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parts (the core, the mantle and the lithosphere). The geodynamic model of the Earth is based on 
assumptions that in the course of the development of the Earth’s body the important factors are 
gravity, radioactivity, temperature, density differentiation associated with the phase transitions of 
the Earth’s material under high temperatures, large pressures and chemical reactions under the 
same conditions (see [ll]). Then the Earth’s body can be characterized by a thermo-elasto-visco- 
plastic state in a relatively weak magnetic field. Consequently, for the derivation of equations 
describing geodynamic processes in an irregular rotating Earth’s body the thermo-elasto-visco- 
plastic rheology and the magnetodynamic theory can be used. In the paper the Earth’s body will be 
interpreted by a moving and heating incompressible Bingham’s medium, which produces the 
magnetic and gravity fields. Boundary conditions on the surface of the Earth follow from our 
knowledge of the velocity, temperature and gravity potential fields on the Earth surface and from 
the presumption that the surface of the Earth is strongly electrically conductive. The model based 
on the thermo-Bingham rheology represents only a simple model of the real Earth. It gives, 
however, the idea how to solve the coupling of the geodynamic, geothermal and geomagnetic 
processes under the gravity effect in the core and the mantle of the Earth as well as the coupling of 
the magnetic field in the core and the upper parts of the Earth, i.e., the mantle and the lithosphere. 

In the paper we shall assume that Earth’s body as well as other planets and stars are 
approximated by the moving visco-plastic electrically conducting incompressible thermo- 
Bingham’s medium which is under the gravity effect. For the case of materials processing in the 
space outside the Earth, similar assumptions can be considered. 

The classical equations of magnetodynamics were solved during the last few years in several 
papers. So an initial boundary value problem for a system of equations of magnetodynamics of 
incompressible, electrically conducting and viscous Newtonian fluid was studied in [15]. Firstly, 
the incompressible electrically conducting Bingham’s fluid was investigated in [2]. The mathemat- 
ical model of global gravity field coupled with geodynamic processes and thermo-magnetodynamic 
processes in the Earth’s interior based on thermo-Bingham’s rheology was discussed in [ll]. Stedry 
and Vejvoda [16, 191 prove the existence of time-periodic solutions of equations of mag- 
netodynamics - the incompressible case in [17, 191 and the compressible case in [16]. Various 
existence results have been proved in numerous papers, we mention here only Milani [8,9] and 
Byhovskii [ 11. 

The aim of this paper is to prove the existence and uniqueness of the time-dependent solutions to 
a system of equations appearing in generalized thermo-magnetodynamics based on the thermo- 
Bingham rheology which with sufficient accuracy simulate geodynamic and geomagnetic processes 
in the planet’s and stellar interiors as well as processes in materials processing in the cosmic 
environment. 

2. Mathematical model and classical formulation of the problem 

In the sequel we shall deal with the incompressible moving thermo-Bingham fluid under the 
gravity and magnetic effects. 

We shall suppose that Q c RN, N = 2,3 is a bounded domain with a Lipschitz boundary dQ, 
occupied by a moving Bingham’s fluid. Let I = (to, tr) be a time interval. We shall use the notation 
Ui,j = &i/dxj and zi = au/&( =v) and dv,/dt = hi/at + vjvi,j. The Einstein summation convention 
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over the range 1, . . . , IV will be used. Let n denotes the unit outward normal vector at x E 8G. Let 
[. , .] denote the vector product in [WN and N = { 1,. . .}. The strain-displacement relations are 

Eij(U) = $(Ui,j + Uj,i), (i,j = 1, *ff ,N). (2.1) 

We introduce in the sequel the notation Oij(u) = eij(ti). The stress-strain relation of the thermo- 
Bingham medium is defined by 

Zij = 7; + 7: + Z$, (2.2) 

where 7: is the Bingham stress defined by 

7: = -Pdij + SDij/(Dl~)“2 + 2/IiDij, (2.3) 

and S and fi are thresholds of plasticity and viscosity, p represents a spherical part of the stress 
tensor riji (p has a meaning of a pressure) and 6ij is the well-known Kronecker symbol, 
Dii = +OijOij (see, e.g., [15], [2, Ch. VI, Section 1, formula (1.9)]). Due to Nowacki [14], the thermal 
stress satisfies the relation 

7: = fiij(T - To), (2.4) 

where pij is a coefficient of thermal expansion, To > 0 an initial temperature in which the medium is 
in the initial stress-strain state. Furthermore, due to Landau and Lifshitz [6] the Maxwell stress 5; 
is defined by 

Z~ = HiBj - (HB)6ij, (2.5) 

where H and B represent the intensity of the magnetic field and the magnetic induction vector, 
respectively, and B = pH with ~1 the magnetic susceptibility. 

Without loss of generality of the problem studied, we can solve the following problem: 
In dealing with the motion of the visco-plastic electrically conducting incompressible thermo- 

Bingham’s medium under the gravity effect, the following system of equations for the velocity 
u = (Vi), the magnetic intensity B, the temperature T and the perturbed gravitational potential 
@ can be considered: 

p dUi/dt = (-p6ij + SDij/(DII)“2 + 2/lDij + bij( T - To) 

+ (HiBj - (HB)aij)),j +fi, B = /J.H on 52 XI, 

Divu =0 on 52x1, 

aB/dt + Rot((pcr-’ RotB) - Rot[u,B] = 0 on Q x I, 

DivB=O onaxl, 

ppijT,Dij + PC, dT/dt = W - (KijTj),i on D X I, 

A@ = -4npG,pk-’ + 20~ on D x I, 

(2.6a) 

(2.6b) 

(2.6~) 

(2.6d) 

(2.6e) 

(2.6f) 

’ The tensor of the second order with components Zij can be decomposed into its spherical part and its deviator 7; by 
the relation tij = :7kt6ij + 7:. 
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- - 
with p, 9, p, /3ij, To, p, 0, c,, (Kij), G,, K, CO given. We define 

Y’ = -4npG,pK - ’ + 20~. 

