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Abstract

Results of this contribution were obtained in the course of an investigation of a simple model problem of the global
geodynamic and geomagnetic fields of the real Earth as well as model problem of astrophysics. The problem leads to an
initial boundary value problem for a coupled system of equations of magnetodynamics of incompressible, electrically
conducting and thermo viscous Bingham’s fluid under the gravity effect. The variational formulation of the problem and
the existence and uniqueness of the solution will be given. While the existence of the solution is proved for the two- and
three-dimensional cases, the uniqueness can be proved for two-dimensional case only.

Keywords: Generalized magnetodynamics; Partial differential equations; Variational inequalities; Viscoplasticity;
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1. Introduction

One of the important problem in the present geophysics is the connection of the geodynamic
processes and the geomagnetic field in the Earth’s interior and the mutual influence of the
geomagnetic fields in the core and the mantle of the real Earth. So for the most part, the plastic and
fluid motions in the Earth’s interior consist of an axisymmetric nonuniform rotation and an
axisymmetric statistical distribution of the cyclonic convention. There may be giant circulation
cells in the core and the mantle of the Earth, violating this simple generalization, but we know so
little about nonsymmetric circulation that we cannot include it in any meaningful way.

Contemporary models of the Earth are built isolated corresponding to the individual geo-
physical fields. The model presented gives a new approach how to study mutual relations
between geodynamic and geomagnetic processes in the Earth’s interior as well as in its separate
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parts (the core, the mantle and the lithosphere). The geodynamic model of the Earth is based on
assumptions that in the course of the development of the Earth’s body the important factors are
gravity, radioactivity, temperature, density differentiation associated with the phase transitions of
the Earth’s material under high temperatures, large pressures and chemical reactions under the
same conditions (see [11]). Then the Earth’s body can be characterized by a thermo-elasto-visco-
plastic state in a relatively weak magnetic field. Consequently, for the derivation of equations
describing geodynamic processes in an irregular rotating Earth’s body the thermo-elasto-visco-
plastic rheology and the magnetodynamic theory can be used. In the paper the Earth’s body will be
interpreted by a moving and heating incompressible Bingham’s medium, which produces the
magnetic and gravity fields. Boundary conditions on the surface of the Earth follow from our
knowledge of the velocity, temperature and gravity potential ficlds on the Earth surface and from
the presumption that the surface of the Earth is strongly electrically conductive. The model based
on the thermo-Bingham rheology represents only a simple model of the real Earth. It gives,
however, the idea how to solve the coupling of the geodynamic, geothermal and geomagnetic
processes under the gravity effect in the core and the mantle of the Earth as well as the coupling of
the magnetic field in the core and the upper parts of the Earth, i.e., the mantle and the lithosphere.

In the paper we shall assume that Earth’s body as well as other planets and stars are
approximated by the moving visco-plastic electrically conducting incompressible thermo-
Bingham’s medium which is under the gravity effect. For the case of materials processing in the
space outside the Earth, similar assumptions can be considered.

The classical equations of magnetodynamics were solved during the last few years in several
papers. So an initial boundary value problem for a system of equations of magnetodynamics of
incompressible, electrically conducting and viscous Newtonian fluid was studied in [15]. Firstly,
the incompressible electrically conducting Bingham’s fluid was investigated in [2]. The mathemat-
ical model of global gravity field coupled with geodynamic processes and thermo-magnetodynamic
processes in the Earth’s interior based on thermo-Bingham’s rheology was discussed in [11]. Stédry
and Vejvoda [16,19] prove the existence of time-periodic solutions of equations of mag-
netodynamics — the incompressible case in [17, 19] and the compressible case in [16]. Various
existence results have been proved in numerous papers, we mention here only Milani [8, 9] and
Byhovwskii [1].

The aim of this paper is to prove the existence and uniqueness of the time-dependent solutions to
a system of equations appearing in generalized thermo-magnetodynamics based on the thermo-
Bingham rheology which with sufficient accuracy simulate geodynamic and geomagnetic processes
in the planet’s and stellar interiors as well as processes in materials processing in the cosmic
environment.

2. Mathematical model and classical formulation of the problem

In the sequel we shall deal with the incompressible moving thermo-Bingham fluid under the
gravity and magnetic effects.

We shall suppose that @ = RY, N = 2, 3 is a bounded domain with a Lipschitz boundary 09,
occupied by a moving Bingham’s fluid. Let I = (¢, t;) be a time interval. We shall use the notation
u; j = Ou;/0x;and i = 0u/0t(=v) and dv;/dt = 0v;/0t + v;v; ;. The Einstein summation convention
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over the range 1,..., N will be used. Let n denotes the unit outward normal vector at x € 0Q. Let
[-,-] denote the vector product in R and N = {1,...}. The strain-displacement relations are

giw) =3w ;+u;), Gj=1,...,N). (2.1
We introduce in the sequel the notation D;;(u) = e;;(i). The stress—strain relation of the thermo-
Bingham medium is defined by

T =1h+ T+ T, (2.2)
where 1P is the Bingham stress defined by

1 = —pdi; + gDy;/(Du)''? + 2aDy;, (2:3)

and g and g are thresholds of plasticity and viscosity, p represents a spherical part of the stress
tensor 7;;' (p has a meaning of a pressure) and §;; is the well-known Kronecker symbol,
Dy = 3D;;D;;(see, e.g., [15], [2, Ch. VI, Section 1, formula (1.9)]). Due to Nowacki [14], the thermal
stress satisfies the relation

TiTj = Bii(T — To), (2.4)

where f;;is a coefficient of thermal expansion, T, > 0 an initial temperature in which the medium is
in the initial stress—strain state. Furthermore, due to Landau and LifShitz [6] the Maxwell stress t)}
is defined by

where H and B represent the intensity of the magnetic field and the magnetic induction vector,
respectively, and B = uH with u the magnetic susceptibility.

