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Abstract 

A new nonlinear sequence transformation, the iterative J transformation, was proposed recently by the author (1993). 
For this transformation, a derivation based on the method of hierarchical consistency, alternative recursive representa- 
tions, general properties, an explicit expression for the kernel, model sequences, and its relation to other sequence 
transformations have been given (the author, 1994). The J transformation is of similar generality as the well-known 
E algorithm (Brezinski, 1980; H~vie, 1979). In the present contribution, some results on convergence acceleration 
properties of the ~ transformation are proved. Numerical test results are presented which show that the J transforma- 
tion is a very powerful computational tool for convergence acceleration, extrapolation, and summation of divergent 
series. 

Keywords: Convergence acceleration; Extrapolation; Summation of divergent series; Hierarchical consistency; Iterative 
sequence transformations; Levin-type transformations; E algorithm; Linear convergence; Logarithmic convergence; 
Stieltjes series 

AMS classification: 65B05; 65B10 

1. Introduction 

There are numerous methods known to tackle the problems of convergence acceleration, of 
extrapolation, and of the summation of divergent series. Good general introductions to these 
methods have been given in [31, 25, 7]. 

Many of the methods mentioned above can be formulated as special cases of the E algorithm 
[14,5] which is also known as the Brezinski-H~vie protocol [31, Ch. 10]. A good recent 
introduction to this sequence transformation can be found in [7, Section 2.1]. The kernel or model 
sequence  of  the  E a l g o r i t h m  is fo rma l ly  r a the r  simple.  T h e  E a l g o r i t h m  m a y  be c o m p u t e d  
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recursively either using the original approach of Brezinski [7, pp 58f] or, more economically, by 
a different approach due to Ford and Sidi [12]. Nevertheless, both approaches are computation- 
ally rather demanding. 

Iterative algorithms are known which are computationally much more simple than the E algo- 
rithm. Examples are the iterated Aitken process [1] or the closely related methods studied in [26]. 
But quite often, they are not as general, their kernels are not known explicitly, and analytical 
convergence results for them are difficult to obtain. 

Recently, the J transformation was introduced by the author [16], and its properties were 
studied extensively [17]. It combines many of the advantages of the E algorithm with those of the 
iterative methods as sketched below. 

The J transformation can be derived by a hierarchically consistent [17] iteration of some very 
simple basic sequence transformation. As Levin-type methods, the J transformation depends on 
a sequence of suitable remainder estimates {~o,}. The important point, however, is that, in the kth 
step of the iteration of the basic sequence transformation mentioned above, new remainder 
estimates co~, k) are computed from the remainder estimates ~o~ k- 1) used in the previous step, and 
from some auxiliary quantities r~, k- 1) which are related to the hierarchy of model sequences. For 
details, see [17]. Here, we want to stress that the flexibility of Levin-type methods - -  which is based 
upon the possibility to choose problem-adapted remainder estimates - -  is inherited by the 
J transformation. This method is even more flexible due to the additional freedom to choose 
suitable auxiliary quantities r~, k). The study of these additional possibilities has just started and is 
very promising. It might be argued that each special case of the J transformation obtained by 
a choice of the ft, k) represents an essentially new transformation, with a different range of 
applicability, and with different numerical properties. Viewed in this way, the J transformation 
comprises a very large class of algorithms. Consequently, the generality of the J transformation is 
comparable to that of the E algorithm. 

On the other hand, all the known algorithms to compute the J transformation are structurally 
remarkably simple [17]. This fact allowed to derive an explicit, comparatively simple formula for 
its kernel. This formula, for instance, is valid for all the special cases mentioned above. Thus, one 
can hope to derive general results simultaneously for the whole class of algorithms which 
corresponds to special cases of the J transformation. 

In this article, additional general results on the J transformation are presented. We derive 
analytical results regarding the convergence acceleration of linearly and logarithmically conver- 
gent and/or Stieltjes series and the summation of divergent series. Further, we will present a large 
number of numerical tests which show that there are variants of the J transformation which are 
among the best convergence accelerators currently known. 

2. Definitions and basic relations 

Generally, we use the conventions and notations in [17]. Especially, we note that the difference 
operator A defined by 

Af(n)  = f ( n  + 1) --f(n),  Ag.  = g n + l  - -  On, (1) 
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acts only on the index n when applied to multiply indexed quantities. The notat ion 

n- -1  n l - 1  hi+k- 2 - 1  

2 = ~ 2 "'" 2 (2) 
" ~ ' " l ~ " l + l  ~ "'" ~ " l + k - I  "1 = 0  "1+1 ~ 0  " l+k-1  = 0  

for positive k and I is used. Empty sums are assumed to be zero. 
Double factorials are defined by ( -1) ! !  = 1,0![ = 1,(n + 1)l! = (n + 1)" ( n -  1)[!. F(z) denotes 

the gamma function. Pochhammer  symbols (a), = F(a + n) /F(a)  = a(a + 1).. .  (a + n - 1) are 
used for a > 0 and n e N. 

Consider a sequence {s.}.%o of complex numbers. If it converges, we call its limit s. Sequences 
satisfying 

lim s. + 1 - s 
- -  - p ( 3 )  

n --* oo S n - -  S 

are called linearly convergent if 0 < [P[ < 1 holds. They are called logarithmically converoent if 
p = 1 holds, and they are called hyperlinearly converoent if p = 0 holds. For  [Pl > 1, the sequence 
diverges. In this case, s is called the antilimit of the sequence {s,}. These definitions follow Wimp 
[31, p.6] and Weniger 1-25, p.204]. 

In the following, we write 

s. = s + R,, (4) 

where R, is called the remainder. When we use remainder estimates, ~o,, where co, does not equal 0, 
then they should satisfy a relation of the form 

lim R. - -  = c ,  ( 5 )  

where c is a constant with 0 < Icl < c~. 
However, in practice one is forced to use remainder estimates where the validity of Eq. (5) cannot  

be guaranteed. According to Levin [18] and Smith and Ford  [23] one may choose 

fort = A s n _  1,  (6a) 

~ .  = As . ,  (6b) 

= ( n  (6c) 

-- A s . A s . _  1 
(6d) 

OOn - -  A 2 Sn - 1 

These choices of 09. lead to corresponding variants for any sequence transformation which is based 
on remainder  estimates co,. These will be called the t variant in the case of Eq. (6a), the ? variant in 
the case of Eq. (6b), the u variant in the case of Eq. (6c), and the v variant in the case of Eq. (6d). 
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We describe briefly some properties of Stieltjes series. A Stieltjes series is a formal expansion of 
the form 

f ( z )  = ~ (--1)"~,z". (7) 
n = 0  

Here, the coefficient/~, are the moments  of a unique positive measure ~(t) on t 6 [0, ~): 

P" = f o  t"d~(t), n e N0. (8) 

Formally, the Stieltjes series can be identified with a Stieltjes integral of the form 

f o  de( t )  larg(z)l < ~. (9) 
f (z) = 1 + z t '  

If such a Stieltjes integral exists for a function f, then such a function is called a Stieltjes function. 
For  every Stieltjes function there is an unique asymptotic Stieltjes series (7), uniformly in every 
sector larg(z) l < 3 for all ,9 < r~. To every Stieltjes series, however, there can exist several different 
associated Stieltjes functions. Additional criteria are necessary in order to ensure uniqueness. In the 
context of convergence acceleration and summation of divergent sequences, an important  fact is 
that for fixed z the remainders of Stieltjes series are bounded in magnitude by the first term of the 
series which is not included in the partial summation. Consequently, a suitable remainder estimate 
for a Stieltjes series is 