Moreover, the following boundary value conditions, 

u=O onXL?xZ, (2.7a) 

Bn =0 on dQx1, (2.7b) 

[n, Rot B] = 0 on dQ x I, (2.7~) 

T=O OnaQxx, (2.7d) 

@=O onaax1, (2.7e) 

and the initial conditions, 

U(X, to) = 0, B(x, to) = 0, T(x, to) = 0 (2.8) 

are considered in the above system of equations. 
The generalized model of the real Earth is much more complicated (see Ill]). In this model 

problem the metallized state of the rocks, the volume density of the electromagnetic force, the Joule 
heat, the viscous force evoked by the viscous stress, the Coriolis force, diffusion processes, etc., are 
omitted. 

3. Variational formulation of the problem 

We introduce the following notation of the employed spaces, scalar products, norms and forms. 
We denote by C(Q) the set of all functions defined and continuous on Q, by C’(Q), 1 6 k < co, 

the set of all functions defined on 62 which have continuous derivatives up to the order k on Q. 
Moreover, we denote by C(a) the space of all functions in C(Q) which are bounded and uniformly 
continuous on Q and for an integer 1 < k < co, we denote by Ck(2) the space of all functions 
u E C”(Q) such that D”u E C(w) for all CI e MN,k, where MN,k is the set of all iv-dimensional 
multiindices of length less than or equal to k. We denote P’(Q) = ora0 Ck(B) and 
C”(W) = fiF=,, Ck(Q). We introduce the space II(G!) as a space of all functions in C”(62) with 
a compact support in 1;2. The space is equipped with the ordinary countable system of seminorms 
and as usual D(Q, rWN) = [D(Q)JN. 

We introduce the space L,(Q), 1 < p < 00, as the space of all .measurable functions such that 

ll~ll~~~~,=(~~If~~)lpdX)l’p~~. 

By L,(G) we denote the set all measurable functions fdefined almost everywhere on iz such that 
II f /I m = ess sup, I f(x)1 is finite, The space is endowed with this norm. 

We shall employ the Sobolev spaces of functions having generalized derivatives of the (possibly 
fractional) order s of the type [H”(Q)lk = Pk(L?) (see, e.g., [7,133); The norm will be denoted by 
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11 ’ 1ls.k and the scalar product by (. , -)s (for each integer k). We set IIZ”,~(&?) E L:(Q) and denote by 
(. , .) the scalar product in L;(Q) (as there is no danger of any confusion with k). Denote by Hz k(Q) 
the closure of D(Q) in the norm of the space IPk(0). Moreover, we shall denote by 11. lIE the 
equivalent norm in H’,N(Q) induced by the small strain tensor eij, i.e., II u 11; = 
Sn edu)eij(u) dx + II u II fit+. 

Moreover, we define for s > 1 the following spaces: 

‘Hsqa) = { u v E HsYN(Q), Divv = 0; u = 0 on aa}, 1 N = 2,3, 

2Hs*N(Q) = (Cl C E IPN(Q), Div C = 0; nC = 0 on a&?}, N = 2,3, 

3Hs,1(i2) = {z 1 z e Hs*‘(52), z = 0 on aQ>, 

H”= ‘HsvN(a) x 2Hs*N(0) x 3Hs* ‘(62). 

We put c’ = @. Then ‘Z(Q) = 'H',N(~)nD(O,(WN).'HS.N(~) is a Hilbert space with the norm 
II * Ils,w For the sake of simplicity, we put lHIYN(Q) = ‘H(Q), 11. II 1 = (1 - I] 1,N, and in HoVN(Q), 
II * II0 = II * IIOJV. We shall denote by wj eigenfunctions of a canonical isomorphism 
‘A,: ‘PIN + (‘EP)‘, i.e., (IV, u), = rli(Wj, U) VU E 'HSsN, IlwjIIO.l = 1 (see [2]). Moreover, 
2ti(sZ) = 2H'*1(!2)nD(Q, RN); 2H"*N(SZ), s 2 1 is a Hilbert space with the norm II * jIs,N. We put 
2H(0) = 2H1sN(51). Furthermore, 3&+‘(Q) = 3H1B1(SZ)nD(Q); 3H",1(d), s >, 1 is a Hilbert space 
with the norm \I * lls. We put 3H(a) = 3H'*'(L?). Similarly as above, we define Cj and zj, 
Cj E 2Hs*N(Q), zi E 3Hs-1(Q) eigenfunctions of canonical isomorphisms 2A,: 'HSIN + (2Hs,N)' and 
3A,:3Hs*1 +(3Hs*1)'. We shall denote the dual space of lHs*N(SZ) by ('Hs~N(!2))'; similarly in all 
other cases. Furthermore, we define the following spaces: 

'H = {C)UE L2(l;'HSvN(S2)), U'E L2(I; 'H"*N(Q)), v(to) = O}, 

‘H = {Cl& Lz(l;2HS*N(0)), C'EL,(I;~H~*~(Q)), C(t,)= 01, 

3H = {zlz E Lz(l;3Hs*'(SZ)), z' E &(I; 3H0*1(t2)), z(to) = 01, 

g= 'Hx2Hx3H. 

