perform cdiv(j);

At the end of the algorithm, the lower and upper triangular parts of A will be overwritten by
the lower and upper triangular factors, respectively. In this approach, column j of A is
modified by column k of L,, 1 < k <j - 1, and then column j of Lj is computed.

It should be noted that this is not the only column-oriented algorithm for factoring A.
Suppose column j of A has been modified by columns k of L,, 1 < k < j - 1. An alternate
approach is as follows. Column j of Lj is computed and then it is used immediately to modify
column k of A, for j + 1 < k < YE. This second approach differs from the first one only in the
order in which the computations are performed.

A parallel algorithm

There is a fairly high degree of parallelism in the column-oriented factorization algorithm
described in the previous subsection. Once a column of the triangular factors has been
computed, it can be used to modify the remaining columns of A and the modifications may be
performed concurrently. Moreover, once Pk has been determined, it can be applied to the
remaining columns even before column k of the triangular factors is computed. Thus this gives
the following parallel algorithm for dense Gaussian elimination. The task of computing a
column of the triangular factors is denoted by Factor. We will use an integer array ready for
synchronization purposes. Column j of the triangular factors has not been computed when
ready[j] is zero. When Pj has been determined, ready[j] is set to 1, and when column j has
been computed, ready[j] is set to 2. This allows the exchange(j, k) and cdiv(k) operations to be
overlapped.

for j = 1 to II do
ready[j] := 0;

for j = 1 to y1 do
schedule Factor(j);

Factor(j):
for k = 1 to j - 1 do

wait until ready[k] > 0;
perform exchangec j, k 1;

D.K. Kahaner et al. / Method of lines on a parallel computer 235

wait until ready[k] = 2;
perform cmod(j, k);

determine Pj;
ready[j] := 1;
perform exchange(j, j);
perform cdiv(j);
ready[j] := 2;

It is important to note that hardware synchronization is not needed in the algorithm above.
In particular, updating the ready is not a critical region since ready[j] is modified by only the
processor which computes column j. Overall synchronization is achieved implicitly using the
ready array. A final comment is that there are y1 tasks to be scheduled in this approach.

There is an alternate way of computing the columns of the triangular factors. The tasks that
are being performed in parallel are those of modifying the remaining columns of the matrix.
More precisely, when column j of Lj is computed, it is used to modify the remaining II -j
columns of A and the modifications are performed concurrently. Thus there are IZ -j tasks to
be scheduled at step j. A possible drawback of this approach is the cost of scheduling the tasks.
If it is expensive to schedule a task, the latter algorithm wil probably take longer to execute
since there are a total of O(n2> tasks to be scheduled.

Parallel triangular solutions and post-processing of the triangular factors

After the triangular factors (Lk and U> have been computed, the solution to the original
system is obtained by solving the two triangular systems which result:

F&P&, ... P,_,L,,_,y = b,

ux=y.

A column-oriented serial algorithm for solving the first triangular system is given below. The
elements of the jth column of Lj are ntoed by lkj. The right-hand side vector b is overwritten
by the solution y.

for j = 1 to n - 1 do
apply Pi to b;
for k=j+l to n do

b, := b, - bj * lkj;

This serial algorithm is difficult to parallelize, as the following discussion shows. Consider
step 2 in the forward solve. In order to compute y2, b, may have to be replaced by another
component in the right-hand side vector, say b,, depending on the permutation P,. Then b,
has to be modified by the product of l,, and xi. Suppose x1 has been computed. It is then
used, together with column 1 of L,, to modify b. In a parallel implementation, we can compute
y, once x1 has been computed and b, has been modified by l,, and is available for the
interchange. This may happen even before the right-hand side has been completely modified by
column 1 of L,. However, note that in the worst case, 1 could be equal to n. Thus, this may
potentially cause the parallel implementation to behave like the serial algorithm.

236 D.K. Kahaner et al. / Method of lines on a parallel computer

To alleviate this problem, we post-process the elements in Lj. The elements of the jth
column of Lj are permuted to the right order (according to Pi, P,, . . . , Pi> before the forward
solve begins. This approach eliminates the need for interchanging the components of b during
forward solve; the permutations Pj can be applied to b before the forward solve begins. Note
that these columns of Lj are independent of each other and hence the post-processing can be
performed concurrently.

A parallel forward solve algorithm

We shall assume that the elements of the jth column of Lj have been permuted to the right
order. Following is a parallel algorithm for forward solve. It makes use of an integer array
nmod. The value of nmod[j] at any time indicates the number of modifications that have been
applied to the jth component of the right-hand side vector and it is initially set to 0. The array
nmod is used to synchronize the computations so that each element of b is modified only by
one procesor at any time.

The task of computing the jth component of the solution vector is denoted by Forward-
solve(j>.

for j = 1 to y1 do
nmod[j] := 0;

for j = 1 to IZ do
schedule Forward-solve(j>;

Forward-solve(j):
wait until nmod[j] = j - 1;
for i=j+l to IZ do

wait until nmod[i] = j - 1;
bi := bi - bj * I,,;
nmod[i] := nmod[i] + 1;

A parallel backward solve algorithm

The backward solve algorithm is similar to the forward solve algorithm. It makes use of an
integer array flag; the value of flag[j] at any time indicates the solution component that can be
used to modify bj and it is initially set to 12. This array is used to synchronize the modifications
of the elements of b. The elements of the upper triangular matrix U are denoted by uij. The
task of computing the jth component of the solution vector is denoted by Backward-solve(j).

for j = 1 to it do
flag[j] := n;

for j = 1 to n do
schedule Backward-solvet j>;

Backward-solve(j):
wait until flag[j] = j;
xi := bj/ujj;
fori=j-ltolby-ldo

D.K. Kahaner et al. / Method of lines on a parallel computer 237

wait until flag[i] = j;
bi := b, -xi * ujj;

flag[i] := flag[i] - 1;

In the algorithm above, it appears that flag[i] would be modified by more than one processor
at a given time. However this is not the case since the wait statement in the inner loop will
force exactly one processor to update bi at any time. In the sequential algorithm, the order in
which the right-hand side components are modified by xj at step j is not crucial. However this
is not the case in the parallel algorithm. In order to increase the degree of parallelism, the
components b, must be modified in the order j - 1, j - 2,. . . ,1 at step j.