(o, = (-1) '+1/ ,=+1z"+1.  (lo) 

This corresponds to the choice 09, = A s., i.e., the choice of ? variants. 
The A¢ transformation is defined by the recursive scheme [16] 

s~, °) = s,, (o~o) = (o., (1 la) 

s¢*+ " = s~)~ - (o~k, A s ~ )  ' 
. A(o~)) ,  

( l lb)  

...,(k) ro.,(k) 
o l ( k + l ) - ~ ,  tOn t O n + l  3(k) ' ( l lc)  
w .  A ( o ~  ~ 

J~)~({s.}, {(o.}, {r~)~}) = s~. '~, ( l ld)  

with 

~(~) = Ar~ k) # O. (12) 

Alternatively, one may use the algorithm [17] 

/5(o) = --,1 ~ o )  = --,s" (13a) 
(On (on 
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~ ( k + l )  ~(k)fi(k) O(n k), k e N o ,  (13b) n = /1 ~ ? 1 +  1 - -  

/ ~ ( k + l )  = ~(k)~(k)n . . . + x  - N ~ ) ,  k e N o ,  (13c) 

J(.k)({s.}, {CO.}, {r~)}) = ~gk)" (13d) 

Here, we use the definitions 

6 (o )am  .. .  6 ~ -  1) 
n v n  4(. 0) 1, ~ )  = k e N. (14) = ~(o) ~(,? ~(.L ( ) ,  Vn+lOn.,_l ... 

More explicitly, the J transformation can be computed from the following data: 

k k S~(1) i t +  1 ) k - 2 ~  ({s.+jb=o,{,o.+jb=o,{~ .+m=o,=o,-~ j(.~({s.}, {~o.}, {r~)}). (15) 

For convenience, the explicit ranges are suppressed in the notation. 
Let 

1 
V~ ) = 6(k ) A (16) 

be an operator acting on n dependent sequence elements f ( n ) .  This operator can obviously be 
regarded as a generalization of the difference operator A. Using this kind of operator, one may 
write 

s ,  [;] 
g~a ) _ o)(, k) _ v ( k _ I ) v ( R _  2) . . .  v~O ) s ,  , (17a) 

1 
V(.k-1)V( .  k - z )  . "  V(.°) r--1 ] (17b) 

D(k) _ ~o(k) --  Leo. j , 

v(R- 1)v(k- 2)... v(O)[s . /co .]  (17c) 
J( .k ) ({S .} ,  {e) .} ,  {r(.k)}) = - ~ U k - V ) ~  v(O)[1/co.] • 

We denote the t, the ~, and the u variants of the o¢ transformation as 

9-(.k)({S.}, {r(.k)}) = J~)({S.}, { A s . - x } ,  {r(.k)}), (18) 

~--(.k)({S.}, {r(.k)}) = J(.k)({S.}, {As.}, {r(.k)}), (19) 

~(k)(~, {S.}, {r(.k)}) = J(.R)({S.}, {(n + ~ ) A s . _ , } ,  {r(.k)}). (20) 

An important  special case is the pJ transformation which is defined by the equation 

J ~ ) ( f l , { s . } , { o ) . } )  = J ~ ) ( { s . } , { ~ o . } , { 1 / ( n  + [t + (p  - 1)k)}), [1 > 0,p ~> 1. (21) 
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The t, the t”, and the u variants of the pJ transformation are defined as 

,T:k’(B, {sn}) = ,J!ik’M {sn>, {As,- ,}I, 

,F:k’(B, ($4 = ,J!ik’(P, (sn), {h,)), 

,~rr(‘(G,{s,}) = ,J!zk’(B,{~,},{(n + Ww}). 

The following theorem was proved in [17]: 

(22) 

(23) 

(24) 

Theorem 1. 
(JO) For given {rLk)} the transformation $!,k)({sn}, {co,}, (rp)}) is a continuous mapping 

fLk’ = rB’(S,, S,+ 1, . . . , S,+k ) CO,, CO,,+ 1,. . . , &+k) On ck+l x Yik’ where Yp’ iS @Ien by 

k+l 

fl yj#OUndDLk) # 0 holds . (25) 
j=l (QJ”, ,~,+,)=(Y,,...~Y,+,) 

(Jl) rll”’ is a homogeneous function of degree one in its first (k + 1) variables and a homogeneous 
function of degree zero in its lust (k + 1) variables. Thus, for all vectors x E @ k+l and y E Y Lk’ and for 
all complex constants A and ,u # 0 we have 

r;kynx 1 y) = nr:k)(x 1 y), (26) 

rpyx 1 py) = rll(yx 1 y). (27) 

(52) rik) is linear in its first (k + 1) variables. Consequently, for all vectors x and x’ in ck+ ‘, and 
y E Ykk’, we have 

rik’(x + X’ ly) = rlr”‘(xly) + rp+ ly). (28) 

(53) For all constant vectors c = (c,c, . . . , c) 6Ck+l and all vectors y EYL~) we have 

rp’(c ly) = c. (29) 

(54) If we assume that for all k E N the limits 

exist, then a limiting transformation 2 can be deJined by the equations 

b(O) = 1 
n 0,’ 

$0) = s, 
n %’ 

$+l) = @kbikll - iis), n k E No, 

$k+l) = @k&;kiI - i$Lk), n k E No, 

(30) 

(314 

@lb) 

(3W 
$k, 

i%ik)({sn>, {wJ, {rS)}) = 5. 
n 

(314 
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For given { 4~k} the transformation o~k I {S.}, {o9.}, {r~)}) is a continuous mapping o~k = Fk(S/1, S/1+ 1, . . . ,  
S,+k] og,,ogn+ 1, . . . , tOn+k)  on C k + l  x Yk with 

I~k= { y  ~ C  k+ l  k~I1 yj ~ O and b~ k) v~ O holds}. (32) 
j = 1 (to ...... to~+~) = (Yl,-" ,Yk+ 1) 

o 
Moreover, the limiting transformation fig is also homogeneous and linear according to (J1) and (J2). I t  
is also exact on constant vectors according to Eq. (29). 

o 

In the following lemma proved in [17], a property of the limiting transformation Fk is established 
which is important for the treatment of linear convergence. 

o 
Lemma. The limiting transformation Fk satisfies 

o( ) 
Fk O,a . . . .  ,a . . . ,qk = a (33) 

~=o 1 - q  

for q ~ 1 and (1, q,. . . ,  qk) ~ IZk- 

3. Analysis of convergence properties 

In this section, we give some analytical results regarding convergence acceleration using the 
J transformation. If not otherwise stated, fixed but arbitrary 6(k) are assumed. First, two results are 
stated concerning the exactness of the J transformation. These two theorems were proved in [17]. 

Theorem 2. The kernel of  the j~k) transformation is given by the sequences of the form 

n - 1  n - 1  n1-1 
s. = s  + o9. co + cl E + Z Z + ' 

. 1 = 0  /11=0 /12=0 

/1>,1>,2> ... >/1~-1 "'" ,~-1 ] (34) 

with constants Co, ..., Ck- 1. 