Throughout the paper we shall assume that the body forces f(x, t) E L2(l, HlvN(D)) and thermal 
sources W(X, t) E L2(l; H'*'(SZ)), I = <to, tl). We suppose that the density p, the thresholds of 
plasticity and viscosity # and fi, the bulk modulus IS, the specific heat c,, the electric conductivity rr, 
and magnetic permeability p are positive constants. G, is the gravitational constant. The space- 
dependent coefficients of thermal expansion (pij) will be supposed such that aflij/dxj E L,(Q) 
Vi,jE {l,...,N}. 

Moreover, we suppose that Kii E L,(O) are Lipschitz on Q, fulfil the usual symmetry condition 
Kij=KjionQforeveryi,jE(l,...,N}and 

x E 0, r E IFiN, CT = const. > 0. (3.1) 
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For u, w E H’*N(S2), B, C E IIZ’,~(Q), T, z E H’s l(Q), @, q~ E H’, ’ (0) we put 

a(u, W) = 2 
s 

Dij(u)Dij(w) dx, 
R 

b&J, C) = (O/L-’ Rot& Rot C), 

a-O,4 = 
s 

KijTiZ,jdX, 
R 

a,(@, cp) = 
s 

@,icP,idX, 
R 

j(u) = 2 
s 

(&,(u))"~ dx, 
P 

b(u,u, w) = s p Ui Dj, i Wj dx, 
R 

bs(T, u) = s (PijT),jui dx, 
R 

bp(u, 9) = s PGBijui,jgdx* 
R 

Thus, we introduce the bilinear form A on @ for a E (u, B, T), a E (IV, C, Z) by 

A@, 4 = P+J, 4 + W4 C) + MT, 4, 

the matrix 

B = (gij), Fij = p6ij, i = 1, . . . ,2N + 1, j = 1, . . . , N, 

Bij=/!-'6ij, i4,*..,2N+l,j=N+l,..., 2N, 

bij = /lC,Sij, i = 1, . . . ,2N + 1, j = 2N + 1, 

and the right-hand side 

(3.2k) 

P =(J; 0, W)E L#;H'*2N+1(S2)). (3.21) 

Furthermore, we have 

Dij(U)Dij(U) < 2Dh'2(U)D:I'2(U), Dij = ’ (1 - szll 1’2)2~, 
2P 

(3.2a) 

(3.2b) 

(3.2~) 

(3.2d) 

(3.2e) 

(3.2f) 

w&4) 

(3.2h) 

(3.2i) 

(W 

where 7: are components of the stress tensor deviator and zr, = (LJ + 2pD$2)2. 
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Let u 3 w E ‘H1vN(&?), B, CE ‘H’yN(Q). Then, according to Eq. (2.6a) and Maxwell’s stresses for 
incompressible media, we have 

(a) (k?/‘axi(~-’ IBl’), Wi) = 0, since Divw = 0. 
(b) (Rot(r, RotB), P-C) = San@ -‘p-2[n, RotB]Cds + (qoRotB, Rot(,K’C)) = (qoRotB, 

Rot(p-‘C)) as [n, RotB] = 0 on 80, where q. = (g&l. 
(c) (a/axi(p-‘BiB), w) = (p-i W, BiaB/dxi - grad$lBl’) = (p-iwj, Bi(dBj/axi - aBi/axj)) = 

-(pL-l[~,B],RotB) = -(pL-1Rot[w,B],B)as(p-‘w,grad$lB12) =O(forDivw=Oandw=O 
on dSZ); hence (a/ax,(p- ‘BiB), w) + (p- ’ Rot [w, B], B) = 0 (see [2,3]). 

(d) b(u, u, u) = 0 (see [17]). 
We multiply Eqs. (2.6a), (2.6c), (2.6e) and (2.6f) by w - u(t), C - B(t), z - T(t), and cp - Q(t), 

respectively, and we add the first three equations. We integrate both the sum and the last equation 
over Q and apply the Green’s theorem satisfying the boundary conditions. According to (a)-(c) the 
terms (a/axi(pcl-l lB(t)12), Wi - vi(t)), (a/ax,(ll-lBi(t)B(t)), u(t)), (p-l Rot[u(t),B(t)], B(t)) disap- 
pear. Then, after a certain modification (including among others the integration in time over the 
interval I and the substitution J(w) = l1 j(w(t)) dt), we obtain the following variational formulation: 
Find a vector function a = (u, B, T) E g and a scalar function Q, E 3Hs* ’ (52) such that 

s 
[(&a’(r), a(t) - 40) + A(@), d(t) - a(t)) + @(a(t)), 40 - 4)) + V(t), 40 - 40) 

I 
+ gj(w(t)) - gj(u(t))] dt > 0 ‘~“a = (w, C, z) E &I (3.3a) 

and 

a@(t), q(t) - Q(t)) - (Y(t), q(t) - Q(t)) > 0 V’cp(t) E 3HSV’(SZ) v’t E 1, (3.3b) 

where 

W(t)), 40 - u(t)) = (EOMO), 40,4t) - 40) + b,(m) - To, w(t) - W) 

+ b,W), z(t) - T(t)), 

(EoMt)), 4th 4t) - 40) = W(t), w, w - u(t)) + bow), W), z(t) - T(t)) 
+ @/axdp- ‘Bi(t)B(t)), w(t) - u(t)) 

- (P-’ RotCu(t), B(t)l, C(t) - B(t)). 

(3.3c) 

(3.3d) 

3.1. Preliminary results and main theorem 

In the sequel the following lemmas will be used. 

Lemma 1. Let s = iA/, then Ui,j E LN(fl),f~r each u E ‘lPN, i, j = 1,. . . , N. 

For the proof see [2,7]. 