Without loss of generality of the problem studied, we can solve the following problem:

In dealing with the motion of the visco-plastic electrically conducting incompressible thermo-
Bingham’s medium under the gravity effect, the following system of equations for the velocity
v = (v;), the magnetic intensity B, the temperature T and the perturbed gravitational potential
¢ can be considered:

pdv;/dt = (—pd;; + GDi;/(Du)'"* + 2aD;; + Bi(T — To)

+ (H;B; — (HB));)).; + fi, B=pH on QxI, (2.6a)
Dive=0 on Q2x1, (2.6b)
0B/t + Rot((uo) ' RotB) — Rot[v,B] =0 on Qx]I, (2.6¢)
DivB=0 on QxI, (2.6d)
pBijToDi; + pc.dT/dt = W — (k;T;),; on Qx1, (2.6e)
A9 = —4npG.pk™! +2w? on Qx1, (2.61)

! The tensor of the second order with components t;; can be decomposed into its spherical part and its deviator by
the relation Tij = %Tkkéij + TB
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with p, 4, &, Bij, To, p, 0, ce, (k3)), G, K, w given. We define
¥ = —4npG.pK ™' + 2w

Moreover, the following boundary value conditions,

v=0 ondQ2xlI, (2.7a)
Bn=0 ondQxl, (2.7b)
[n,RotB] =0 on d2xl, (2.7¢c)
T=0 ondQ2xlI, (2.7d)
&=0 ondQ2xl, (2.7¢)

and the initial conditions,
v(xa tO) = 01 B(xa tO) = 0! T(x, tO) = 0 (28)

are considered in the above system of equations.

The generalized model of the real Earth is much more complicated (see [11]). In this model
problem the metallized state of the rocks, the volume density of the electromagnetic force, the Joule
heat, the viscous force evoked by the viscous stress, the Coriolis force, diffusion processes, etc., are
omitted.

3. Variational formulation of the problem

We introduce the following notation of the employed spaces, scalar products, norms and forms.

We denote by C(R) the set of all functions defined and continuous on £, by C¥(R), 1 < k < oo,
the set of all functions defined on § which have continuous derivatives up to the order k on £2.
Moreover, we denote by C(Q2) the space of all functions in C(£2) which are bounded and uniformly
continuous on & and for an integer 1 < k < oo, we denote by C*(2) the space of all functions
u e C*8) such that Due C(Q) for all « € My i, where My, is the set of all N-dimensional
multiindices of length less than or equal to k. We denote C%®() = %o CHQQ) and
C*(Q) = N&-0 C¥(Q). We introduce the space D(Q) as a space of all functions in C*(Q) with
a compact support in Q. The space is equipped with the ordinary countable system of seminorms
and as usual D(R, R¥) = [D(Q)]". ‘

We introduce the space L,(R2), 1 < p < o, as the space of all measurable functions such that

i/p
nfuL,,(m=( f | f(x)l”dx) <.

By L. (Q) we denote the set all measurable functions f defined almost everywhere on £2 such that
| f 1l = esssupg| f(x)| is finite. The space is endowed with this norm.

We shall employ the Sobolev spaces of functions having generalized derivatives of the (possibly
fractional) order s of the type [H*(2)]* = H**(Q) (see, e.g., [7, 13]). The norm will be denoted by
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|| - |ls.« and the scalar product by (-, -), (for each integer k). We set H>*(Q) = L%(Q) and denote by
(, ) the scalar product in L%(Q) (as there is no danger of any confusion with k). Denote by H§*(Q)
the closure of D(2) in the norm of the space H%*(Q). Moreover, we shall denote by | - ||g the
equivalent norm in H"V(Q) induced by the small strain tensor e, ie., |uli=
foe;(w)e;w)dx + |lullg 5.

Moreover, we define for s > 1 the following spaces:

TH*M(Q) = {v|ve H*¥(Q), Dive =0; v =0 on éQ), N =2,3,
2H¥(Q) = {C|Ce H*M(Q), DivC=0;nC =0 on 6Q}, N =2,3,
SHYYQ) = {z|z € H**(Q), z = 0 on 0Q},

H* = H"M(Q) x 2H*¥(Q) x 3H>1(Q).