Theorem 3. The J transformation is exact for the geometric series with partial sums {s.} /f the 
sequence {o9/1} is chosen in such a way that s/1 = s + co9. holds with c ~ O. This is satisfied for 
o9, = As~1_ 1, for o9. = As., or for o9/1 = - As/1As._ 1/ A2s._ 1. This implies that the t, the ~, and the 
v variants of the J transformation are exact for the geometric series. 

The last theorem holds for any choice of the r(, k~ satisfying Eq. (12) in view of Theorem 2, Eq. (34). 
The following two theorems are stating conditions for acceleration of linear convergence. 
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Theorem 4. Assume that the sequences {sn} and {ton} satisfy 

lim sn = s, 
n --~ OO 

(35) 

lim sn - s - - - c ,  c ¢ 0 ,  (36) 
n " ~  O0 ( . O n  

lim o)n + 1 - p, 0 < IPl < 1. (37)  
n " ~  ~3 ( . O n  

I f  the limits q~j defined in Eq. (30) exist for all j <~ k ~ N and/f(1, p, p2, .. . , pk) e Yk where I'k is defined 
in Eq. (32), then the j(k) transformation accelerates the convergence of the sequence {sn}. The 
condition (1,p,p 2 . . . .  ,pk) ~ Yk can be replaced by demanding that p is different from all the 4~j for 
O<~j<~k. 

Proof. This follows from Theorem 1 and the Lemma in combination with Theorems 12-14 in [25, 
p.3081. The equivalence of the two conditions stated in the last sentence of the theorem follows 
from [17, Lemma 2]. []  

A simple corollary is the following theorem. 

Theorem 5. Assume that the sequence {sn} satisfies 

lim sn = s, 
n --.~ o c  

(38) 

lim s, + 1 - -  S 
- -  - p ,  0 < Ipl  < 1 .  ( 3 9 )  

n --, oc S n - -  S 

I f  the limits 42 defined in Eq. (30) exist for all j <<. k e N and • l ,  p, p2, ... , pk) e I'k where I'k is defined 
in Eq. (32), then the t variant 3-(,k)({S,}, {rt, k)}), Eq. (18), and the f variant J-t,k)({S,}, {rt, k)}), Eq. (19), of 
the J~ )  transformation accelerate the convergence of the linearly convergent sequence s,. The 
condition (1,p,p 2, ... ,pk)~ Yk can be replaced by demanding that p is different from all ebj for 
O <<.j <~ k. 

Proof. In view of Theorem 4, one only has to show that the following holds: 

lim s. - s - - - c ,  c 4 : 0 ,  (40)  
n - 4 o o  0.~/,  I 

l i m e ) ,  ÷ i - p ,  o < Ipl < 1.  (41)  
n --* (x3 ( O i l  
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But the second equation follows directly from [31, Theorem 1, p.6]. The first is a consequence of 
[31, p.6, Eq. (4)]: 

As. ,,~ (p - 1 ) ( s ,  -- s), n ~ oo, 

which implies c = p/(p - 1) for the case of the t variant, and c = 1/(p - 1) for the case of the 
variant. [] 

We remark that in the preceding theorem the condition that p is different from all ~j may be 
dropped in the case of the t and ~ variants of the pJ transformation because then ~j = 1 holds for all 
j. 

The following theorem gives a convergence result for the case of alternating signs of the ~o,, and 
monotone signs of the 6~. k). These assumptions are, for instance, satisfied in the case of the 
application of the p T transformation which is defined in Eq. (22), to the partial sums 

s . =  ~ (--1)Jaj, a j > O ,  (42) 
j=O 

of an alternating series. Important examples of such series are Stieltjes series as discussed in the 
previous section. 

Theorem 6. Assume that the following holds: 
(A0) The sequence {s,} has the (anti)limit s. 
(Ala) For every n, the elements of  the sequence {m,} are strictly alternating in sign and do not 

vanish. 
(Alb) For all n and k, the elements of  the sequence {6t k)} = {Artk)} are of  the same sign and do not 

vanish. 
(A2) For all n ~ 3% the ratio (s. - s)/o~, can be expressed as a series of  the form 

S n - -  S 
- -  - -  CO -~ ~ CJ ~.u ~(0)(~tl) . . .  6 t j -  1) (43) 

n I tl 2 n j  

(2)n j = l  n>n l >n2>. . .  >n j 

with Co ~ O. 
Then the following holds for st, k) = J~)({s.}, {~o.}, {rt.k)}): 

(a) The error st, k) -- s satisfies 

S(n k) - -  S = 
bt k) 

~7(k- 1) [7(k - 2 ) . . .  ~7(0)[1/(Dn ] (44) 

with 

bt, k) = Ck + ~ Cj ~ 6tk) 6 tk+l ) . . . f t j -  1) 
nk+ I n k +  2 n j  " 

j = k +  1 I ~ > ? l k + l > n k + 2 ~  .,, 7>nj 

(45) 
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(b) T h e  error s~  ) - s is bounded  in magn i tude  accordin9 to 

I s(k) - s[ ~ o),b(k)~(°)~(nl) .-" t$(n k- 1) I. (46) 

(C) For  large n the es t imate  

S(n k)  - -  S __  ~tvnO(r](O)r~(1) , .  , v n  (~(k-  1)) (47) 
s n - s 

holds i f  bt, k) = O(1) and (s, - s)/e~, = O(1) as n ~ ~ .  

Proof. (a) This follows from [17, L e m m a  4 and Eq. (17b)]. 
(b) This follows from Eq. (44) and the observat ion that  assumptions  (Ala) and (Alb) imply that  

all terms obta ined by expanding 

= v -l)v  . . .  v,.o)I-±] (48) 
L~,A 

have the same sign. Hence, the absolute value of a is greater than or equal to that  of any term. 
Taking  the term involving o~,, it follows that  

co,g, 8, 1 (49) IGI/> c0) , 7 . . .  ,~k- 1> • 

(c) This follows directly f rom (b). []  

This theorem allows to estimate the error in the case of alternating series. The rest of this section 
is devoted to generalizing Theorem 6. The basis for the following discussion is the equat ion 

,, st, k) -- s I-II=o b#) - / ~ '"+1/~" / 
- k - I  r , , ,o) / , , ,o)  1 ]  bt. °)  - 6t"l) ( 5 0 )  

S n - -  S 1-I /=O 1 - -  <-. , ~ . +  ~,:o ~. , :o  L ~ / [bt.°)J 

which is proved in L e m m a  A.1 in the Appendix.  Here, the abbreviations et, k) = 1 _ ~,,"'Ck)+ ll~',l"'<k) and 
b ~ ) =  (s~, k) - s ) / c o t ,  k) are used. Eq. (50) is the impor tan t  formula that  allows to estimate the 
accelerative power  of the J t ransformat ion of large n. In L e m m a  A.2 which is given in the 
appendix,  it is studied which quantit ies occurring in this formula have limits for n ~ ~ .  

Assume that  (A2) of Theorem 6 holds. It may  be noted that  the formula (34) for the kernel can be 
rewritten as a partial sum of the infinite series in (A2). Then, Lemma  4 of [17] shows that  

oo 
b~, k) Ck + ~ Cj ~ ,~<k> ,~Ck+l) 6(s-1) (51) 

~ n k + l V n k +  2 ° ' "  nj  
j = k + l  n > n k + l > n k + 2 > " ' > n ~  

holds. Hence, assumpt ion  (52) in the following theorem is reasonable. 
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Theorem 7. Assume that (A0) of  Theorem 6 holds and that the followin 9 conditions are satisfied: 
(B1) Assume that 

b~.~) 
lina -~o)= Bk (52) 

exists and is finite. 