Lemma 2. (A corollary of the Gronwall lemma). Let g(t) E C(I), g(t) 2 0, p(t) E C(Z), p(t) 2 0, g(t) 
be the nondecreasing function with increasing t. Let p(t) be a solution of the inequality 

t 
PM d co 

s 
p(z)dz + g(t), to < t < tl, co = const. 

fo 
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Then there exists cl = conk, cl = cl(cO, tl, to) such that 

p(t) < clg(t) ‘dt E I, where I = (to, tl). 

For the proof, see [7]. 
From the above given assumption the symmetry 

a@, 8) = a@, u), &I@, C) = &l(C, B), 

a#, Z) = UT@, 77, A(6 )‘) = Ah’, a), 

a,(@P, cp) = a&P, @i) 

holds. Moreover, they yield that for u E ‘H1*N(JZ), BE 2H1~N(Q), T, Q, E 3H1*1(8) there exist 
constants cB > 0, cM > 0, CT > 0, c@ > 0 such that 

a@, c, 2 CB tI u It :. N for all u f lEI1*N(0), (3.4a) 

b@, B) >, CM 11s 11 t,N for all B 6 ‘HIBN(a) (3.4b) 

(which is the corollary of Theorem 6.1, Ch. 7 in [2]), 

a~( T, T) > cr ]I T 11:. 1 for all T E 3H1* I&?), (3.4c) 

a,(@* @) 2 c@ II @I?, 1 for all @ f 3H1*1(Q). (3.4d) 

Therefore, (3.4) yields that for a = (u, B, 7’) and u = (w, C, z) there’exists a suitable positive constant 
c, independent of a such that 

A(%a) >/ c(lI]aII?.ZN+Z for all aE H. (3.5) 

From the Hijlder inequality applied to b(u, u, W) we have 

I& u, 41 G Cl II u II L:(n) II IV IIL~(O) C II Di”j IIL#fZ)* (3.6) 
Li 

where 2/p + l/N = 1, i.e., 

p = 2N/(N - I). (3.7) 

Applying Lemma 1 we have 

Ibk u,w)l 6 cZil+‘W, bjlL,N(~)~b~Is,N, s =tN 

(see 1[2]). Since 

II 0 II 1/2.N G c II @ ll$ig, II 0 II :i2N and H1’2*N(Q) = g(Q), 
for p from (3.7), then 

II 8 IlLpa, G c3 II @ II :i2n II 0 II;!&*, ‘da e mNw, 
where p is defined by (3.7). 

(3.8) 

V-9) 

(3.10) 
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From (3.8) and (3.10) we obtain 

IW%?w)l ~~4Il~II:~ZNII~ll~!2Nll~Il:!2NII~Il~~2NII~Il,,N~ s=w. (3.11) 

Furthermore, if u, u, w E ‘X(Q) then b(u, u, W) + b(u, W, u) = 0. The last equality is valid also for 
u E I$@), u, W E lIV(Q); b( u, u, u) = -b(u, u, u) for U, u E ‘X(52) also holds. 

Similarly bo(u, y, z) + bo(u, z, y) = 0, u E ‘III’,~(SZ), y, z E HA* ‘(0) and there exist positive con- 
stants c5, c6, c7 independent of u, y, z such that 

Ibob, Y, z)l G c5 I/u II I$@?) II Y IIL,(O) II {Diz} IlLg(62) 

G c6 11 u llL,,N(i-J) 11 Y 11 L,(62) 11 z 11 s, 1 

~~7Il~lt:!zN1l~ll~!zNIIYI1:!: lIYll~!:llzlls,1, s=w, (3.12) 

where the second and third inequalities hold for z E Ha* l(Q) only and the third requires the 
adgdirl relation u E H1*N(S1). 

Wxt(P - lJw,wl = f 
p-‘(BBi,i + BiB,i)Wdx 

n 
=(/~-'BiB,ih/d~i) (due to DivB = 0) 

and 

(3.13) 

(p-‘Rot[V, BJ, C) = 
I 

~-‘(Ul,~Bj - Oj,jBi + t+Bj,j - VjBi,j)Cidx 
n 

=- 
s 

p-‘(OiBjCj,, - UjBlCj,l - UiBjCi,, + VjBiCl,j)dx 
n 

= - 
s 

p-‘(UiBj - Uj&)(Cj,, - Ci,j)dx = -(/A-‘[~, BJ, Rot C), (3.14) 
a 

where the Green’s theorem and boundary conditions were applied, then (like in (3.5) and (3.7)) there 
exist positive constants c a, cg, cl0 and cl1 such that 

l(~I~xi(~-‘BiB), W)I G 63 IIBll&(n) II DiWIILs(n), P from (3.7) 

G cg ~IBII~~IIB~~~,N~IwII 
J,N (3.15) 

and 

IW1 RotL-@JU,C)I s CIO Il~llqw Il~ll~~cra, IICILN 

<ccl1 ll~lI:!~1l~ll~!~Il~lI:~~II~ll~~II~lls,~, (3.16) 

where the second and third inequalities are valid for C E Hs*N(B) and the third one is also valid for 
UE H'gN(i2). 
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Therefore, due to the estimates (3.6), (34, (3.1 l), (3.12), (3.15), (3.16) there exist positive constants 
c12, cl3 and cl4 independent of a, y such that 

d ~14 IIall1,2N+1 IIal10,2N+~ II~ll%+1~ s = 9% (3.17) 

where the second and third inequalities are valid for y E HS*2N+ ‘(0) and the third also for 
aEH lJN+l(fi). 

The main result of the paper gives the following theorem. 