We put H! = H. Then '#(Q) = 'H"¥(Q)n D(Q,RY).1H*¥(Q) is a Hilbert space with the norm
|- |ls.5- For the sake of simplicity, we put *H¥(Q) ='H(Q), |||l = | ‘li1.~, and in H*¥(Q),
lllo=1l"llo.y- We shall denote by w; ecigenfunctions of a canonical isomorphism
A tHY - (CHYY, de, (w,0), = A,(w;,0) VoelH®N, |wilo =1 (see [2]). Moreover,
2(Q) = 2H" Y (Q)nD(Q,R¥); 2H*¥(Q), s = 1 is a Hilbert space with the norm || ||, y. We put
ZH(Q) = 2H"N(Q). Furthermore, 3#(Q) = 3H» Y (Q)nD(Q); *H>*(Q), s = 1 is a Hilbert space
with the norm |-|,. We put *H(Q) = 3H"'(Q). Similarly as above, we define C; and z,,
C;e *H*N(Q), z; e 3H*(Q) eigenfunctions of canonical isomorphisms 24,:?H*¥ — (*H>") and
34,:3H% - (3H>'Y. We shall denote the dual space of *H*¥(Q2) by (* H*¥(Q))’; similarly in all
other cases. Furthermore, we define the following spaces:

1H = {v|ve Ly(I; 'H*Y(Q)), v' € L,(I; *H>(Q)), v(t,) = 0},
2H = {C|C e L,(I; 2H*M()), C’ e L,(I; 2H*(Q)), C(to) = 0},
*H = {zlz € Lo(I; 3H**(Q)), 2’ € L,(I; *H**(Q)), z(to) = 0},

H='Hx*HxH.

Throughout the paper we shall assume that the body forces f(x,t) € L,(I, H*¥(Q2)) and thermal
sources Wix, t) e L,(I; H"(Q)), I = {to, t,». We suppose that the density p, the thresholds of
plasticity and viscosity g and j, the bulk modulus K, the specific heat ¢, the electric conductivity o,
and magnetic permeability u are positive constants. G, is the gravitational constant. The space-
dependent coefficients of thermal expansion (f;;) will be supposed such that 68;;/0x; ¢ L, (Q)
Vi,je{l,...,N}.

Moreover, we suppose that k;; € L, () are Lipschitz on Q, fulfil the usual symmetry condition
K;; = x5 on Q for every i,je {1,...,N} and

Ky zerlléllin xeQ, £eRY, cr =const. > 0. (3.1)
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Forv,we H"Y(Q),B,Ce H"¥(Q), T,ze H'}(Q), &, p €« H''}(Q) we put

alo, W) =2 f D, () Dyy(w) dx, (3.22)
Q
bu(B, C) = (u~ ' Rot B, Rot C), (3.2b)
aT(T, Z) = j K,'jT:iZ’jdx, (32(:)
Q
45(@, 9) = f 8,.0.dx, (3.2d)
Q
o) =2 J (Du(2))2 dx, (320
Q
bolv, g, 2) = f peatg zdx, (320
Q
b(u,v, w) = J pu;v; ;w;dx, (3.2g)
Q
b(T,v) = f (BT),yuidx, (3.2h)
Q
by(v,g) = f pToBijvi jg dx. (3.21)
Q
Thus, we introduce the bilinear form A on H fora = (v, B, T), « = (w, C, z) by
Ala, @) = jia(v, w) + by(B, C) + a(T, 2), (3.2))
the matrix
g=(gij), gij=P5ijs lzl,,2N+1,]=1,,N,
éaiJ':ﬂ_l&ij, l=1,,2N+1,]=N+1,,2N, (32k)

éaij:—pceéija l=1,,2N+1,_]=2N+1,
and the right-hand side
P=(f,0,W)e Ly(I, H-*¥*1(Q)). (3.21)

Furthermore, we have

1
D;j(w)D;j(v) < 2Di*(u)Di*(v), Dy = 2% (1 — g '?)7,
where 12 are components of the stress tensor deviator and 1, = (¢ + 2aDj/?)?.
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Let v,we 1HVM(Q), B, C € 2H"N(Q). Then, according to Eq. (2.6a) and Maxwell’s stresses for
incompressible media, we have

(@) (8/0x(u~'|B|?), w;) = 0, since Divw = 0.

(b) (Rot(noRotB), u™'C) = [,n0 " 'u"%[n, Rot B]Cds + (1, Rot B, Rot(x"'C)) = (7o Rot B,
Rot(u~1C)) as [n, Rot B] = 0 on dQ, where n, = (ou) ™.

(c) (8/0x,(u~'B:B),w) = (1™ 'w, B;0B/0x; — grad }|B|*) = (u™ 'wj, B;(0B;/dx; — 0B;/0x;)) =

—(u~[w, B],RotB) = —(u"'Rot[w, B], B) as (1~ 'w, grad%|B|?) = 0 (for Divw =0 and w = 0
on 8Q); hence (8/6x;(u" 'B;B), w) + (1~ ' Rot[w, B], B) = 0 (see [2, 3]).

(d) b(v,v,v) =0 (see [17]).

We multiply Eqgs. (2.6a), (2.6¢), (2.6e) and (2.6f) by w — v(t), C — B(t), z — T(t), and ¢ — @(t),
respectively, and we add the first three equations. We integrate both the sum and the last equation
over 2 and apply the Green’s theorem satisfying the boundary conditions. According to (a)—(c) the
terms (9/0xi(u " |B(6)I*), wi — vi(t)), (9/0xi(u” "Bi(t)B(2)), v(t)), (+~ ' Rot[v(t), B(t)], B(t)) disap-
pear. Then, after a certain modification (including among others the integration in time over the
interval I and the substitution J(w) = |; j(w(t)) dt), we obtain the following variational formulation:
Find a vector function @ = (v, B, T) € H and a scalar function ® € *H>'(Q) such that

J [(£a' (1), a(t) — a(t)) + Ala(t), a(t) — a(t)) + (E(a(1), a(r) — a (1) + (P(1), a(t) — a(1))
I