(B2) Assume that 

9(k) n+l 
~"~k = .-.o~lim o)(k------ ~ 5 ~ 0 (53) 

and 

,~(k) 
Fk = lim ,'.+1 

exist for all k ~ No. 
Then, the following holds for s~ k) = ¢(k), ,  ~ . .  ~ / s .} ,  {~o.}, {r~k'}): 

(a) IfQo~{~o = 1,451, .-.,~k-~}, then 

2 i m  S ( n k ) - - s t k f i l  (~(/)}-1 [~'20]k 
. . . .  Bk k - ~ - -  
s .  - s ~ = o  I-l~=o (~ t  - a o )  

(54) 

(55)  

holds in the limit n -* ~ .  

Proof. The assertions follow from Eq. (50). Additionally, one has to use Lemma A.2. The proof is 
completed by applying Eq. (A.8b) in the case of item (a), and Eq. (A.10) in the case of item (b). [] 

This theorem is the central result of this section. It holds for fixed but arbitrary sequences 6~ ) 
that satisfy the assumptions. 

and, hence, 

s(~ k) - s _ O (58)  

s .  - s  l=O 

and, hence, 

s (k) - s 
- -  - -  ("~[,~(0),,~(1) ~(n k -  1))  ( 5 6 )  
S n - -  S 

holds in the limit n --, ~ .  
(b) I f  f2l = 1 for I ~ (0, 1, 2 , . . . ,  k} then 

s(nk) s I k f i l  (~(/) } -  1 
lim . . . .  e(,[-- i = Bk (57) 

n~oo S n - -  S LI=O 
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Theorem 7 can be specialized to the important  case of the p J  transformation. This yields the 
following two corollaries. 

Theorem 8. Assume that the following holds: 
(C1) Let fl > O, p >>- 1 and 6~ ~ = A [(n + fl + (p - 1)k)- 1]. Thus, we deal with the pJ transforma- 

tion and, hence, the equations F k = " (k) _~ llm,-.oo 6~+1/fi~ ~ = 1 andq~k 1 holdforallk(compareEq.(30)).  
(C2) Assumptions (A2) of Theorem 6 and (B1) of Theorem 7 are satisfied for the particular choice 

(C1) for 6(. k). 
(C3) The limit ~o = lim, ~o~ o ,+  ~/(o. exists, and it satisfies ~o¢{0, 1}. Thus, according to Lemma 

A.2, Eq. (A.8b), all the limits ~k for k ~ ~ exist and satisfy gk = Qo. 
Then the transformation s ~  = Jt.k~(/L {s,}, {o~,}) satisfies 

, 

and, hence, 

s (k) - s 
- -  - -  O ( ( n  + f l ) - 2 k )  
S n - -  S 

holds in the limit n ~ ~ .  

(59) 

(60) 

Theorem 8 can be applied in the case of linear convergence because then 0 < Ig2ol < 1 holds as 
shown in the proof of Theorem 5. 

Theorem 9. Assume that the following holds: 
(D1) Let fl > O, p >1 1 and 6t~ k~ = d [(n + fl + (p - 1)k)- 1]. Thus, we deal with the pJ transforma- 

tion and, hence, the equations F k = lim, --~ oo Vn+'~tk) 1/  (~(k) = 1 and ~k = 1 hold for all k (compare Eq. (30)). 
(D2) Assumptions (A2) of Theorem 6 and (B1) of Theorem 7 are satisfied for the particular choice 

(D1) for fi~ k~. 
(D3) Some constants al j~, j = 1, 2, exist such that 

al al" 
e~ 0 = 1 ~,,+ 1 ~ 0  n +---fl + (n + fl)-----2 + O((n + fl)-3) (61) 

holds for I = O. This implies that this equation, and hence, I2t = 1 holds for I e {0, 1, 2 . . . . .  k}. Assume 
further that all~ v ~ 0 for l~{0, 1 ,2 , . . . ,k  - 1}. 

Then the transformation s~k) = pj(k)(fl, {S,}, (09,}) satisfies 

lim s("k'-- S I k f i  1 ¢~o~-, 
, - ,~ s-~--s ~t=o ~ J  = Bk (62) 

and, hence, 

S (k) -- S 
- -  - -  O ( ( n  + f l ) - k )  ( 6 3 )  
S. - -  S 

holds in the limit n ~ oo. 
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Proof .  The validity of Eq. (61) for l = 0 can be extended to I e {0, 1, 2 , . . . ,  k} with the help of 
Lemma A.3 in the Appendix. Then, f2~ = 1 follows from the definitions. Hence, item (b) of Theorem 
7 may be applied. Eq. (63) then follows since 6t, ° = O((n + fl)-2), see Lemma A.3, item (b), and 
e~. z) = O ( ( n  + f l ) - l ) .  [ ]  

Theorem 8 and 9 can be easily generalized to the case of any variant of the J transformation 
with fitk) = O((n + / / ) -2 )  in the limit n ~ ~ .  

Assume that some constants Uo :~ 0 and ul exists such that 

( ul ) ( % = ( n + f l )  -~ Uo + - ~ - ~ + O ( ( n  + fl) -2) , n ~ (64) 

holds. Then, according to item (c) of Lemma A.3, Eq. (61) holds for l = 0. Hence, Theorem 9 is 
relevant in the case of Eq. (64) and, hence, for logarithmic convergence. Comparison of Theorems 
8 and 9 shows that in this case the order of convergence acceleration, i.e., the negative exponent of 
n + fl in Eqs. (60) and (63), drops from 2k to k. Similar behaviour is known for Levin-type 
accelerators [25, Theorems 13.5, 13.9, 13.11, 13.12, 14.2]. 

Theorem 8 allows to conclude that in the case of linear convergence, the pJ transformations 
should be superior to Wynn's epsilon algorithm [32]. Consider, for instance, the case that 

s. ,-, s + 2"n ° ~ c J n  j, coCO, n ~  ~ (65) 
n = O  

is an asymptotic expansion of the sequence elements s,. Assuming 2 -¢ 1 and ~9~{0, 1, . . . ,  k - 1} it 
follows that [31, p.127], [25, p.333, Eqs. (13.4-7)] 

/•(n) 2 k  - -  S - -  - O(n-2k), n ~ ~ .  (66) 
S n - -  S 

This is the same order of convergence acceleration as in Eq. (60). But it should be noted that for the 
computat ion of e~"~ the 2k + 1 sequence elements {s,, . . . ,  s,+ 2k} are required. But for the computa- 
tion of pjtk) only the k + 1 sequence elements {s,, ... ,S,+k} are required in the case of the t and 
u variants, and additionally S,+k+ 1 in the case of the ~" variant. Again, this is similar to Levin-type 
accelerators [25, p.333]. 

4. N u m e r i c a l  results  and d i scuss ion  

We now display the results of using the J transformation. These results were obtained using 
F O R T R A N  Q U A D R U P L E  P R E C I S I O N  which corresponds to an accuracy of approximately 32 
digits on our computer,  a SUN workstat ion under UNIX. 