The parallel algorithms described above have been implemented on a Sequent Balance 8000
multiprocessor in FORTRAN. Several experiments were performed to test the efficiency of the
algorithms. Preliminary experience is that the performance of the parallel factorization algo-
rithm is very good with speedup ratios that approach the number of processors used as the
problem size increases, and with efficiencies over 97% for large problems. Further details can
be obtained from the second author. These results are reflected in those reported below for the
method of lines problems considered in this paper.

The sparse algorithms used in the present experiments are structured in a fashion similar to
the dense algorithms described above, but in which sparse data structures from the well-known
SPARSPAK [6,10] are also employed. More details will be given elsewhere.

3. Parallel method of lines solutions

Generally, in order to minimize the reduction in performance of a parallel solution due to
residual sequential code, it is desirable to do as much of the solution as possible in parallel.
However, for ODE solvers, the bulk of the time is spent in Jacobian related calculations (i.e.,
approximating the Jacobian, factoring the iteration matrix, and solving the linear equations
required by the corrector iteration). Reference [14] contains the relative solution times for the
first problem described in the next section using the well-known LSODE solver [ll]. Typically,
90-99% of the overall execution time for the solver is spent doing Jacobian related calcula-
tions. (For the two problems discussed in this paper, the percentages are 97% and 99%,
respectively.) Hence, it is possible to obtain significant overall code speedups by doing the only
Jacobian related calculations in parallel.

We chose the SDRIV3 ODE solver for the present tests. SDRIV3 contains a particularly
attractive USERS option suggested by Mac Hyman of the Los Alamos National Laboratory.
This option allows the user complete control over all aspects of the Jacobian related calcula-
tions. We chose to model the USERS routine after the corresponding routines which were
developed for the LSODE solver in [14]. Consequently, no modifications whatsoever were
required for SDRIV3. The present results suggest that the inclusion of such an option in other
standard ODE solvers would be very worthwhile.

The first big ticket candidate for parallel solution is the linear algebra as discussed in the
previous section. Indeed, the linear algebra is generally the most computationally intensive
portion of the solution. The second candidate for parallel solution is the approximation of the
Jacobian matrix. For many problems for which the derivative evaluation is very expensive (such

238 D.K. Kahaner et al. / Method of lines on a parallel computer

as those discussed in [19]), the cost involved in approximating the Jacobian matrix can actually
exceed the cost of the associated linear algebra. The standard way to approximate a dense
Jacobian matrix is to perturb the solution one component at a time, calculate the derivative for
each perturbed solution, and use finite differences to approximate the corresponding column of
the Jacobian matrix. Since these calculations are independent, they can be done in parallel by
dividing the columns among multiple processors. This strategy requires that each processor be
given a copy of the coding required to calculate the system derivatives. To minimize memory
contention in the present case, the Jacobian matrix-related code for each processor is given its
own copy of the solution vector. (Standard solvers such as LSODE and SDRIV3 save the
original solution and overwrite the solution vector with the perturbed solutions as necessary.)
The derivatives for the perturbed solutions are calculated in the corresponding columns of the
Jacobian matrix to avoid the necessity of providing additional storage for the derivative
calculation. The resulting speedup for this portion of the solution is almost exactly linear in the
number of processors regardless of the problem size; the speedup is also problem independent.

For sparse problems further savings are possible. The standard column grouping algorithm
[7] can be used to reduce the number of derivative evaluations required to approximate the
Jacobian. These evaluations can then be divided among the different processors. Of course, the
resulting speedup is problem dependent. Results which demonstrate the possible savings for
sparse Jacobians will be discussed in a later section.

For many realistic problems, the derivative evaluation generally is very expensive due to the
use of water property calculations and other auxiliary calculations (see [19]). Although we do
not consider the question in this paper, it is possible to reduce costs further by performing the
actual derivative evaluation in parallel or, perhaps more appropriately, by vectorizing the
derivative evaluation. This idea is particularly attractive in light of recent and coming exten-
sions of the software available for performing basic linear algebra operations [l].

In the present experiments, we considered three types of solutions. First, solutions were
considered in which the Jacobian is formed as a dense matrix and the subsequent linear algebra
is performed in a dense fashion. This corresponds to the type of solution employed by most
standard ODE solvers. The second solution considered is one in which the Jacobian is formed
as a sparse matrix using the previously mentioned column grouping algorithm in parallel but
the linear algebra is done in a dense fashion. Our interest in this second mixed approach is
motivated by pragmatic observations regarding several of the problems discussed in [19].
Several of these problems have relatively sparse Jacobian matrices (typically, on the order of
lo-25% nonzero elements) for which the column grouping technique requires roughly N/10
derivative evaluations but for which fill-in increases the overall sparse matrix storage require-
ments considerably. Such problems arise frequently and naturally when lumped parameter
calculations are used in engineering models (e.g., a single pressure calculation is performed
rather than a node wise calculation; this has the effect of introducing horizontal and vertical
“feelers” in the Jacobian). The second problem discussed in the next section is similar to these
problems which generally are not sparse enough to gain the full advantage of a sparse linear
equation solver but are sparse enough to take advantage of special techniques for forming the
Jacobian matrix. Interest in such problems suggests the attractiveness of a standard ODE solver
option to form the Jacobian matrix as a sparse matrix but to then process it as a dense matrix.
Results given in the next section illustrate the speedups possible with this approach for the
present problems. Finally, we considered fully sparse solutions and performed some prelimi-

D.K. Kahaner et al. / Method of lines on a parallel computer 239

nary tests. (By fully sparse we mean that the Jacobian is approximated as a sparse matrix and
the linear systems are solved using sparse techniques. The techniques used to obtain the
present results only perform the matrix factorization in parallel and solve the subsequent linear
equations serially. We will say more about this in a later section.) This solution strategy
suggests several further things that can be done in this context particularly with respect to the
manner in which the parallel linear algebra is performed. The resulting questions associated
with fully sparse parallel method of lines solutions merit further attention. Therefore, only
preliminary results are given in this paper.