+ gjw() —gj@®))]dt=0 Va=w,C,z)eH (3.3a)
and
ag(P(1), p(t) — ®(1)) — (P(), @) — P(1)) =0 Vo(t)e *H*(Q) Vtel, (3.3b)
where
(E(@()), a(t) — a(t)) = (Zo(a(t)), a(t), a(t) — a(t)) + by(T (1) — To, wlt) — v(1))
+ b, (v(1), z(t) — T (1)), (3.3¢)

(Eola(t)), a(t), a(t) — a(t)) = b(v(r), v(2), w(t) — v(t)) + bo(v(t), T (1), z(t) — T (1))
+ (8/0xi(p~ ' Bi(1)B(1)), w(t) — v(t))
— (1~ ' Rot[v(2), B()], C(t) — B(t)). (3.3d)

3.1. Preliminary results and main theorem

In the sequel the following lemmas will be used.
Lemma 1. Let s = 3N, then v; j€ Ly(Q), for eachve '"H>N,i,j=1,...,N.
For the proof see [2, 7].

Lemma 2. (A corollary of the Gronwall lemma). Let g(t) € C(I), g(t) = 0, p(t) € C(I), p(t) = 0, g(t)
be the nondecreasing function with increasing t. Let p(t) be a solution of the inequality

t

p(t) < ¢o j p(tydt + g(t), to <t <t;, co =const.

to
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Then there exists ¢, = const., ¢; = ¢1(co, t1, to) such that
p(t) < cig(t) Vtel, where I = (to,ty).
For the proof, see [7].
From the above given assumption the symmetry
a(u, v) = a(v, u), bu(B, C) = by(C, B),
ar(T,z) = ax(z, T), Ala,y) = Ay, @),
a5(D, ) = ag(p, D)

holds. Moreover, they yield that for ve *H"¥(Q), Be2H"¥(Q), T, ® € 3H"}(Q) there exist
constants cg > 0, ¢y > 0, ¢ > 0, ¢ > 0 such that

a(v,v) > cgliv||}x forall v e *H"¥Q), (3.4a)

bu(B,B) = cy | B3y for all Be *H*¥(Q) (3.4b)
(which is the corollary of Theorem 6.1, Ch. 7 in [2]),

ar(T, T) = cz | T3, forall Te3H"Y(Q), : (3.4¢)

ay(®, D) = co || P13,y forall e *HM1(Q). (3.4d)

Therefore, (3.4) yields that for a = (v, B, T) and a = (w, C, z) there exists a suitable positive constant
¢, independent of « such that

Al @) = c,||af)? n+2 forallaeH. : (3.5
From the Holder inequality applied to b(u, v, w) we have

|blu, o, w)| < ¢y llalpye | W@ 2 Dol (3.6)
Y

where 2/p + 1/N =1, ie,
p=2N/(N —1). (3.7
Applying Lemma 1 we have

[blw, v, W)| < ca iy Iwlya Ielan s=4N (33
(see [2]). Since

Nolyzn <cllolifi ol and HY2MQ)c LY(Q), | 39
for p from (3.7), then

Ioiva Scaliolix lolifa Voe HEY@), (3.10)

where p is defined by (3.7). -
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From (3.8) and (3.10) we obtain

1/2 1/2 1/2 1/2
b, v, w)| < callull 5 Nl v Wiy IwloXlvlsn, s=3N. (3.11)

Furthermore, if u, v, w € ' (Q) then b(u, v, w) + b(u, w, v) = 0. The last equality is valid also for
ueLY(Q),v,we H"N(Q); b(u, u,v) = —b(u, v, u) for u, v e *#(Q) also holds.
Similarly bo(u, y, z) + bo(u, z, y) = 0, u € 'H*N(Q), y, ze Hy () and there exist positive con-
stants ¢s, ¢g, ¢7 independent of u, y, z such that
|bolu, y,2)| <cslu “L;;'(n) iy ”Lp(a) I {D:z} ey @
Scollu "Ll,}'(m Iyl @lzlls,a
<o luliA lalon Iy IvIcli Nzl s = 3N, (3.12)

where the second and third inequalities hold for z € H**(Q) only and the third requires the
additional relation u € H*'¥(Q).
Since

(6/6x;(y“1BiB), W) = J‘ ﬂ—l(BBi',' + BiB,,-)wdx

Q
=(u"'B;B, 0w/dx;) (due to DivB = 0) (3.13)

and

fl

(]1—1 Rot[v, B], C) J‘ y'l(va,- -_ U}'JB,‘ + U,'Bj.j — val-_,-)Cidx
Q

= —j ﬂ—l(lejCj,i - UngCj.i - U,-BjC,',! + va.-Ci,,-)dx
2

—L u~ w:B; — v;B)(Cj; — C; )dx = —(u~*[v,B],RotC), (3.14)
where the Green’s theorem and boundary conditions were applied, then (like in (3.5) and (3.7)) there
exist positive constants cg, cg, ¢y and ¢y such that
|(/0x,( ™" B;B), w)| < cs | BllZy@ | DwllLy, pfrom (3.7)
<co || Bl BllonlIwl*¥ (3.15)
and
(™' Rot[v, B], C)| < 1019 Ly I Bllyay I Clis.n
<cu el ol 3 I BIYF IBIGH I Clans (3.16)

where the second and third inequalities are valid for C € H*"(Q) and the third one is also valid for
ve H-N(Q).
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Therefore, due to the estimates (3.6), (3.8), (3.11), (3.12), (3.15), (3.16) there exist positive constants
C12,c13 and ¢4 independent of «, y such that

|Zole, &, 7)| <y ”“”%g“*‘(m Z [ DiVj ”Lfv”“(g)
iJj

<3 ||¢||1%;"+‘(n) 1y ls, 28 +1
Scrallaliy,zve1 lxllo 2n+1 ||Y||s1,/221v+1, s = %N, (3.17)

where the second and third inequalities are valid for ye H*2Y*1(Q) and the third also for
ac H1,2N+ I(Q)
The main result of the paper gives the following theorem.