If not otherwise stated, we use the highest possible level of iteration and, hence, we always give 
results for sequence transformations of the form 

s; = Jto")({s. }, {09.}, {rt.k)}) (67) 
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as table entries. We remind the reader of the dependencies according to Eq. (15). Thus, to compute 
the nth element of these transformed sequences, we use the sequence elements {sv}~"=o. For 
to, = A s,, i.e., for ~" variants, also s, + 1 is used. 

Column headings of the form flk = f ( k )  indicate that the J transformation with 

r~ ~ = 1/(n + f (k ) ) ,  6 ~  = - 1/(n +f (k ) )2  = - 1/[(n + f ( k ) ) ( n  + f ( k )  + 1)] (68) 

has been used for the computat ion of the corresponding column. If f ( k )  is linear in k, this means 
that some variant of the pJ transformation (21) has been used. In most other cases the Y,  5--, and 

transformations are applied which are defined in Eqs. (18), (19), and (20), respectively. In some 
cases linear variants of the J transformation are used which are obtained by choosing 09, 
independent of the s,. But also in these cases the 6tk) are normally chosen according to Eq. (68). 

For the present article, we consider - -  with a single exception - -  transformations based on Eq. 
(68). But it should be noted that other variants of the J transformation - -  originating from 
choosing 6~ ) which differ from Eq. (68) - -  are expected to be also useful. The investigation of this 
interesting topic will be the subject of future work. 

In Tables 1-3 we investigate the numerical performance of the J transformation for some 
examples which were studied in [7, pp.273-275]. A comparison to these results is complicated by 
the fact that it is not completely clear which computer  and which accuracy these authors used. For 
the purpose of discussion we assume that these data may be directly compared to our data which 
correspond to a computer  with about 32 decimal digits (in Q U A D R U P L E  PRECISION). In case 
that Brezinski and Redivo Zaglia used fewer digits in their computat ion accurate, contamination of 
their data caused by rounding errors is highly probable. 

Table 1 
Acceleration of sn-1 = (cos(xn) + a sin(xn)) l/x" e x p ( -  a) for a = 1, x.  - 0.8" with s_ 1 = 1 

~0. = (n + 1)As . -1  o9. = (n + 1 ) A s . - 1  ~o. = x .  

n s, flk = 1 flk = 2 6~, *J = X.+,  

6 0.8306977194479 0.9741409601610 1.1225200986264 0.9996475153695 
8 0.8837061177176 0.9992780180258 1.0030337856181 0.9999906939002 

10 0.9218529952615 1.0009399107924 1.0007212883640 0.9999998864939 
12 0.9483176856882 1.0001496110197 1.0000244503126 0.9999999993860 
14 0.9661973868563 0.9999863330110 0.9999777232278 0.9999999999986 
16 0.9780569274876 0.9999925816547 0.9999958948632 1.0000000000000 
18 0.9858263803984 0.9999994267593 1.0000002197867 1.0000000000000 
20 0.9908747138370 1.0000001945383 1.0000001889768 1.0000000000000 
22 0.9941373880907 1.0000000523404 1.0000000215900 1.0000000000000 
24 0.9962386775483 1.0000000007212 0.9999999960285 1.0000000000000 
26 0.9975889475654 0,9999999979774 0.9999999984311 1.0000000000000 
28 0.9984553630156 0,9999999996350 0.9999999999071 1.0000000000000 
30 0.9990107907768 1.0000000000275 1.0000000000534 1.0000000000000 

oO 1.0000000000000 1.0000000000000 1.0000000000000 1.0000000000000 
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Table 2 
Acceleration of s,_ 1 = (cos(I/n) + a sin(I/n))" e x p ( -  a) for a = 1 and to, = (n + 1)As,_ 1 with 
S_l= l  

95 

n s .  flk = 1 flk = 2 

8 0.9014918397610 0.9999914737390 0.9983764638148 
9 0.9103376107750 1.0000004971692 1.0002088434895 

10 0.9177237957539 0.9999999745416 0.9999773398060 
11 0.9239845055428 1.0000000009975 1.0000021168614 
12 0.9293590040817 0.9999999999302 0.9999998275900 
13 0.9340231658411 0.9999999999942 1.0000000123818 
14 0.9381091811057 0.9999999999980 0.9999999992083 
15 0.9417183353028 0.9999999999995 1.0000000000454 
16 0.9449295472490 0.9999999999999 0.9999999999976 
17 0.9478052233297 1.0000000000000 1.0000000000001 
18 0.9503953635162 1.0000000000000 1.0000000000000 

oo 1.0000000000000 1.0000000000000 1.0000000000000 

Table 3 
Acceleration of s,_ 1 = (1 + x/n)" e x p ( -  x) for to, = (n + 1)As_ 1 with s._ ~ = 1 and x = 1 

n s .  fl~ = 1 flk = 2 

8 0.9495611399413 1.0000000623405 1.0000130965297 
9 0.9541845267642 1.0000000061521 0.9999985821397 

10 0.9580312771961 1.0000000017113 1.0000001302724 
11 0.9612819623291 1.0000000003795 0.9999999897128 
12 0.9640651901688 1.0000000000880 1.0000000007052 
13 0.9664750464046 1.0000000000205 0.9999999999576 
14 0.9685819513499 1.0000000000048 1.0000000000022 
15 0.9704396614614 1.0000000000011 0.9999999999999 
16 0.9720899236857 1.0000000000003 1.0000000000000 
17 0.9735656521671 1.0000000000001 1.0000000000000 
18 0.9748931471696 1.0000000000000 1.0000000000000 

oo 1.0000000000000 1.0000000000000 1.0000000000000 

T h e  e n t r i e s  in  T a b l e s  1 - 3  in  c o l u m n s  l a b e l e d  b y  flk = 1 c o r r e s p o n d  to  1Uto")(1, 1, {s,}),  a n d  t h o s e  

fo r  flk = 2 c o r r e s p o n d  t o  lUg")(1, 2, {s,}). T h e s e  t r a n s f o r m a t i o n s  a r e  d e f i n e d  in  Eq .  (24). I n  T a b l e s  

1 a n d  2, s e q u e n c e s  o f  t h e  f o r m  

s , -  1 = ( c o s ( x , )  + a s i n ( x , ) ) l / X . e x p ( - -  a), n ~ ~ ,  a ~ ~ (69) 



96 H.H.H. Homeier/Journal of Computational and Applied Mathematics 69 (1996) 81-112 

are studied. These sequences converge to 1 if the auxiliary sequences {x,} converge to zero. As 
a matter  of fact we have s,_ ~ - 1 = O(x,)  and 

s"+ l - l - o ( X " +  2)  (70) 
s, - 1 \ x , + l /  

for large n. In Table 1 the auxiliary sequence x,  = (0.8)" is treated, while in Table 2 we have 
x ,  = 1In. Thus, in Table 1 the input sequence converges linearly, while in Table 2 it converges 
logarithmically. 