It is important to note that the parallel solution techniques are not limited to method of lines
problems and they are in fact applicable to the solution of any stiff system of ODES. They can
be used to improve the performance of any standard stiff ODE solver. In fact, use of the
techniques described in this paper for implicit Runge-Kutta solvers is currently under investi-
gation.

4. Description of the test problems

This section describes two problems which were used to obtain the results reported in this
paper.

Model problem 1

The first problem is a mock-up of a fluid flow problem. This problem shares many of the
characteristics associated with complex problems sometimes solved by automatic ODE solvers.
(See [19] for d escriptions of several such problems.) The problem is very stiff and has damped
oscillatory solution components that must be tracked over long time intervals. It has been used
previously to benchmark the performance of several ODE solvers [17,20] and to illustrate
various pragmatic observations about the performance of sparse ODE solvers [18]. Another
attractive feature of the problem is that it causes virtually all of the coding in a good adaptive
solver such as SDRIV3 to be exercised and hence provides an indication of how such a solver
will perform on

Consider the

au

dt+
where

the types of problems described in 1193.
following formulation of the one-dimensional Euler equations:

au
Az=C, O<t, O<z<L, (4.1)

u= (P, G, T)T,

A=

1 G2

PK P*

-a2PTG

\ P2Cp

-pg, sin 0,
a*@P,K

GA,

1 0

2G !!
P K

a2pT G

PqJ P

\

3

/

(4.2)

(4.3)

240 D.K. Kahaner et al. / Method of lines on a parallel computer

and

a, K, p, C, =f(T, p), equation of state. (4.5)

(The results given in this paper were obtained using tabular values for the fluid properties in
order to avoid the use of a water property package.)

The following boundary conditions will be used:

~(0, t) =pO = 795.521, T(0, t)= To = 255.000, G(L, t) = G, = 270.900.

(4.6)

The test problem can be solved by substituting finite-difference approximations for the
spatial (2) derivatives in (4.1) and integrating the resulting discretized system of ODES with
respect to time. A partition zl,. . . , z~+~ with zi = L(i - 1)/M, i = 1,. . . , A4 = 1, is first de-
fined. After the spatial differences are defined at each spatial node zi and the boundary
conditions are applied, there results a system containing 3M ODES. For a given set of initial
conditions, this system of ODES may be integrated in time to obtain the desired solution. For
the results reported in this paper, a linear rise was used for temperature. (Corresponding
densities were obtained using these temperatures and a constant pressure. A constant value
was used for the initial mass fluxes.)

The spatial discretization is performed using a pseudo-characteristics approach [5] as follows.
The eigenvalues of A are

G G G
- -+a and --a.
P’ P

(4.7)
P

In the usual method of characteristics solution, one would first reduce the equations to
characteristic form by diagonalizing A. This requires finding a nonsingular matrix B

BAB-'=D,

where D is a diagonal matrix whose diagonal elements are the above eigenvalues.
matrix is

' p2T

for which

(4.8)

One such

(4.9)

Multiplying the terms in (4.2) by this matrix gives the following characteristic form of the
equations:

B;+DBE=BC. (4.10)

The idea behind the pseudo-characteristic solution for (4.10) is as follows. At each spatial
node, one-sided difference approximations are calculated for the spatial derivatives:

Pz,o, G&O, T,,o,

P Z,+’ G 2,+, T 2,+,
~z,-, G-y C-e

D.K. Kahaner et al. / Method of lines on a parallel computer 241

The subscript z denotes partial differentiation with respect to z. The subscripts 0, + and -
indicate the one-sided differences are computed with the direction of the differencing dictated
by the sign of the local characteristics G/p, G/p + a, G/p - a, respectively. For each local
characteristic, backward differences are used if the characteristic is positive; otherwise forward
differences are used (hence the terminology pseudo-characteristic method).

When the resulting values are substituted into the characteristic equation (4.10), there results
a linear system of three equations in the three unknowns

dp dG dT
--
dt ’ dt

and -
dt

at each node. At node zi the 3 x 3 system of linear equations to be solved is:

=E, (4.11)

where B in (4.9) is evaluated at zi using pi, Gi and Ti, and the vector E is defined in the
following manner using C in (4.3) and the spatial differences:

E, = C BzjCj -

j=l

(4.12)

E, = 5 B3jCj -
j=l

The solution is (dp,/dt, dG/dt, dq/dt)T which defines the system time derivatives. Direct

calculation shows that the solution of (4.11) is given by:

dT &(E, + E,)a2/3z -E,
-zz
dt pi(c, + a2PT,) ’

(4.13)

z=f(E2+E3)-pipz,

dpi dT

dGi Ex - (G,Ka + 1)~ -PiPx
-=-

dt (PiKa)

Model problem 2

(4.14)

(4.15)

The physical system to be analyzed, illustrated in Fig. 1, has two basic components, air and
water. The physical phenomenon (humidification) described by the PDE model is well-known.
The mathematical model for the system is a system of three nonlinear, one-dimensional,
initial-value PDEs, which are well suited for MOL solution. The resulting system of MOL

242 D.K. Kahaner et al. / Method of lines on a parallel computer

L.TL(2L.U V,Y(?LJL.~).T&L,~)

v L V.Y,TG

G ‘i
1 H20

H20@ ’ Air@

f-r
H20 Air

CL)
ti20

(V)

L= 0

ZL

Fig. 1. Humidification column.