Theorem 3. Let N 2 2, s = $N. Let 

f 6 L2V; (‘H”~“W)‘L W E L2(I; (3H”SN(SZ))‘). 

Then there exist a vector function a G (u, B, T) and a scalar function Q, such that 

u E L2(I; 1H”VN(!2))nL,(I; ‘HoVN(sZ)), u’ E L2(I;(1HS*N(SZ))‘), 

B E Lz(I; 2H”,N(Q))nL,(I;2Ho,N(SZ)), B’ E L2(I;(2H”,N(Q))‘), 

T E L2(I; 3H”,1(9))n L,(I; 3Ho*1(Q)), T’ E L2(I;(3H”*1(Q))‘), 

@E L2(Z; 3H’,‘(!2)), 

u(to) = 0, Btto) = 0, T(t,) = 0 

(3.18) 

(3.19a) 

(3.19b) 

(3.19c) 

(3.19d) 

(3.20) 

and satisfy the variational equations (3.3). 

4. Proof of Theorem 3 

To prove Theorem 3 the double regularization for the problem (3.3a) and the Lax-Milgram 
theorem for the problem (3.3b) will be used. 

Let JJw) be a regularized functional of the function J(W) defined by 

J,(W) = s Jj,(w(t)) dt where j,(w (t)) = & s (D&(t))) o+&)“dx, E > 0, (4.1) 
I sz 

for which 

(4(u), w) = 
s 

~DII(U)“- 1”2 Dij(U)Dij(W) dx dt. (4.2) 
Pxl 
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Now for the problem (3.3a) we introduce the regularized problem (gJD: Find a vector function 
a,, E (uEV, BEq, T,,) E H such that _ 

s 
K&~&(0, a(r) - %#)) + &&), a(r) - a&)) 

I 

+ ~(a&), a(t) - a,,(% + (%,(r)), a(t) - a&)) 

- (P(t), a(t) - a,,(t))] dt + J&v) - J,@,,(t)) 2 0 Va = (w, C, Z) E H, (4.3) 

where E is defined in (3.3~) s = 4N and I? is a positive number. For N = 2 we obtain s = 1 and the 
added term is of the same order as the bilinear forms and therefore can be omitted. We remark that 
the added term has the physical meaning of the viscosity. 

The method of the proof is the following: 
(a) The existence of the solution of (4.3) based on the Galerkin approximation will be proved. 
(b) A priori estimates I and II independent of E and r~ will be derived. 
(c) Limitation processes over m, E and v will be performed. 
(d) The uniqueness of the solution of (3.3a) will be proved. 
(e) The existence and uniqueness of the solution of (3.3b) for every t E I will be proved via the 

usual elliptic equation technique. 
The existence of uCV will be proved by means of the finite-dimensional approximation. Let 

h/r, = {ai} be a countable basis of the space H”(Q), i.e., each finite subset of MH is linearly 
independent and span {ai ( i = 1,2, . . .> is dense in g(Q), as H”(Q) is a separable space. Let Yarn be 
the space spanned by (aj 11 d j, k < m>. Then the approximate solution a, of the order m satisfies 

(g&(r), aj) + A(a,(t), &j) + V(at~~(t), aj)s + (z(%(t)), aj) + d(jL(%(t), aj) 

- (P(t), aj) = 0, 1 f j, k d m, (4.4) 

CL&, to) = 0. (4.5) 

Since {aj}j”= 1 are linearly independent, the system (4.4), (4.5) is a regular system of ordinary 
differential equations of the first order and therefore (4.4), (4.5) uniquely define a, on the interval 
I, = (to, t,). Therefore, (4.4) is valid for every test function y(t) = c?= 1 ci(t)aiy t E I, where ci are 
continuously differentiable functions on I,, i = 1, . . . ,m. Particularly, it holds for y(t) = u,(t), 
tE I,. 

A priori estimates I and II show that t, = tl. 

4.1. A priori estimate I 

Using (c) and (d) mentioned above we have 

(a/axi(p- i&i(r)B,(r)), r,(r)) + (/J- ’ RotCunt(tL Bm(t)l, B,(t)) = 0, 
wLt(0, %I(~)~ %I(O) = 0, h(%tW, CdQ, T,(O) = 0. 

Let us introduce the notation 

X?l = b,(% - TO, %I) + bp(% T,). 

(4.6) 

(4.7) 
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Let apij/axj E L”(Q) Vi, j. Then there exists a positive constant c independent of m (and also of 
E and y) such that 

= Is (alaxj(Pij(T,(t) - T,))Ui(t) + P T,pijaui(t)laXjT,(t))dx 
a 

d 4 + II T,(t) II I, I II Ut) II 0,N + II T’(f) I/o, 1 II %n(t) II 1,Nb 

Via the integration of (4.4) (with y(t) = a,(t)) in time over Z, = (to, t,) we obtain 

(4.8) 

+ v(dtL G&)), - VW, a,(t))1 dt + (JEIhn@), dt)) = 0. (4.9) 

Since (j:(u), u) 2 0, according to the ellipticity (3.4) of the bilinear form A@, a) and due to (4.6) 
and (4.8) after some modification we obtain 

e0 II %(t) l%N f 2ca 
s 

iI &n(z) II :, N dz + 211 
s 

Il~m(~)/lsd~ 
1, 1, 

G 2~ s (1 + IITrn(~)lh,~ II%dZ)IIO.N + IITm(~)llo,~ b’rn(~)lhdd~ 
1, 

+2 s IIp(~)ll, Ib&IIl,Nd~~ (4.10) 
IIn 

where e. = min { p ‘12, p- ‘12, (p c,)~/~}. According to the Gronwall lemma, after some modification, 
we have the following estimates: 

II dt) II 0,N < c, t E I, 
f 

II&n(~) tl:,Ndz < C, Y II~m(~)ll:d~ G c> I 

where c = const. > 0 independent of m. 
From these estimates we obtain 

{u,(t); m E N} is a bounded subset in L2(I; II), 

{q1’2u,(t); m E N} is a bounded subset in L2(I; E). 