The last column in Table 1 corresponds to the exceptional case mentioned above where 6(, k) is not 
chosen according to Eq. (68) but  according to 6(, k) = x,  + k = (0.8)" + k. Since the J transformation is 
multiplicatively invariant in r(, k) [17, Theorem 4] and hence, n independent factors of r(, k) are 
irrelevant, the same results are obtained for 6(, k) = (0.8)". Furthermore,  since A q" = q " ( q  - 1), the 
same results are obtained also for r(, k) = (0.8) "+k or for r(, k) = (0.8)", again because the J transforma- 
tion is multiplicatively invariant in r(, k). By a similar reasoning, it can be concluded that the choice 
6(, k) = X ,+k+ 1 -- X, = (0.8)"" (0.8 k+ 1 _ 1), or, equivalently, r(, k) = Z~=o x .+ j  = 5x,(1 - (0.8) k+ 1) also 
would lead to these results. But according to [17, Theorem 8], the kernel of this 
J(,k)({S,}, {X,}, 5X,(1 --(0.8) k+ 1)) transformation is given by 

k - 1  

S , _ l  = S  + X ,  --~ d j ( x , )  j, n E N  (71) 
j = 0  

for some constants d~. This kernel can be interpreted as the first terms of a power  series of s,_ x in 
the variable x,. This explains the rather rapid convergence observed in the last column of Table 1. 
The transforms of the other two variants converge less rapidly. But it should be observed that these 
two variants of the J transformation are only slightly less efficient than the e algorithm which 
yields 10.56 digits for n = 20, and more efficient than Levin's t transformation which yields 7.4 
digits for this value of n [7, p.275]. 

Repeating the calculation in D O U B L E  P R E C I S I O N  (which corresponds to approximately 
14-15 decimal digits on out  machine), loss of accuracy was observed. For  flk = 1 the best results 
were 7-8 digits for n ~> 19, and 6-8  digits for n ~> 18 in the case flk = 2. For  n > 25 the accuracy 
deteriorated again. In the case m, = x,  and O(n k) = Xn+k, the best result was 11-12 digits for n ~> 14 
deteriorating slowly for larger n to 9 digits for n = 30. 

In Table 2 it is shown that these two u variants are even more efficient for x,  = 1/n. The one with 
flk = 1 is slightly superior to the other one. It should be noted that for smaller n the variant with 
flk = 1 ranges between the p and the O algorithm, while several other algorithms perform much 
worse [7, p.275]. But for higher n, our results are better than those for the p and the 6) algorithms 
which for n = 18 yield 13.47 and 9.86 digits, respectively [7, p.275]. 

In D O U B L E  P R E C I S I O N  the best results were 10 decimal digits for n = 11 for flk = 1 and 
8 decimal digits for n = 13 for flk = 2. 

In Table 3 the sequence 

( 5 s ,_ l  = 1 + e x p ( - - x )  (72) 
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is studied for x = 1. As is well known,  its limit is 1. The data  treated in Table 3 provide an example 
of a logarithmically convergent  sequence, with s,_ 1 - 1 = - x2/(2n) + O(1/n z) = O(l/n). Sim- 
ilarly as in Table 2, the performance of the different u variants of the J t ransformat ion ranges 
between the p and O algori thms [7, p.274] for lower values of n. For  higher values of n, the 
convergence is quite satisfactory, especially for the case flk = 2. 

In D O U B L E  P R E C I S I O N  the best results were 9 digits for n = 10 and flk = 1, and 8 digits for 
n = l l a n d f l k = 2 .  

In Table 4, we t ransform the partial sums 

s, = ~ (j + 1) - 2  (73) 
j=0 

of the infinite series 

~(2) = ~ (j + 1) -2 = ~Tt 2. (74) 
j=0  

The sequence of partial sums is logarithmically convergent  and its remainders  s, - ~(2) decay as 
n-1 for large n [25, p.345]. This is a special case of the series 

~(z) = ~, (j + 1) -z (75) 
j=O 

defining the Riemann zeta function which has been used by many  researchers as a test case for 
logari thmic convergence. The series is very slowly convergent  if Re(z) is only slightly larger than 
1 (see, for instance, I-2, p.379]). In fact, its remainders  are of the order  n 1 -z for large n. 

The entries in Table 4 correspond to the use of the t ransformat ion p U defined in Eq. (24). Entries 
in the co lumn labeled flk = 1 correspond to 1U~o")(1,1,{s.}), those for flk = 2 correspond 

Table 4 
Acceleration of the ~(2) series using ~o. = (n + 1)As._ 1 

n s. f lk=l  ilk=2 f lk=l +k  f l k = 2 + k  

5 1.4914 1.6449152542373 1.6449307397583 1.6449358283971 1.6447858317612 
6 1 . 5 1 1 8  1.6449322143318 1.6449337653464 1.6449339851725 1.6449706252376 
7 1.5274 1.6449338790187 1.6449340381402 1.6449340707114 1.6449242762514 
8 1 . 5 3 9 8  1.6449340473956 1.6449340640174 1.6449340666632 1.6449368570545 
9 1.5498 1.6449340648035 1.6449340665620 1.6449340668572 1.6449332323647 

10 1.5580 1.6449340666310 1.6449340668188 1.6449340668478 1.6449343262121 
11 1.5650 1.6449340668250 1.6449340668452 1.6449340668482 1.6449339836640 
12 1.5709 1.6449340668457 1.6449340668479 1.6449340668482 1.6449340942338 
13 1.5760 1.6449340668480 1.6449340668482 1.6449340668482 1.6449340576310 
14 1.5804 1.6449340668482 1.6449340668482 1.6449340668482 1.6449340700098 
15 1 . 5 8 4 3  1.6449340668482 1.6449340668482 1.6449340668482 1.6449340657459 

1 . 6 4 4 9  1.6449340668482 1.6449340668482 1.6449340668482 1.6449340668482 
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to 1U~o")(1,2,{s,}), those for f l k = l + k  to 2u(n)(1,1,{Sn}),  and those for f l k = 2 + k  to 
2 U~o")(1, 2, {s,}). 

Winner in this table is the transformation 2 u ( n ) (  1, 1, {Sn} ). 
When the calculations for this table were repeated in D O U B L E  P R E C I S I O N  some loss of 

accuracy was observed. This is to be expected for the case of logarithmic convergence. For flk = 1 
we obtained 11 digits for n---11, while 12 decimal digits were reproduced for flk = 2. The 
corresponding results for flk = 1 + k were 11 digits for n -- 9, while only 8 decimal digits were 
accurate for fig = 2 + k. For larger values of n the accuracy deteriorated again. Also, it may be 
noted that the D O U B L E  P R E C I S I O N  results are dependent on the choice of the computational 
algorithm for the J transformation, i.e., whether Eq. (11) or whether Eq. (13) is used. 

Comparing the above results to results in the literature [25, Table 14-1, p.351], [26, Table 1] it is 
seen that for the series (74) the transformed sequence 2U(on)(1, 1,{Sn}) converges faster than the 
iterated Pz transformation which was - -  according to [25, p.351] - -  together with the standard 
form of Wynn's p algorithm [33] regarded as the best accelerator for the series (74). However, it 
should be noted that z U~o")(1, 1, {s,}) seems to be slightly more susceptible to rounding errors than 
the iterated P2 transformation because the latter could produce 13 decimal digits for n = 12 in 
D O U B L E  P R E C I S I O N  [-26]. 