ODES has interesting properties as reflected in the map and eigenvalues of the Jacobian
matrix.

The humidification column of Fig. 1 is packed with a porous medium which permits the flow
of water down through the column by gravity, and the flow of air up due to an imposed
pressure at the bottom of the column (for example, from a centrifugal blower). The packing in
the column promotes contact between the water and air, and therefore enhances the exchange
of mass and energy between the two streams (we will neglect the exchange of momentum,
although this is manifest as a drop of the air pressure along the column).

To fully analyze the operation of the column, we require the calculation of the following
dependent variables (see also Table 1).

(1) The air humidity y(z, t) as a function of position along the column z and time t. We
define the humidity as the ratio of the moles of water to the moles of dry air.

(2) The air temperature TG(z, t).
(3) The water temperature 7”(z, t).
The humidity y is computed from a mass balance for the air written on a section of the

column of length AZ, followed by AZ + 0. The final result is

V kyao
Y,= -GY,?+ G -(Y, -Y). (4.16)

A subscript with respect to an independent variable (z or t) denotes a partial derivative with
respect to that variable. Thus, the combination of the t derivative on the left-hand side of (4.16)
and the z derivative in the first right-hand side term is the advection group, representing
accumulation of water in the air and convection of water in the air within a differential volume

D.K. Kahaner et al. / Method of lines on a parallel computer 243

Table 1
Nomenclature for test problem 2

Symbol Property SI metric unit

TG
EV
EP
TL
Y
YS

T
Z
ZL
V
G
S
KY
AV

cvv
CPV
CVA
CPA
CL
L
H
DWAP
X
xss
KC
TI
CVDP

TLSET

Gas temperature
Internal energy of the gas stream
Enthalpy of the gas stream
Liquid temperature
Mole ratio of Hz0 in the gas
Mole ratio of H,O in the gas which would be in
equilibrium with the liquid at temperature TL
Time
Axial position along the column
Length of the column
Dry air molar flow rate
Dry air molar holdup
Column cross sectional area
Mass transfer coefficient
Heat and mass transfer areas per unit volume
of column
Specific heat of water vapor at constant volume
Specific heat of water vapor at constant pressure
Specific heat of dry air at constant volume
Specific heat of dry air at constant pressure
Specific heat of water
Liquid (H,O) molar flow rate
Liquid (H,O) molar holdup
Heat of vaporization of water
Control value stem position
X at steady state
Controller gain
Controller integral time
Product of the control valve constant and
square root of the pressure drop across the valve
Controller set point

“C
cal/gm mol
cal/gm mol
“C
gm mol H,O/gm mol dry air
gm mol H,O/gm mol dry air

cm
cm
cm/hr
gm mols/cm’
cm2
gm mols dry air/(hr-cm’)
cal/(hr-cm’- o C)

cal/(gm mol- o C)
cal/(gm mol- a C)
cal/(gm mol- o C)
cal/(gm mol- o C)
cal/(gm mol- o C)
gm moIs/hr
gm mols/cm”
cal/gm mol

l/“C
hr
gm mols/hr

“C

of the column, respectively. The air velocity V/(GS) is positive since the air flows up from the
bottom of the column (in the positive z direction).

The second right-hand side term of (4.16) represents the mass transfer of water to or from
the air due to the humidity difference between the air and water y, - y. When y, - y is
negative (the air humidity exceeds the saturation humidity), condensation of water from the air
takes place; if yS -y is positive, evaporation of water into the air (humidification) takes place.

The temperature of the air is computed by writing an energy balance for the air in the
differential section of the column

El/, = - &El'= i- >(TL - TG) + ~ (4.17)

The left-hand side and first right-hand side terms of (4.17) are again the advection group for
the air (the air velocity V/(GS) is positive since the air enters the bottom of the column and

244 D.K. Kahaner et al. / Method of lines on a parallel computer

flows in the positive z direction). However, there is one difference in this advection group we
did not observe in (4.16); the dependent variable in the time derivative is the air internal energy
El/ while the dependent variable in the spatial derivative is the air enthalpy EP.

The second right-hand side term of (4.17) is the heat transfer rate between the water and air
due to the temperature difference TL - TG. The third right-hand side term of (4.17) represents
the gain or loss of energy by the air due to mass transfer of water to the air (evaporation) or to
the water (condensation); this transfer occurs as a result of differences between the air
humidity y and the saturation humidity yS as in (4.16). Note also that when (4.17) is integrated
in time, the computed dependent variable is the air internal energy El/. This must then be
converted to the corresponding air temperature TG for use in the heat transfer term of (4.17).

Finally, the water temperature TL(z, t) is computed by writing an energy balance on the
water in the differential section of the column

TL,= ;TLz- h(TL - TG) - $$(y, -y)(C,.,,TG + AH,,,).
L

(4.18)

The advection group for the liquid temperature is apparent. The second right-hand side term
of (4.18) is the heat transfer rate between the water and air. The third right-hand side term of
(4.18) represents the gain or loss of energy by the water due to mass transfer of water from the
air to the water (condensation) or to the air from the water (evaporation); this transfer occurs
as a result of differences between the air humidity y and the saturation humidity y, as in (4.16)
and (4.17).

The initial conditions for (4.16)-(4.18) are

y(t, 0) = 0.01 gm moles water/gm mole dry air,

El/@, 0) = Ct.uTG(z, 0) +y(z, O)(C,.,,TG(z, 0) +AH,,,)

= (5.3)(43.33) + 0.01((5.3)(43.33) + 9443.6) cal/gm mole air,

TL(z, 0) = 43.33”C.