(4.11) 

(4.12a) 

(4.12b) 

4.2. A priori estimate II 

We shall show that 

u;(t) is bounded subset of L2(I; (r)‘). (4.13) 
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By virtue of (3.17) and (4.12) we obtain 

where c is a positive constant independent of m, E, q and where the separate terms of 
&,(a,(t), a,(t), a(t)) have a sense due to the estimates (3.7) (3.9), (3.10), (3.13) and (3.14). 

Linear form a + A@, a) for a fixed a E B is continuous on fi so that 

A(&), a) = (&@), a), AB E y;p(g, @)‘), (4.15a) 

(a(r), a), = (U(t), a), A, E Y(H, (H)‘). (4.15b) 

Then (4.5), (4.6) are equivalent to 

(6’~~ + ABarn + ~A,u, + ajEl(q,J + h, - P, Qj) = 0, 1 <j < m. 

Let S, be orthogonal projections Ho + W”, where W” was defined above, then _ 

(4.16) 

S,h = F (h, Wj)Wj. 
j=l 

Then from (4.16) and from the fact that &,,a~ = a, we obtain 

&a’ = S,(P - &(I, - +'&,, - ijj;(U,,,) - h,). (4.17) 

Then according to (4.12a) and (4.15b) &u, is a bounded subset of L2(I; (H)‘) nL2(I; (IJ”)‘), and 
therefore from (4.12b), 

II vben IIL2(I;qr)‘) = wf2). 
But due to (4.2), 

lIj,l(~)ll* d c( [/WWdx)l’2, 

where /I * II* is the norm in (‘H”,N(Q))‘, then ji(u,,J is a bounded subset of &(I; (‘III’~~(Q))‘). Thus, 
(4.17) indicates that ah = S,p,, where P,,, E PP c L2(I; (e)‘), and where c??~ is a bounded subset 
of L2.(I; (r)‘). Since 1”2aj is an orthogonal system in (H”)’ (with respect to the norm 
lb II& = II AC ‘P llp) and since Ilp II& = c?= 1 (P, ajAfi2), II S,,,P l?p,, = ~j”= 1 (p, ujAj’2), then 

II &lP I/(&) d c IIP II(r 
which proves (4.13). 

(4.18) 

4.3. Passages to the limit over m 

At first the limitation process with m, i.e., the convergence of the finite-dimensional approxima- 
tion will be proved for E, q being fixed. 
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From the estimates I and II as well as from (4.11) and (4.12) the subsequence {a,(t), p E IV} of the 
sequence {a,, m E N j>, can be taken such that 

a, + aerl in L,(I; Ho) *-weakly2, 

a, + 4, in L2(l; Hi) weakly, 

a, + a,, in L2(1; (r)‘) weakly, 

a, -+ aEV in L2(I; Ho) strongly. 

(4.19) 

Thus, for the appropriate components u, and B, of a, we have 

vip + Vieq weakly a.e. in G x I, 

weakly a.e. in G x I 
(4.20) 

Bip + B&q 

(where vipc, ViEq, Bipy Bi,q represent the ith component of v,, vPrl, B,, B,,,,, respectively) since u, + uEV, 
B, + B,, in L2(I; ‘H”,N(!ZJ)) strongly or in L2(I; 2Ho,N(Q)) strongly, respectively. Furthermore, 
{ ji(um)>, {Virujp}, {Bi,Bj,>, d ue to (3.10) and (4.12a), are bounded subsets of spaces 
L2(I; ‘(H’gN(Q))‘) and L2(I; Li,2(s2)), respectively. Then we can also assume that 

ji(ur) + x weakly in L2(I; (‘H’,N(s2))‘), (4.21a) 

Uipvjp -+ Oij weakly in Lz(Z; L,,,(sZ)), (4.21b) 

VipBjp + ‘Oij weakly in L2(I;LP,2(L2)), (4.21~) 

BipBjp + 20ij weakly in L2(I; LP,2(Q)). (4.21d) 

From (4.20), virvjp + UiE~vjz~~ uipBj@ + ViaqBjEqy BipBj, -+ Biq Bjq in the sense of distributions in D x I, 
which comparing with (4.21b)-(4.21d) gives 

Oij = VielVj,q, ‘Oij = UieqBj,u, 20ij = BiqBj,q. 

But 

b(~,, u,, Wj) = -b(~,, Wj, up) + -b(~,,,, wj, u,,) weakly in L,(I) VWj 

(see [2]). Similarly for the other trilinear forms, 
77 -0 ( a,, a,, aj) + - ~O(aEvy aj, u,~) weakly in L2(Z) Vaj. 

From (4.3a) for m = p we obtain 

s [(g&(t), @j(t)) + AC%,(t), aj(t)) + E(a,,(t), aj(t)) + q(a,,(t), aj)s] dt 
I 

+ (X(t), wj(t)) = 0 vj~ 
where we denote by x = J;(uJt)). 

(4.22) 

2The function fi +f*-weakly in &,(I; HosN(0)) if $!(fj(t), rp)dt ,,zIY J:;(f@b cp(t))dt ‘v’q E &U; ff”*N(W). 
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But the system of functions {Ej} is complete in H”, so from (4.22) it follows that 

s 
[(&a&(t), a(t)) + A(6 a,,(r), a(r)) + E(r; a,,(r), a(t)) + v(G,(~), a(O)J dt I 
+ (x(t), w(t)) = 0 Va E &. 