Theorem 3. Let N >2, s =3N. Let
fe Ly(I;(*H>Y(Q))), W e L,(I; CH>M(Q))). (3.18)

Then there exist a vector function a = (v, B, T) and a scalar function @ such that

ve Ly(I; "H Q)AL (I, H*Y(Q)), v e L,(I;('H*M(Q))), (3.19a)
Be Ly(I; 2H V@) AL (I;2HONQ)), B’ e L,(I; CH*M(Q))), (3.19b)
T e Ly(I 3 H Y (Q) Lo (I; 3 H*1(Q)), T’ e Ly(I; CH*'(Q))), (3.19¢)
& e Ly(I; 3H (), (3.19d)
o(to) =0, B(tg)=0, T(t)=0 (3.20)

and satisfy the variational equations (3.3).

4. Proof of Theorem 3

To prove Theorem 3 the double regularization for the problem (3.3a) and the Lax-Milgram
theorem for the problem (3.3b) will be used.
Let J,(w) be a regularized functional of the function J(w) defined by

Jw) = f Giw(®)dt where j,(w (1)) = (Duw(®)* 92 dx, &> 0, 4.1
I

1+¢j,

for which

@) = [ aDu® 2 Dy0) Dy . 42

QxI
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Now for the problem (3.3a) we introduce the regularized problem (£,),: Find a vector function
a, = (v, B,,, T.,) € H such that

j [(Eay(0) a(0) — auy(0) + Al@un(t), &(1) — au(1)
I

+ r’(am(t)’ a(t) - aen(t))s + (E(aerl(t))’ d(t) - azr](t))
— (P(t), a(t) — a.,(t))]dt + J.(w) — J.(v,,(t)) =20 Va=(w,C z)eH, (4.3)

where Z is defined in (3.3c), s = 3N and 7 is a positive number. For N = 2 we obtain s = 1 and the
added term is of the same order as the bilinear forms and therefore can be omitted. We remark that
the added term has the physical meaning of the viscosity.

The method of the proof is the following:

(a) The existence of the solution of (4.3) based on the Galerkin approximation will be proved.

(b) A priori estimates I and II independent of ¢ and x will be derived.

(c) Limitation processes over m, ¢ and n will be performed.

(d) The uniqueness of the solution of (3.3a) will be proved.

(e) The existence and uniqueness of the solution of (3.3b) for every ¢ € I will be proved via the
usual elliptic equation technique.

The existence of a,, will be proved by means of the finite-dimensional approximation. Let
My = {&;} be a countable basis of the space H*(Q), i.., each finite subset of My is linearly
independent and span {&;|i = 1,2, ...} is dense in H*(Q), as H*() is a separable space. Let %™ be
the space spanned by {«;|1 < j, k < m}. Then the approximate solution a,, of the order m satisfies

(Ean(t), a;) + Alan(t), ;) + n(@n(t), &) + (E(@n(t)), ;) + G(jc@n(t), o))
—(P@),a})=0, 1<j,k<m, (4.4)
a,(x, ty) =0. (4.5)

Since {a;}7-, are linearly independent, the system (4.4), (4.5) is a regular system of ordinary
differential equations of the first order and therefore (4.4), (4.5) uniquely define a,, on the interval
I, = {to, t,). Therefore, (4.4) is valid for every test function y(t) = Y7L, ¢i(t)o;, t € I,, where ¢; are
continuously differentiable functions on I, i = 1,...,m. Particularly, it holds for y(t) = a,(¢),
tel,.

A priori estimates I and II show that t,, = t,.

4.1. A priori estimate |

Using (c) and (d) mentioned above we have
(6/0x:(1™ ' Byi(t) Bn(1)), 0m(t) + (1™ " RoOU[0,(2), B (t)], Bm(t)) =0,
b(v,,(2), v,u(2), v,,(t)) = O, bo(v,(t), T,u(t), T,(t)) = 0. (4.6)
Let us introduce the notation

Xm = bs(Tm - To, vm) + bp(vm’ Tm) (47)
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Let 0B;;/0x; € L*(R2) Vi, j. Then there exists a positive constant ¢ independent of m (and also of
¢ and #) such that

| Xom| = 1b5(To — To, ) + b, (v, Too)l

f (0/0xi(Bij(T(t) — ToN0i(t) + p To Bi;0v:(t)/0x; T, (1)) dx
<l + 1 T, 1 lom@lo,n + | Tl 0,1 1 0m(®) 11, 4)- (4.8)
Via the integration of (4.4) (with y(t) = a,,(t)) in time over I, = (to, t,,) we obtain
L [(Eam(t), an(t) + Al@n(t), an(t)) + (E(@m(t)), am(t))

+ 7(an(t), am(t))s — (P(1), an(t)]dt + (J;(0,(0), @,(1)) = 0. (4.9)