(4.19)

The boundary conditions for (4.16)-(4.18) are

~(0, t) = 0.01 gm moles water/gm mole dry air,

Ep(O, t) = C,,TG(O, t) +Y(& t)(CJ’G(O, t) AH,,,)

= (5.3)(43.33) + 0.01((5.3)(43.33) + 9443.6) cal/gm mole air, (4.20)

TL(z,, t) =43.33”C.

These boundary conditions reflect the entering air humidity ~(0, t), the entering air enthalpy
EP(0, t) and the entering liquid temperature TL(z,, t), where z, is the column length.

If A4 denotes the number of spatial nodes, the resulting ODE system for this problem
contains 3M + 1 equations. The Jacobian matrix for this system has an interesting structure
which changes with time. Figure 2 depicts the structure of the Jacobian for M = 11 and t = 0.5.
(The numbers given in Fig. 2 represent the relative magnitudes of the corresponding elements
in the Jacobian.) The Jacobian is nonbanded and in fact has a structure similar to several of the
problems discussed in [19]. The system is also relatively stiff. For example, if M = 11 and
t = 0.5, the nonzero eigenvalues range from about - 1.5 to - 4286. Reference [16] contains a
detailed discussion of this problem.

D.K. Kahaner et al. / Method of lines on a parallel computer 245

5. Discussion of test results

All tests described in this paper were performed at the Oak Ridge National Laboratory using
double-precision arithmetic on the Sequent Computer Systems Balance 8000 Parallel Proces-
sor, hereafter referred to as the BSOOO. (Some of the tests were also duplicated on a similarly
configured system at the National Institute of Standards.) The BSOOO system consists of 12
CPUs (NSC 32032 processors) and 16 million bytes of shared memory (i.e., memory shared by
all processors). Each of the processors is functionality equivalent and provides performance
approximately equal to that of a VAX 11/750. The system bus has a sustained data transfer
rate of 26.7 megabytes per second. The BSOOO operates under a UNIX operating system. For
parallel applications, the available multitasking primitives are similar to those for other
shared-memory computers such as the CRAY X-MP/4. Readers not familiar with the use of
such computers are referred to [2] which contains a discussion of parallel programming for
shared-memory parallel computers.

In this paper, efficiency is defined in the usual manner as:

100 W) %
efficiency = p T(P) ,

s
9

10
.z 11
m .z 12
t 13
n 14
3 15
tj 16

E ;;

z 19
; 20
0 21

22
23
24
25
26
27
28
29
30
31
32
33
34

ODE Dependent Variables

1111111111222222222233333
1234567a90123456789012345678901234

a887 55 6
a787 5 5 6
a887 4 5 5
78887 4 5 5

78887 4 5 5
78887 4 5 5

78887 4 5 5
78887 5 5 6

78887 5 5 6
78898 5 66

9999 a887 a9 9
9999 a787 a 9 9
9999 aaaa a 9 9
99999 78888 a 9 9

99999 78888 a 9 9
99999 78888 a 9 9

99999 78888 9 9 9
99999 78888 9 9 9

99999 788889 9 9
99999 a89989 99

77776
a 5 67766

a 5 67766
a 5 67766

a 5 67766
a 5 67766

a 4 67766
a 4 6776

a 4 6666
.a 4 6676

4

Fig. 2. Jacobian matrix map for problem 2.

246 D.K. Kahaner et al. / Method of lines on a parallel computer

Table 2
Results for problem 1 (300 ODES, dense-dense solution)

Number of
processors

Total
execution
time

Jacobian
formation
time and
speedup

Linear
algebra
time and
speedup

Total
speedup
achieved

1 0.101~10s
2 0.519~104
3 0.355. lo4
4 0.273. lo4
5 0.226. lo4
6 0.194.104
7 0.171’ lo4
8 0.153. lo4
9 0.141. lo4

10 0.129. lo4

0.326. lo4 (1.0)
0.163. lo4 (2.0)
0.109. lo4 (3.0)
0.820.10” (4.0)
0.657.10” (5.0)
0.547. lo3 (6.0)
0.471. lo3 (6.9)
0.412. lo3 (7.9)
0.368. lo3 (8.9)
0.329.10” (9.9)

0.655. lo4 (1.0) 1.0
0.333.104 (2.0) 1.9
0.224. lo4 (2.9) 2.9
0.169. lo4 (3.9) 3.7
0.137. lo4 (4.8) 4.5
0.116.104 (5.6) 5.2
0.101. lo4 (6.5) 5.9
0.887.103 (7.4) 6.6
0.809. lo3 (8.1) 7.2
0.720.10” (9.1) 7.8

where P is the number of processors and T(P) is the solution time for the P-processor
solution. By speedup we mean the quantity T(l)/T(P). An efficiency of 100% therefore
corresponds to a perfect speedup, that is, a reduction in execution time by a factor of l/P. The
value of T(1) used to compute the efficiencies is the execution time for the parallel solution
with one processor rather than the execution time for the corresponding sequential solution.
Since additional overhead is involved with the parallel l-processor solution, this results in
slightly higher efficiencies being reported in the tables. However, these two times are virtually
identical. (Extensive testing of the parallel software and comparisons with standard LINPACK
[8] serial solution software for problems of different size indicate differences in the solutions on
the order of O-3% are incurred. Further details are available from the second author.)
Therefore, this does not have a significant impact on the results.

Table 2 contains the execution times and speedups for the solution of the first problem with
300 ODES and the dense Jacobian formation, dense linear algebra solution strategy for various
numbers of processors. The results of most interest are the overall speedups (given in the last
column). For 10 processors, an efficiency of 78% was obtained; the raw speedup was by a factor
of almost 8. For 600 ODES the efficiency increases to 90% for 10 processors. Since both the
Jacobian and the linear algebra are done in dense mode, these speedups are problem
independent. Thus, similar speedups can be expected for other problems. This is illustrated by
the results for the second test problem. Table 3 contains the results for the solution of this
problem. Use of 10 processors yielded an efficiency of 83%. For 598 ODES the efficiency
increases to 89% for 10 processors. For smaller ODE systems, the corresponding results follow
patterns similar to those given in [14] for the LSODE solution.