Since (4.3) and (4.11) are satisfied it is sufficient to prove that 

x(t) = JEl(%#)). 

To prove (4.23), similarly as in [2], the property of monotonicity will be used. Let 

a E &(I; E) such that a E &(I; (Zj”)‘), u(to) = 0. 

Let us put 

(4.23) 

X, = (JEI(q&)) - JEI(a(t)), q,(t) - a(0) + 
s 

A(r; q,(t) - a(t), up(t) - a(t))dt 
I 

+ YI 
s 

I lIq&) - a(t) II&dt + 
s 
I W’a$) - &a’(t), ~~(0 - @))dr. 

From (4.3) we have 

X, = 
s 

V’(t), a,(t))dt - (W,(r)&)) - (JEl(a(t)Y aJr) - a(0) 
I 

- s CA@; a,(t), a(t)) + A(r; a(r), a&) - @))I dt I 

- vl s I k&L 4Ns + (a(Q9 up(t) - a(O)J dt 

- s C(&&(O, 40) - (&a’(t), a,(t) - @))I dt. I 
Hence X, + X, where 

X = s I VW a&)) dt - k(t), a(t)) + Jti(a(t), a,,(r) - a(t))1 

- s Ma,,(t), a(t)) + 440, a,,(t) - a(t))1 dt I 

- v s I C(a&), a(t)), + (a(t), u,,(t) - a(t))J dt 

- s C(&d,(t), a(t)) - (~a’@), a,,@) - @))I dt. I 
Since Xp(t) 2 0 for all p then X(t) > 0. 
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Let us put a = a,, - Au, A 2 0, where 

u E &(I; p) such that u’ E &(I; (r)‘), u(to) = 0. 

Substituting for a dividing by /1 we then successively have 

(x(t) - J,‘(dt) - Au(t)), u(t)) + 1 
s 

{h(t), u(t)) + q II u(t) 1ls.N + (u’(t), u(t))} dt >, 0. I 

Hence, in the limit I-+ 0 we obtain 

from which 

Therefore, we proved the existence of the vector function uCV satisfying (4.3) and the conditions 

u,,(t) is bounded in &(I; g’)nL,(I; Ho), 

u&(t) is bounded in &(I; (g)‘), (4.24) 

q1i2u,,(t) is bounded in L2(I; g). 

Now the limitation process E, y + 0 will be investigated. Let us put for a E fi fixed, 

K, = s C(~a’(% 40 - 4&N + W,,(t), a(t) - a,&)) 
I 

+ %,(O, a@) - a&)) + rlk,@L a@) - dO), 

- VW, a(G - a,&))1 dt + J&4 - JAGJ. 

By virtue of (4.3), 

According to the initial conditions the first term is equivalent to 4 I&(a(tl) - a,,(t1))12 and since the 
functional w + j,(w) is convex, the second term is 20. Thus YEW 2 0, i.e., 

s IMa’@), 0 - d0) + A@&), 40) - ~(u,,(O, 40, a,,(t)) + rl(a,,(t), a(t)js 
I 

- VW, 40 - a,,@))1 dt + J&4 > 
s 

CA(a,,(% aE,(0) + rl II a,,(t) II21 dt + Jh&)) 
I 

a 
s 

Ma,,(O, a&))1 dt + J&&)). I 
(4.25) 



J. NedomalJournal of Computational and Applied Mathematics 59 (1995) 109-128 125 

Due to (4.24) there exists a subsequence, we denote it also by (a,,} such that 

a,,(t) + a(t) in ,!,,(I; Ho) *-weakly and weakly in &(I; H’), 

a&(t) -+ u’(t) weakly in &(I; (g)‘). 

From (4.25) (4.26) it follows that 

(4.26) 

s [(au’(t), a(t) - a(t)) + At40, a@) - u(t)) - Wdt), a(t), 4)) - P(t), a(t) - u(t))1 dt + J(w) 
I 

2 lim inf s CA(a,,tt), a&)) + c7jEtvEJI dt 2 s CA(+), 4t))l dt + JW) (4.27) 
I I 

as 

lim inf s &,,tO, a,,(t)) dt 2 A(+), a(t))dt 
I s I 

(4.28) 

and since (see [2]) 

s 
j(W) dt Q W’(t)) (1+&)/z (4.29) 

Z (1 GXI 

dxdt)l’(l+E’( I;., dxdt)‘lo+‘), 

hence 

s 
j&,(t))dt 2 c (b j(v&))dr)(li’), c = C(E), (4.30) 

I 

lim inf 
s 

jE(vE,,(t)) dt > lim inf j(v,,(t)) dt. 
I s I 

(4.3 1) 

Also since the function w + jr j(w(t)) dt is convex and continuous on &(I; ‘H’gN(Q)), then it is 1.s.c. 
in the weak topology of the space &(I; ‘H’~N(CC?)) and thus 

lim inf j(v,Jt)) dt > 
s 

j(v(t))dt 
I s I 

which together with (4.28) proves 

lim inf 
s 

jE(vErl(t)) dt > 
s 

j(v(t)) dt. (4.32) 
I I 

Then (4.26)-(4.31) prove that (v(t), B(t), T(t)) satisfies (3.3a). 
The existence of @p(t) follows from the Lax-Milgram theorem for every t E I. Thus, we proved 

that (u(t), G(t)) is the solution of the problem given. 