Since (j;(v), v) = 0, according to the ellipticity (3.4) of the bilinear form A(a, ) and due to (4.6)
and (4.8) after some modification we obtain

eolan(®I3x + 2c. f lan(@) I xdz + 2 f

I, I

lam(7)llsdt
<2 L (0 + I T 1, 1om(D o.v + | Ta(D o, 1 12w 11, ¥)d7

12 J 1P@1, [ an(@)] 1. d1, (4.10)

where e, = min{p'/?, u= 1% (pc.)!/?}. According to the Gronwall lemma, after some modification,
we have the following estimates:

lam®llon <c, tel, j lan(@ i ndt<c, 7 '[ lan()I$de <, (4.11)
I I

where ¢ = const. > 0 independent of m.
From these estimates we obtain

{an.(t); me N} is a bounded subset in L,(I; H), (4.12a)
{n'?a,(t); me N} is a bounded subset in L,(I; H). (4.12b)

4.2. A priori estimate 1]

We shall show that
a,(t) is bounded subset of L,(I; (H*)). 4.13)
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By virtue of (3.17) and (4.12) we obtain

Eo(am(t), an(t), a(t)) = (hn(t), a(t)), a(t) € Ly(I; H**¥*1(Q)),
4.14)
1w Lo msnv@yyy S 6

where ¢ is a positive constant independent of m, & n and where the separate terms of
Hola,(), an(t), (t)) have a sense due to the estimates (3.7), (3.9), (3.10), (3.13) and (3.14).
Linear form a — A(a, «) for a fixed a € H is continuous on H so that

Ala(t), ) = (4pa(t), ), Ape ZL(H,(H)), (4.15a)

(a(t), @), = (Asa(t), w), A, L(H,(H)). (4.15b)
Then (4.5), (4.6) are equivalent to

(Fay, + Apa, + nAsan, + gj;(v,) + hyy — P,a)) =0, 1<j<m (4.16)
Let S,, be orthogonal projections H° — %™, where %™ was defined above, then

S.h = i (h, wjw;.

i=1

Then from (4.16) and from the fact that S,,a,, = a,, we obtain

éa' = S§,(P — Apay, — nAsan, — §j,(v) — hy). 4.17)

Then according to (4.12a) and (4.15b) Aga,, is a bounded subset of L,(I;(H) )~ L,(I; (H®)'), and
therefore from (4.12b),

|| NAs@m || Ly aryy = On'?).
But due to (4.2),

1/2
e @) |l < C(L (Du(v))‘dx> ,

where | - || is the norm in (* H>¥(Q))', then j/(v,,) is a bounded subset of L,(I; (* H*¥(Q))). Thus,
(4.17) indicates that a,, = S, p.., Where p,, € Zp < L,(I;(H*)'), and where 2, is a bounded subset
of L,(I;(H®)). Since A'?a; is an orthogonal system in (H®) (with respect to the norm
Ip & = 1A 'pllg-) and since ||p 1%y = Z7= 1 (P, 44)), | Smp |Gy = L7=1(p, 2;4}/?), then

IS gy < € 1P ll sy (4.18)
which proves (4.13).

4.3. Passages to the limit over m

At first the limitation process with m, i.e., the convergence of the finite-dimensional approxima-
tion will be proved for &, # being fixed.
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From the estimates I and II as well as from (4.11) and (4.12) the subsequence {a,(t), u € N} of the
sequence {a,,, m € N}, can be taken such that

a,—a, in L, (I; H°) »-weakly?,

a,—a, in L,(I; H') weakly, @19
a,—a, in L,(I;(H*)) weakly, '
a,—a, in L,(I; H°) strongly.

Thus, for the appropriate components v, and B, of &, we have

Uy = U, weakly ae.in G x 1,
(4.20)
B, — B, weaklya.e. in GxI

(where Viy» Viens B,,, B, represent the ith component of v, v,,, B, B,,, respectively) since v, - v,,,
B,— B, in L,(I; "H*¥(Q)) strongly or in L,(I; 2H®"(Q)) strongly, respectively. Furthermore,
{ (O } {vi;.}, {Bi.Bj.}, due to (3.10) and (4.12a), are bounded subsets of spaces

Lo(I; Y(H"M(RQ))') and L,(I; L)»(RQ)), respectively. Then we can also assume that

Ji®,) >y weakly in Ly(I;(*H"M(Q))), (4.21a)
Uiy, — ©;; weakly in Ly(I; L,»(L2)), (4.21b)
vy Bj, — 10 weakly in L,(I; L,»(Q)), (4.21¢)
By, B;, —*0;; weakly in Ly(I;L,(Q)). (4.214d)

From (4.20), v;,v;, = iy Vjey, Uiy Bj = v,san, B;,Bj, — B, B;., in the sense of distributions in Q x I,
which comparing with (4.21b)—(4.21d) gives

Oij = VieyVjens ' Oij = VieyBjey, 20 = Bigy Bjoy.-
But

b(v,, v, w;) = —b(v,,w;,v,) > —b(v,,, w;,v,,) weakly in L,(I) Vw;
(see [2]). Similarly for the other trilinear forms,

Zola,, a,, a) > — Zola,,, a;, a,) weakly in L,(I) Va;.

From (4.3a) for m = pu we obtain

L [(Eaz, (1), 2;(t) + Ala, (1), a;(1)) + Ela, (1), a,(2)) + na., (1), «;);]1dt

+ (x(®), w;(®)) =0V}, (4.22)
where we denote by y = J; (v, ().