Table 4 contains results for the first problem using the various sparse techniques discussed
earlier. Table 5 contains similar results for the second problem. In each case the speedup
reported is relative to the dense Jacobian, dense linear algebra solution using 1 processor. As
mentioned earlier, the results for the sparse solutibns are problem dependent. This is due to
the fact that the column grouping algorithm used to approximate a sparse Jacobian requires 8
and 15 derivative evaluations, respectively, for problems 1 and 2, instead of N evaluations

D.K. Kahaner et al. / Method of lines on a parallel computer 247

Table 3
Results for problem 2 (298 ODES, dense-dense solution)

Number of
processors

1
2
3
4
5
6
7
8
9

10

Total
execution
time

0.258.104
0.133.104
0.898. lo3
0.691.10”
0.565’10’
0.478.10’
0.420. lo3
0.375.10”
0.341.10s
0.310~103

Jacobian Linear
formation algebra
time and time and

speedup speedup

0.728.10” (1.0) 0.183. lo4 (1.0)
0.370.10” (2.0) 0.932’10” (2.0)
0.246. lo3 (3.0) 0.626. lo3 (2.9)
0.185.10’ (3.9) 0.478.10” (3.8)

0.149 lo3 (4.9) 0.389. lo3 (4.7)
0.124.10” (5.9) 0.327. lo3 (5.6)
0.107~10’ (6.8) 0.285. lo3 (6.4)
0.939.10’ (7.8) 0.253.10” (7.2)
0.837. lo2 (8.7) 0.229. lo3 (8.0)

0.753. lo2 (9.7) 0.206. lo3 (8.9)

Total
speedup
achieved

1.0
1.9
2.9
3.7
4.6
5.4
6.1
6.9
7.6
8.3

where N is the number of equations in the system. For problem 1, this accounts for the
speedups greater than the number of processors.

For problem 2, the speedups given in Table 5 are less dramatic. In fact, the sparse Jacobian,
sparse linear algebra solution is slower than the sparse Jacobian, dense linear algebra solution
for this problem. This is due to the fact that we are not actually performing a fully sparse
solution. Because of the difficulty of doing forward solves in parallel (a result of the sparse
matrix data structure employed), the sparse software used in the present experiments only
performs the matrix factorization in parallel. The solution of the subsequent linear equations is
done serially. For some problems like the second one, the serial solution of the linear equations

Table 4 Table 5
Results for problem 1 (300 ODES) Results for problem 2 (298 ODES)

Solution option Total solution Speedup
time

Solution option Total solution Speedup
time

Dense Jacobian 0.299. lo4 1.0
Dense linear algebra

1 processor

Dense Jacobian 0.441 103 6.8
Dense linear algebra

8 processors

Sparse Jacobian 0.337.10” 8.9
Dense linear algebra

8 processor

Sparse Jacobian 0.897. lo2 33.3
Sparse linear algebra

8 processors

Dense Jacobian
Dense linear algebra

1 processor

Dense Jacobian
Dense linear algebra

8 processors

Sparse Jacobian
Dense linear algebra

8 processors

0.260. lo4 1.0

0.376. lo3 6.9

0.301 103 8.6

Sparse Jacobian 0.504 103 5.2
Sparse linear algebra

8 processors

248 D.K. Kahaner et al. / Method of lines on a parallel computer

1 2 3 4 5 6 7 a 9 10

Number of Processors

Fig. 3. Overall speedups for problem 1.

is actually more expensive than the parallel matrix factorization. We are
fully sparse solution techniques in which the linear equation solving is
Results will be reported elsewhere. The preliminary results in Tables
substantial speedups are possible. See Figs. 3 and 4.

currently investigating
also done in parallel.
4 and 5 indicate that

a

7
o Maximum Possible Speedup

q Actual Speedup

2 6
TI

:

:: 5

J

1 2 3 4 5 6 7 0 9 10

Number of Processors

Fig. 4. Overall speedups for problem 2.

D.K. Kahaner et al. / Method of lines on a parallel computer 249

In the present studies we considered the question of parallel MOL solutions only on
shared-memory parallel computers. Work is currently underway to implement the various
parallel solution strategies on distributed-memory computers. Results will be reported else-
where.

6. Summary and conclusions

The solution of method of lines problems using ordinary differential equation solvers on a
shared-memory parallel computer was discussed in this paper. The ideas involved were
illustrated by applying them to two model problems obtained by using the method of pseudo-
characteristics to discretize spatially the one-dimensional Euler equations in one case and by
applying upwind differences to approximate the cooling of a humidification column in the
second case. Parallel solution techniques were incorporated in the well-known SDRIV3 solver
and results were given to demonstrate the speedups obtained by applying the parallel version of
the model problems. The results indicate that a modern stiff ODE solver is ideally suited for
parallel processing on shared-memory computers. For moderately sized systems, efficiencies
that are nearly linear in the number of processors are possible. The results also indicate that
the performance of modern ODE solvers can be enhanced through the inclusion of options
such as the USERS option in SDRIV3, and the ability to perform mixed dense-sparse
solutions.

Experiments were performed using three solution strategies: dense Jacobian formation and
dense linear algebra, sparse Jacobian formation and dense linear algebra, and fully sparse
solutions. The results suggest significant speedups are possible for ODE solvers in this context.
The speedups are essentially problem independent for the dense-dense solution strategy. For
the sparse-dense solution strategy, the Jacobian formation speedup is problem dependent while
the linear algebra speedup is problem independent. More detailed results will be presented
elsewhere for the fully sparse solution strategy.