If the dominant  behavior of the error of partial sums of a series can be obtained, faster 
convergence can be achieved by subtracting known series with the same behavior of the remainders 
(compare, for instance, [-10, p.152f]). For  example, in the case of ((2), one may subtract 

4 
,=1 ( 4n2 - 1) - 2 (76) 

and obtain 

1~2 2 -  ~ 1 
6 = [n2(4n 2 -- 1)]" n = l  

The remainder of the partial sums 

(77) 

1 (78) 
2, = 2 - [mZ(4m 2 - 1)] 

r a = l  

then is O(n-3). Besides accelerating the convergence in this way, this technique often has a benefi- 
cial effect on round-off errors [10]. In the example given above, the best numbers in D O U B L E  
P R E C I S I O N  are as follows: 

and 

U~01 z)(1, 1, {s,}) = 1.6449340668401, 

2U~o9)(1, 1, {s,}) = 1.6449340668613, 

1U~o a 1)(1, 1, {2.}) = 1.6449340668485, 

zU~o14)(1, 1, {g.}) = 1.6449340664834, 

1U~012)(1,2, {s,}) = 1.6449340668458, 

eU~o14)(1, 2, {s,}) = 1.6449340738669, 

1U~o 12)( 1, 2, {g,} ) = 1.6449340668481, 

zU~o16)(1, 2, {2,}) = 1.6449340654318. 
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Thus, it is possible to gain 1-2 digits in accuracy. The stability is also increased. This may be seen 
from the following facts (DOUBLE PRECISION): For n = 20 and application of the algorithms to 
s,, we find only 5 digit accuracy for [3k = 1 + k and [3k = 2 + k, and 7 digit accuracy for flk = 1 and 
[3k = 2. When applied to ~,. for the same value of n, the accuracy is 7 digits for flk = 1 + k and 
[3k = 2 + k, 10 digits for [3k = 1, and 9 digits for [3k = 2. 

In order to ease comparison to literature data, where in most cases this technique is not applied, 
it will also not be applied further in the present article. 

In Tables 5 and 6 a particularly difficult example of logarithmic convergence is treated, namely 
the so-called 1/z expansion which is given below. It is a series expansion of 1/z in terms of reduced 
Bessel functions [24] 

kv(z) = zVKv(z). (79) 

Here, Kv(z)  is a modified Bessel function of the second kind [19, p.66]. The most recent detailed 
discussion of reduced Bessel functions can be found in [15, Section 3]. 

The 1/z expansion given by (see, e.g., [15, Eq. (3.2-32), p.30]) 

1 ~ /:j- 1/2(z) 
(80)  

z = j = o  ~ [2iJ !] 

is an extremely slowly convergent series. Its terms decay for large j as 1/( j  + 1) 3/1 which implies 
that the truncation errors of the partial sums 

s .  = ~ (81)  
j = o  [2 ' j ! ]  

Table 5 
Acceleration of the 1/z expansion for z ½ using ~.) 1 = 1So (~, {s.}, {,o.}). 

( D  n 

n s. (n + 1)As._1 (n + 1) -1/2 (2n - l)!!/(2n)!! 

10 1.8241884943835 1.9999881696571 2.0000000603100 2.0000000486355 
11 1.8321449539650 2.0000024401806 1.9999999944846 1.9999999931683 
12 1.8391112148225 1.9999999024935 2.0000000002443 1.9999999994553 
13 1.8452768640345 1.9999998776094 2.0000000003953 2.0000000001831 
14 1.8507843002336 2.0000000055899 2.0000000000432 1.9999999999963 
15 1.8557428278275 1.9999999998206 2.0000000000093 1.9999999999969 
16 1.8602379276877 1.9999999991435 2.0000000000036 2.0000000000003 
17 1.8643375404571 1.9999999999243 2.0000000000008 2.0000000000000 
18 1.8680964369459 1.9999999999851 2.0000000000002 2.0000000000000 
19 1.8715593276470 1.9999999999927 2.0000000000001 2.0000000000000 
20 1.8747631197850 1.9999999999985 2.0000000000000 2.0000000000000 

oO 2.0000000000000 2.0000000000000 2.0000000000000 2.0000000000000 
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Table 6 
Acceleration of the 1/z expansion for z = 4 using (.7 1 1s0 {s.}, 

(D n 

n s, (n + 1)As,-1 (n + 1) -x/z (2n - 1)!!/(2n)!! 

10 1.0747865667307 1.2499682133207 1 .2500002099507 1.2500001534578 
11 1.0826618965033 1.2499936918374 1 .2500000455466 1.2500000421434 
12 1.0895638413456 1.2500020835907 1 .2499999926654 1.2499999931519 
13 1.0956774851981 1.2500000290267 1 .2499999994014 1.2499999991662 
14 1.1011421634246 1.2499998954210 1 .2500000003150 1.2500000002378 
15 1.1060650318428 1.2500000061421 1 .2500000000173 1.2500000000069 
16 1.1105300244656 1.2500000024541 1 .2499999999964 1.2499999999936 
17 1.1146039429560 1.2499999993682 1 .2500000000012 1.2500000000003 
18 1.1183407028756 1.2499999999381 1 .2500000000003 1.2500000000001 
19 1.1217843613599 1.2500000000142 1 .2500000000000 1.2500000000000 
20 1.1249713188304 1.2499999999977 1 .2500000000000 1.2500000000000 

1.2500000000000 1.2500000000000 1 .2500000000000 1.2500000000000 

- -  i.e., the quantities (s, - 1/z) - -  behave as n -  1/2 in the limit n ~ ~ [25, p.349]. The estimate for 
the truncation error mentioned above is based on the fact that [25, Eq. (14.3-18)] 

1/2(z) = 2"(½).[1 + 

for large n and, hence, 

(82) 

k')-l/2(z),~ ~ 2J-l(1/2)j-1 1 ~ (1/2)j ( 2 n - l ) ! !  
j=,+x [2JJ !] j = n + l  2JJ ! = 2  j=,  ( j +  1) ------~.  - (2n)[! =O(n-~/z)  (83) 

for large n. Here, we used [25, Eq. (14.3-21)] 

(2j - 1)!! = (1/2)_____~, = (2n - 1)!! (84) 
j=,  (2j + 2)!! (n)! (2n)!! 

Compare  also the discussion in [25, Ch. 14]. However, for larger values of z, the acceleration of the 
1/z expansion is definitely much more difficult than that of the series for the lemniscate constant 
A which also has remainders of order n-1/1 for large n [25, p.350]. The reason is that the 
asymptotic form (82) of the terms is reached only for large n values if z is relatively large. Because 
the 1/z expansion is more difficult to accelerate, it is a more demanding test case for the ability of 
a sequence transformation of accelerating logarithmic convergence than the more simple examples 
of Riemann's function ~(2) or the lemniscate constant  A [25, p.346]. 

One of the two best sequence transformations known for the 1/z expansion is, according to [26], 
a t ransformation generalizing Wynn's  p algorithm for which different algorithms have been derived 
independently in [9] and [20]. The other very successful sequence transformation was derived in 
[3] by modifying Aitken's iterated A 2 process. It can also be obtained [26] by iterating Osada's 
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t ransformation ~") of [20]. These two sequence transformations depend explicitly on a parameter  
~. Its significance can be seen from the fact that for sequences of the form 

s, = s + (85) 
j=o (n + 1) ~+j 

the error of these algorithms is O(n -~-2k) for large n. 
In the case of the 1/z expansion one has to choose ~ = ½ as a result of Eq. (83): This value of 
corresponds to the O(n -  1/2) behavior of the remainders. Consequently, a reasonable choice for 

the remainder  estimates is 09, = (n + 1) -1/2. Eq. (83) motivates also the alternative choice 
co, = (2n - 1)!!/(2n)!!. This remainder  estimate is of order O ( n -  1/2) for large n, too. If either one of 
these two choices for the remainder estimates is used, and if the 6~, k) do not depend on the s,, the 
J t ransformation is a linear function of the partial sums. 