?The function f; — f *-weakly in L. (I; H*(Q)) if [} (f;(1) dt = j (f(1), (1)) dt Vo € Ly(I; H*N(Q)).
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But the system of functions {a;} is complete in H*, so from (4.22) it follows that
j [(&a:,(2), a(t)) + A(L; a,, (1), a(t)) + E(E; a,, (1), «(1)) + 1(a.,(t), a(t))s] dt
I

+ (x(0),w() =0 VaeH.
Since (4.3) and (4.11) are satisfied it is sufficient to prove that
x(8) = J (v, (2)). (4.23)
To prove (4.23), similarly as in [2], the property of monotonicity will be used. Let
a€ L,(I; H°) such that ae L,(I;(H®), a(ty) =0.
Let us put

X, = (J:(a,(1) — J;(x(1), @, (1) — (1)) + f A(t; a,(t) — a(t), @, (1) — (1)) dt
I

+1 j () — a(t) |2y dt + f (Ca,(t) — 62 (1), @, (1) — (1)) dt.
I I

From (4.3) we have

X, = j (P(0), a,(6)dt — (J2(@,(0) (1) — (2 (@lt), ay(t) — x(t)
- f LA a,(0), &) + A5 a(t), a,(0) — a()] dt
I
— f [(0,(0), (1), + (0}, a,(6) — a(e)),]

- f [(Ea(t) a(0) — (E2(0), anlt) — al0)] dt.

Hence X, - X, where

X = f (P(O), (1) At — [(2(0) 2(0) + I @(0), @u(t) — x(2)]
- j [A(@ (1), (1) + A(@(), auy(®) — a(0)] dt
i j [ (2), o(6)), + (@(0), (@) — a(0))]

- L [(&a, (1), a(r)) — (£ (1), @, (1) — a(t)] dr.

Since X,(t) = 0 for all u then X (t) > 0.
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Let us put « = a,, — Au, 4 > 0, where
u € L,(I; H°) such that w’ € L,(I; (H®)'), u(ty) = 0.

Substituting for a dividing by 4 we then successively have
(x(1) — Ji (@, (1) — Au(t)), u(1)) + f {A(u(e), u(®) + nllu@®) sy + @), u@))} dt > 0.

Hence, in the limit A - 0 we obtain

(x(0) — J(a (1)), u(t)) 20 Vu,

from which
1) = Ji(a,(1).
Therefore, we proved the existence of the vector function a,, satisfying (4.3) and the conditions
a,,(t) is bounded in L,(I; H')n L (I; H°),
a;,(t) is bounded in L,(I; (H®)'), 4.24)
2q,,(t) is bounded in L,(I; H").

Now the limitation process &, # — 0 will be investigated. Let us put for « € H fixed,
Yoy = | 6100 - 0, 0) + Ala,0)2(0) = a(0)
I

+ E(aen(t)a a(t) - asr,(t)) + n(aw(t), d(t) - aen(t))s
- (P(t), a(t) - aer[(t))] dt + Js(w) - Jz(vm)-
By virtue of (4.3),

Ym] = J‘ [(g(a’(t) - aén(t))’ a*— aeq(t))] dt + Jz(w) - Jr.(ven) - (Jel(vmy)’ w — vsn)-
I

According to the initial conditions the first term is equivalent to 4 | & («(t,) — a,,(t,))|* and since the
functional w — j,(w) is convex, the second term is >0. Thus Y,, > 0, te,,

L [(Ea'(2), a(t) — @y (1)) + Al (1), () — E (@, (1), a(t), acy (1) + 1@, (1), &(t))s
— (P(1), a(t) — a,, ()] dt + J,(w j [A(a.,(t), a.,(t) + 1 | @, ()] de + J,(v,,(1))

>fum4a%mnm+4mmn (4.29)
I
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Due to (4.24) there exists a subsequence, we denote it also by {a,,} such that
a,,(t) > a(t) in L, (I; H) »-weakly and weakly in L,(I; H), @26
a,(t) - a'(t) weakly in L,(I; (H)). '

From (4.25), (4.26) it follows that

L [(6a' (1), 2(t) — a(1)) + Ala(t), a(t) — a()) — E(a(®), a(t), a(t)) — (P(1), a(t) — ()] dt + J(w)

> lim inff [A(a.,(?), @, (1) + gj.(v.,)] dt = j [A(a(2), a(t))1dt + J(v(1)) (4.27)
I I
as
lim infj Ala,, (1), a,,())dt > J Ala(t), a(t))dt (4.28)
I 1
and since (see [2])
» 1/(1 +2) ef(1+e)
j@®)dt < <J Dy(v(r))1 972 dxdt> (J dx dt) , 4.29)
JI GxI GxI
hence
ﬂ Je(, (D) dt = ¢ <J J(ve, (1) dt>(1 H), ¢ =c(g), (4.30)
JI I
liminf f je(v.,(9))dt > liminf j jlv,(t))dt. (4.31)
1 I

Also since the function w — {; j(w(t)) dt is convex and continuous on L,(I; 'HN(Q)), then it is Ls.c.
in the weak topology of the space L,(I; *H!-¥(2)) and thus

liminff jv., (1) dt 2‘[ jv(r))dt
I I

which together with (4.28) proves

lim inf J Jolve, (1)) dt Zj jlo(r))de. (4.32)
I I
Then (4.26)—(4.31) prove that (v(¢), B(t), T(t)) satisfies (3.3a).
The existence of @(t) follows from the Lax—Milgram theorem for every t € I. Thus, we proved
that (a(t), @(t)) is the solution of the problem given.