Appendix

We present here a brief introduction to the method of lines. Consider the one-dimensional
heat conduction equation in Cartesian coordinates (Fourier’s second law):

aT k a2T
-= --
at pep ax2. W)

Equation (A.11 can be written in subscript notation (with the thermal diffusivity k/(pC,) = 1):

T, = TX,. (fw

Equation (A.21 is first-order in t and second-order in x, so it requires one initial condition and
two boundary conditions:

T(x, 0) = sin F ,
i 1

(A4

250 D.K. Kahaner et al. / Method of lines on a parallel computer

T(0, t) = 0, (fw
T(L, t) = 0. (A.5)

If we consider how we might proceed to produce a computer solution of equations
(A.2)-(A.51, we quickly realize there is no direct way to tell the computer about a problem in
PDEs (working, for example, with a standard compiler like FORTRAN); computers do not
naturally understand partial derivatives. Rather, we must state the problem in PDEs in a
format which can then be programmed using a standard compiler; basically, this means
replacing the original PDE problem with an equivalent problem in algebra.

For example, if we seek T(x, t) which satisfies equations (A&(*.5), we might consider the
variation of T with respect to x to take place along a grid in x where a particular value of x
will be specified in terms of an integer index i. Thus, x(l) corresponds to x = 0 and x(N) to
x = L, where N is the total number of grid points in x. A particular value of x is then given by
x(i) = (i - 1) Ax, i = 1, 2,. . . , N, where Ax is the grid spacing; i.e., Ax = L/(N - 1). Similarly,
the variation in T with respect to t could be specified in terms of an integer index j, so t(1)
corresponds to t = 0 and t(j) = (j - 1) At, j = 1, 2,. . . , corresponds to a grid spacing in t of
At.

With these two subscripts i and j we could specify a value of T corresponding to particular
values of x and t, T(i, j) = T((i - 1) Ax, (j - 1) At). Then we could replace the partial
derivatives in (A.2) with algebraic approximations evaluated at a general point with indices
(i, j); this would lead to a set of algebraic equations which approximate (A.2). Once the
approximating algebraic equations have been defined, they could be solved using any standard
linear equation solver [13] to obtain an approximate numerical solution to (A.2); of course, the
auxiliary conditions (A.3)-(AS) would also have to be included in the algebraic equations. This
procedure is the basis for well-known classical finite-difference, finite-element and finite-volume
methods for PDEs. The method of lines (MOL) is really just a small departure from this basic
approach.

In the MOL, we retain the index i to account for variations of T with X, but we treat t as a
continuous variable (rather than t evaluated at discrete points corresponding to the index j>.
Thus, we will replace the partial derivative TX, in (A.21 with an algebraic approximation
evaluated at point i, but keep the derivative T,; this will lead to a system of differential
equations in t, and since we now have only one independent variable t, the differential
equations will be ODES.

Since one example is probably worth a thousand words, we now consider an MOL formula-
tion of (A.2)-(A.5):

d7; T.+, - 2q + 7;._,
-=
dt Ax2

, i=2, 3 ,..., N- 1, (A.6)

where we have used the well-known three-point, second-order, centered finite-difference
approximation for the partial derivative TX, in (A.2).

Initial condition (A.41 is

Ti = sin i=2,3 ,..., N-l. (A*?

D.K. Kahaner et al. / Method of lines on a parallel computer 251

Boundary conditions (A.4) and (AS) are simply

T,=O, (A4

TN=O. (A.9)

Thus, we have a system of N - 2 ODES in the N - 2 unknowns T,, T3,. . . , TN_1, which can be
numerically integrated by an initial-value ODE solver (once the number of grid points is
selected).

Equation (A.2) is, of course, particularly simple. The MOL can be extended to quite general
systems of nonlinear PDEs in one, two and three dimensions. This generalization is illustrated
by the following system of PDEs:

U2t =f2(Z, t, u,, u*,. . .,u,, UIX, u2j,. . .,Unx, Ulff, U2Pj7.. .7U,fX7.4

(A.lO)

unt =f& f, Ul, u2,. . . , u,, UlX, u2j,. . ., UnX, u1px, u2xp,. *. 7 Unxx,. ..),

where ul, u2,. . . , u, is the vector of dependent variables of length n to be computed by the
MOL, t is the initial-value independent variable, typically time, fI, f2,. . . , f,, is the vector of
right-hand side functions defined for a particular PDE problem, and X is the vector of
boundary-value (spatial) independent variables, e.g., [x, y, z] for Cartesian coordinates, [Y, 8, z]

for cylindrical coordinates, [r, 8, 41 for spherical coordinates.
Note that in accordance with the usual practice in the numerical analysis literature, we

denote the dependent variable as u (rather than T). As usual, a subscript with respect to t or X
indicates a partial derivative with respect to t or X. Also, we have departed from the usual
notation for a vector, e.g., u,, u2,. . . , u, is used in place of [ul, u2,. . . , u,lT, where the
superscript T denotes a vector transpose. An overbar is also used to denote a vector, e.g., X =

x, Y, 2 or x1, x2, x3 (or Lb Y, zlT, [x1, x2, ~~1~).
Note that the vector of right-hand side functions of (A.101, fl, f2,. . . , f,, contains first-order

derivatives in Fz, ulx, u2?, . . ., unx, second-order derivatives in X, uIxx, u2xp,. . .,unxx, and
suggests third- and higher-order derivatives in X with the “and so forth” notation,. . .). Thus,
(A.lO) is quite general since we have not placed any restrictions on the form of the right-hand
side functions, fl, f2,. . . , f,, or the maximum order of the spatial derivatives in X. Equation
(A.lO) is limited to first-order derivatives in t, but this is really not a restriction since a PDE
nth-order in t can easily be written as a system of n PDEs first-order in t.