4.4. Uniqueness of the solution 

To prove the uniqueness, we shall assume that (v(t),B(t), T(t), Q(t)) and (vl(t),Bl(t), T,(t), Ql(t)) 
are two solutions of the problem discussed and let N = 2. Then s = 1 and ‘IPN(Q) = ‘III’,~(C?), 
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2fp(f4 = 2fp.N (62) and 3HsV1 (Q) = 3H1*1(Q) and therefore terms of viscosity regularization 
V(% w)s, r(W), C)S? W(r), )S z are of the same order as ,ka(u(t), w), b&(t), C), A(T(t), z) and 
therefore can be neglected. Let us denote U(t) = u(t) - ur(t), B*(t) = B(t) -B,(T), 
T*(t) = T(t) - T,(t), Q*(t) = Q(T) - @r(t), then (a*(t), G*(T)) = (a(t) -al(t), Q(t) - QI(t)). 

Let us put Q = a(t) or a = al(t), respectively, and let us put them into (3.3a). Then 

11 I 
-; $ {l&~*(~)12} - A(a”(t), a*(O) - &W), a(r), a*(r)) + Wa1(t), al(t), a*(r)) 

- C&V*(t), U(t)) + &W(t), T*(t))] 

Hence, 

f i (8 b*w12} + A(a*(t), 40) d - W(t) - w, u(t) - U(O, U(t)) 

- WW, 40, u(t)) + F + G 

where 

F = (a/axi(P- IBi(t) u(t)) - (a/aK(P- ‘gli(r)Br (t)), u(t)) 

+ (P- 1 Rot CW, WI, B*(t)) - (p-l RotCu,(t), B,(t)l, B(t)), 

G = h,(W), T*(t), T*(t)) + c(llWIl~,~ II T*@IIO,N + IIWIII,N II T*@)ll0,1) 

and where 

IuT*(G W) + w4~L T*w)I G 4 ~*@Hl,l II W)IIO,N + II ~*@)llo,l II WHl,N)* 

Furthermore, as above 

(a/‘axi(P- ‘Bi(r)B(t)), u(t)) + (cl- 1 Rot [u(t), B(t)], B(t)) = 0, 
then 

F = (a/aXi(~-‘(B,(t)B*(t) + BT(t)B(t)))y U(t)) 

+ (P- 1 Rot CW, WI, B(t)) + (p- 1 Rot W(t), WI, B(t)) 
= - (LC’(Bi(t)B*(t) + B*(t)B(t))y dU(t)/dXi) 

+ (P- ‘(P(t), WI + W(t), WI), RotB*(O). 
Since as above 

d co Ilm II 1.N II w Ils,N9 

(4.33) 
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ItP- 1 RotCu(O, s(t)], c)l G Cl 11 U(t>lt2, IIU@) II;!; IIB(t)ll:!2, IlB(t) II:ii 11 Clls,N 

d cl 11 u(t) 11 :!i IIs /I :!i 11 clls,N, 

~~,~~;~,z~+~,~~~w~z~~~c~~~iz~~l,l~~w~~O,N+ /~Z~~O,l~bdl,N)~ 

lb@, w, u(t), w)l < c3 lIwII l,N IIU@IiO,N IIWIIs,N d cl lbll:,N + c2 iI u(t)Iii,N bll?N, 

and therefore 

IW)I d cO(llB(t) 11 :‘i IiB(t)iih!2, Iis*@) II :!i’ ttB*@)ii:!2, 11 u(t) II 1,N 

+ II w II :i?f II w II A!zN IP*m II :izN IIB*(t) lIi!zN 

+ ll u(t) 11 :ii ll utt) ll :!“N /l B(t) ll :i”N listt) II :i”N ll B*(t) ll 1.N) 

G c,l(ll u(t)II:,N + IIB(t)I/:,N) 

+ &~l) IIBtt)/l:,N iig@I/&N IiB@):,N + cp2 IIB(t)Ilt,N 

+ &72) Ilo@) II:,N II”tt) 1lg.N IIB*@)Ii:,N 

+ c,3(11 u@il:,N + liB*(t)Ii:,N) 

+ K(Cp3) IIB@) t1f.N ils@IIi,N II u@II:,N> 

Ib(U(t)v “‘7 u(t))1 +. IF( G cp(ll u(t) ll:,N + IIB@) II:,N, 

+ K(c,)(bII:,N + ilB(t)Ilt,N)(llU(t)Il~,N + IIB(t)IIi,N)> 

A(a*tt),a*(t)) 2 c, IIa*@)II:,2N+2. 

Then (4.33) yields 

; (l&a*(o12) d c,(Ila*(t)Ii:,N2+2) Ib*(t)/i&2N+2 

= c,g(t)(llu*(t)lI~,ZN+Z), 

where g(t) is an integrable function in variable t and thus 

lb*@1ki,ZN+l < 
s 

’ g(z)(llU*(z)II~,2N+l)dZ. 
to 

Hence u(t) = 0, i.e., U(t) = 0, B*(t) = 0, T*(t) = 0. 
Let @j(t) and Ql(t) from 3H1,1(!2) x I be two solutions of (3.3b). Then 

QW), q(t) - W)) - W(t), q(t) - @1(t)) 2 0, 

@W), q(t) - @1(t)) - (Yu(t), q(t) - @l(f)) a 0 V’cp(t) E 3H1, ‘(QL vt E 1. 

Putting cp = Ql in (4.34a) and cp = @ in (4.34b) and adding them, we then obtain 

0 2 a&W) - @I@), Q(t) - @1(t)) a C@ II w - @1(t) ll1,19 
hence Q(t) = Gl(t), which completes the proof. 

(4.34a) 

(4.34b) 
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