4.4. Uniqueness of the solution

To prove the uniqueness, we shall assume that (v(t), B(t), T(t), (¢)) and (v,(¢), B, (t), T1(t), D,(t))
are two solutions of the problem discussed and let N = 2. Then s = 1 and 'H*¥(Q) = 'H!"¥(Q),
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2HSN(Q) = 2HN(Q) and *H>'(Q) = *H"1(Q) and therefore terms of viscosity regularization
n(v(r), w)s, n(B(t), C)s, n(T(t), z); are of the same order as ja(v(t), w), bu(B(t), C), A(T(t),z) and
therefore can be neglected. Let us denote U(t)=v(t) —v.(t), B*t)=B(t) —B,(T),

T*(t) = T(t) — T:(t), D*(t) = &(T) — P, (), then (a*(2), @*(T)) = (a(t) — a1(1), (1) — P1(?)).

Let us put @ = a(t) or a = a,(t), respectively, and let us put them into (3.3a). Then

1d
L { 34 {|6a*(©)1} — A@* (1), a*(1)) — Eola(t), a(t), a*(t)) + Eola:1 (1), a1 (1), a*(1))

— [bs(T*(1), U(¥)) + b, (U(2), T*(t))]} dr = 0.
Hence,

%{@@Ia*(t)lz} + A(@*(1), a(t)) < — () — U(®), v(t) — U(t), U(t))

N —

—b((t),v(t), Ut) + F + G,
where
F = (0/0x;(u™ 'Bi(t)B()), U(t)) — (9/0xi(p™ ' B1:(t) By (1)), U(1))
+ (1~ Rot[v(), B(t)], B*(r)) — (1~ " Rot[v,(1), B, ()], B(1)),
G = bo(U®), T*®), T*®) + c(IUO 1.1 I T*®lo.n + U@ 1,5 | T*B)]l0.1)

and where

|b(T*(2), U®) + bp(U®), T*D] < eI T*@ N1, 1 1 U Mo.x + ET*(O o, 1 1UD 1,m)

Furthermore, as above
(6/0x(n~ 'Bi(t)B(1), U(1) + (1~ ' Rot[U(), B(1)], B(t)) = O,
then
F = (0/0x;(n™ ' (Bi(t) B*(1) + B¥ (1)B(1))), U(1)
+ (1~ ' Rot[o(z), B(t)], B(9) + (1™ ' Rot[U(2), B(1)], B(®))
= — (0" (Bi(t)B*(t) + BY (1) B(1)), oU(1)/0x)
+ (p” H([v(0), B + [UQ), B(1)]), RotB*(1)).
Since as above
|@/0x(™ ' Bi(t)B(®), W) < co By, [ B®) llo.n | w1s.x

<collBO)1,nlIwlls,ns

(4.33)
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|(x~ ' Rot[v(®), B(H)], O < c1 [v@ 1'% 10@) |53 | BO LY 1BE o/% | Clls.
<cr o ITA IBOIAIC]s, N
|bs(t; w, 2) + by(t;w, DI < ezl 1 Iwllow + Hzllo.1 1w ]1.n),
|b(e, w, o), w)| < c3 [wl 2@ lonIwlsn <cywlin+callo@ 3 n w2y,
and therefore

IF(O] < coll BOILS | BO 163 I1B*@) 113 I B*@) 6% | U@ 1,5

+ [o@ 1% 1o @116/ 1BX(T) 1'% 1B*@) 1o/%

+ U@ UGN IBOITS I BO /% |B*(@)]11.5)

< (U@ v + 1 B®)[3.8)

+ K(cp1) 1B@ 3.5 1 BOIZ. N | BOF,x + cp2 | BE)F 5

+ K(cp2) 10 |12, n 100) 13,5 |1 B*(0) |13, x

+ ca(lU@ 13,5 + | B*®)13,8)

+ K(cp3) 1B 3.5 1 BOI3.5 | UQ) 3.5,
|bU(), w, UD)| + |FO] < c,(1UQ) 3.5 + | BOI.4)

+ K(cp)(Iwlin + 1 BOIL DI U@ 13~ + 1 BE)3),
Ala@* (1), a*(1)) = | a* 113 2n+ 2-

Then (4.33) yields
d
a(lé"a*(t)lz) < el @a* @13, w2+2) [|@*(@) 13, 2n+2

= () (la* @) 13,25 +2),

where g(t) is an integrable function in variable ¢ and thus

t

1a*(0) 3241 < f () (| @*@) 13,25+ 1) dx.

0

Hence a(t) = 0, i.e., U(t) = 0, B*(z) = 0, T*(z) = 0.
Let &(t) and @, () from 3H!1(Q) x I be two solutions of (3.3b). Then

al(P(t), p(t) — @(1)) — (Y1), () — D1 (1)) = O, (4.34a)
ag(®1(1), o(t) — D1(t)) — (P (), (1) — 1(1)) =0 Vo()e*H"'(Q), Vtel (4.34b)
Putting ¢ = &, in (4.34a) and ¢ = @ in (4.34b) and adding them, we then obtain
0> ag(D(t) — B1(1), D(t) — D1(1) = co | D(8) — 21 (DI 1,
hence &(t) = @,(t), which completes the proof.
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