Equation (A.lO) also requires an initial condition vector

u&f, to> = g,(jT-),
4-6 to) =g2(X)7

(A.ll)

Un(% to> =&J-q,

252 D.K. Kahaner et al. / Method of lines on a parallel computer

and a vector of boundary conditions

h,(& t, @b, t), QXb, t), . f. 7 %(Xb, q> qf(Xb> f>>

U&b, t),.. .,U,,(Xb, t),. . .) = 0,

h,(xb, t, @b, q, +(xb, t), . . f 7 %(Xb> t), %x(X by t),

u&b, t) ,...) u,&ib, t))...) = 0,

(A.12)

where t, is the initial value of t, g,, g,, . . . , g, is the vector of initial condition functions, hi,
h 2,. * * is the vector of boundary condition functions, and Xb are the boundary values of X.

The length of the boundary condition vector h,, h,, . . . cannot be stated generally for (A.12),
since it will depend on the number and order of the spatial derivatives in (A.lO). Also, Xb,
which generally denotes the boundary values of X, cannot be stated more explicitly, since it will
depend on the number of boundary value independent variables in (A.lO) and (A.1 1) (typically,
one, two or three for each PDE).

Equations (A.lO)-(A.121 can be stated in a more concise vector form as

u, =f(x. t, u, iif, UP?, . . .), (A.13)

- - - -
+, to) =g(x), (A.14)

h&,, t, ii(ib, t), ii&i,,, t) ,...) = 8. (A.15)

In general, to use the MOL, one must specify

f(S, t, ii, iif, Uxx ,...), g(X) and h(X6, t, U(Xb, t), Ux(Xb, t) ,...).

References

l11

l21

[31

[41

El

l61

[71

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A.
McKenney and D. Sorensen, LAPACK: a portable linear algebra library for high-performance computers, in:
Proceedings of Supercomputing ‘90 (IEEE Press, New York, 1990) l-10.
Balance 8000 guide to parallel programming, 1003-41030 Rev. A, Sequent Computer Systems, Inc., November
1985.
P.N. Brown and A.C. Hindmarsh, Reduced storage matrix methods in stiff ODE systems, J. Appl. Math.
Comput. 31 (1989) 40-91.
G.D. Byrne and A.C. Hindmarsh, Stiff ODE solvers: a review of current and coming attractions, J. Comput.
Phys. 70 (1987) l-62.
M.B. Carver, Pseudo-characteristic method of lines solution of first order hyperbolic equation systems, in:
Adcances in Computer Methods for Partial Differential Equations III, Proc. 3rd IMACS Internat. Symp. on
Computer Methods for Partial Differential Equations, Bethlehem, PA (IMACS, New Brunswick, NJ, 1979)
227-230.
E.C.H. Chu, J.A. George, J.W.-H. Liu and E.G.-Y. Ng, User’s guide for SPARSPAK-A: Waterloo sparse linear
equations package, Technical Report CS-84-36, Dept. Comput. Sci., Univ. Waterloo, Waterloo, Ontario, 1984.
A.R. Curtis, M.J.D. Powell and J.K. Reid, On the estimation of sparse Jacobian matrices, J. Inst. Math. Appl. 13
(1974) 117-119.

D.K. Kahaner et al. / Method of lines on a parallel computer 253

[8] J.J. Dongarra, C.B. Moler, J.R. Bunch and G.W. Stewart, LINPACK Users’ Guide (SIAM, Philadelphia, PA,

1979).
[9] J.A. George, M.T. Heath and J.W.-H. Liu, Parallel Cholesky factorization on a shared-memory multiprocessor,

Linear Algebra Appl. 77 (1986) 165-187.
[lo] J.A. George and J.W.-H. Liu, The design of a user interface for a sparse matrix package, ACM Trans. Math.

Software 5 (1979) 134-162.
[ll] A.C. Hindmarsh, Toward a systematized collection of ODE solvers, in: Proceedings, Vol. 1, 10th IMACS

Congress on System Simulation and Scientific Computation, Montreal (IMACS, New Brunswick, NJ, 1982)
427-432.

[12] H.F. Jordan, Experience with pipelined multiple instruction streams, Proc. IEEE 72 (1984) 113-123.
[13] D.K. Kahaner, C. Moler and S. Nash, Numerical Methods and Software (Prentice-Hall, Englewood Cliffs, NJ,

1989).
[14] E. Ng, S. Thompson and P.G. Tuttle, Experiments with method of lines solvers on a shared memory parallel

computer, in: Advances in Computer Methods for Partial Differential Equations VII, Proc. 7th IMACS Internat.
Symp. on Computer Methods for Partial Differential Equations, Bethlehem, PA (IMACS, New Brunswick, NJ,
1987) 161-166.

[1.5] J.C. Pirkle and W.E. Schiesser, DSS/2: a transportable FORTRAN 77 code for systems of ordinary and one, two,
and three-dimensional partial differential equations, in: Proceedings of the 1987 Summer Simulation Conference,
Montreal, July 1987.

[16] W.E. Schiesser, The Numerical Method of Lines Integration of Partial Differential Equations (Academic Press,
New York, 1991).

[17] S. Thompson, Remarks on the choice of a stiff ordinary differential equation solver, Comput. Math. Appl. 12A
(11) (1986) 1125-1141.

[18] S. Thompson, The effect of pivoting in sparse ordinary differential equation solvers, Comput. Math. Appl. 12A
(12) (1986) 1183-1191.

[19] S. Thompson and P.G. Tuttle, The solution of several representative stiff problems in an industrial environ-
ment: the evolution of an O.D.E. solver, in: R.C. Aiken, Ed., Stiff Computation (Oxford Univ. Press, New York,
1985) 180-193.

[20] S. Thompson and P.G. Tuttle, Benchmark fluid flow problems for continuous simulation languages, Comput.
Math. Appl. 12A (3) (1986) 345-351.