In Table 5, the case z = ½ is treated. In Table 6, we chose the slightly more difficult value z = 4. In 
each table, the nonlinear u variant 1J{o")(fl, {s,}, {(n + 1)As._ 1}) and the two linear transformations 
1J~o")(fl, {s.}, {(n + 1)-1/2}) and 1J~0")([3, {s.}, {(2n - 1)!!/(2n)!!} are displayed. For  the definition of 
the 1J transformation see Eq. (21). For  each value of z, additional computat ion with fl = -32 were 
done that yielded rather similar results to the case fl 1 - - 2  ° 

In Tables 5 and 6, the linear transformations perform better than the nonlinear u variant. The 
choice co. = (n + 1)-1/2 is slightly inferior to the choice co. = (2n - 1)!!/(2n)!!. 

In D O U B L E  P R E C I S I O N  the best results for the u variant were 9 digits for n = 16, fl = ½, z 4 - -  5 ,  

8 d i g i t s f o r n = a V ,  fl -32, z 4 ,10  digits for n = 1 5 ,  f l=½,  z = ½ ,  and g digits for n =15 ,  fl 3 ~ - - 2 ,  
z = ½. For  the variant with co, = (n + 1)- 1/2 the corresponding results were 10 digits for n = 14, 
fl = ½, z = ~, 9 digits for n = 13, fl = 3, z = -~, 10 digits for n = 12, fl = ½, z = ½, and 9 digits for 
n = 12, fl = 3, z = ½. For  the variant with co. = (2n - 1)!!/(2n)!! the best results were 9 digits for 
n= 13, fl=½, z = 4 , 9 d i g i t s f o r n =  14, f l=3,  z=4,1Odigi ts forn = 13, fl = ½, z = ½, and 9 digits 
for n = 12, fl = 3, z = ½. For  larger n the accuracy deteriorated again. 

The results for z = ½ can be compared directly to the results in [26, Table 3]. These data indicate 
that the method of [3] is slightly superior to Osada's modified p algorithm [20] for n < 14 and 
slightly worse for n i> 14. The entries in the last column of Table 5, which are our best results for 
z = ½, are almost as good as the results for Osada's algorithm with 0~ = ½. For  instance, the absolute 
error of Osada's method for n = 10 is 2.83 x 10 -8, and for n = 15 it is 2 x 10-13. However, it should 
be noted that for the example under consideration, Osada's method was somewhat more stable 
then our  method.  

For  z = ~ our  best results are those in the last column of Table 6. They can be compared directly 
with the data  in [25, Table 14-5, p.358]. This shows that our best results are much better than those 
obtained by using Brezinski's ,9 algorithm [4] and the iterated ~2 transformation [25, Section 
10.3]. All the data  in Table 6 can be compared directly to [25, Table 14-6, p.360]. In the latter table, 
Levin's t ransformation [18] in the form ~t0) with fl = ½, i.e., the transformation (compare [25, 
p.238, Eq. (7.1-7)]) 

0) 1 \ J . ] [  + ½ ) n - 1  coj 
5¢, (~, So, coo) = n e No, (86) 

+ _ 

kJ / t + 1 coj 
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Table 7 
Summation of the 2Fo(1, 1; - 1/z) series for z = 3 using co. = As.-1 

n s, & = 2  f l k = l + k  & = 2 + k  

10 0.48316.102 0.78625122105973 0.78625122076092 
11 - 0.17702.103 0.78625122053322 0.78625122078671 
12 0.72431.103 0.78625122082790 0.78625122076556 
13 -0.31814.104 0.78625122075800 0.78625122076545 
14 0.15045-105 0.78625122076502 0.78625122076597 
15 -0.76089"105 0.78625122076677 0.78625122076597 
16 0.40996'106 0.78625122076573 0.78625122076596 
17 -0.23443"10 ~ 0.78625122076598 0.78625122076596 
18 0.14181"108 0.78625122076596 0.78625122076596 
19 -0.90481"108 0.78625122076595 0.78625122076596 
20 0.60727.109 0.78625122076596 0.78625122076596 

0.78625122072187 
0.78625122076540 
0.78625122076700 
0.78625122076597 
0.78625122076593 
0.78625122076595 
0.78625122076596 
0.78625122076596 
0.78625122076596 
0.78625122076596 
0.78625122076596 

oo 0.78625122076596 0.78625122076596 0.78625122076596 

Table 8 
Summation of the 2Fo(1, 1; - 1/z) series for z = 3 using 09, = As, 

n s. i l k=2  f l a = l + k  & = 2 + k  

10 0.483.102 0.78625122248647 0.78625122061800 0.78625122079313 
11 -0.177.103 0.78625122062189 0.78625122075743 0.78625122076011 
12 0.724.103 0.78625122072420 0.78625122076954 0.78625122076542 
13 -0.318.104 0.78625122078909 0.78625122076610 0.78625122076611 
14 0.150.105 0.78625122076015 0.78625122076586 0.78625122076597 
15 -0.761.105 0.78625122076659 0.78625122076595 0.78625122076595 
16 0.410.106 0.78625122076611 0.78625122076596 0.78625122076595 
17 - 0.234.107 0.78625122076586 0.78625122076596 0.78625122076596 
18 0.142.108 0.78625122076598 0.78625122076596 0.78625122076596 
19 -0.905.108 0.78625122076595 0.78625122076596 0.78625122076596 
20 0.607.109 0.78625122076595 0.78625122076596 0.78625122076596 

oo 0.78625122076596 0.78625122076596 0.78625122076596 

is used instead of  o u r  t r a n s f o r m a t i o n  : t , ) t i  ~.,o ~2, {s,}, {co,}) with the same choices for  co,. The 
comparison shows that each of our methods is superior to the corresponding Levin transformation 
with the same to. for this example. 

In Tables 7-9  we treat the Euler series. It is a divergent Stieltjes series of the form (7). The Euler 
series is the asymptotic expansion 

E(z)  ,,~ 2Fo(1, 1; - z) = ~ ( -  1)"n!z",  z ~ O, (87) 
n = 0  
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Table 9 
Summation of the 2Fo(1, 1; - 1/z) series for z = ½ using o9, = As, 

103 

n s, ilk= 1 f l k = l + k  f l k = l + 2 k  

15 -0.41471X 1 0 1 7  0.46145534818892 0.46145531777895 0.46145531958535 
16 0.13297 × 1 0 1 9  0.46145532179262 0.46145531653531 0.46145531701552 
17 -0 .45291X 1 0 2 0  0.46145530928911 0.46145531617413 0.46145531625982 
18 0.16331X 1 0 2 2  0.46145531718043 0.46145531617643 0.46145531613493 
19 -0 .62144 X 1 0 2 3  0.46145531722130 0.46145531622219 0.46145531616450 
20 0.24889 X 1 0 2 s  0.46145531581628 0.46145531624179 0.46145531620445 
21 -0.10466 × 1 0 2 7  0.46145531617051 0.46145531624454 0.46145531622787 
22 0.46097 × 1 0 2 8  0.46145531633945 0.46145531624315 0.46145531623807 
23 -0.21225 × 1 0 3 0  0.46145531623155 0.46145531624210 0.46145531624153 
24 0.10197 × 1 0 3 2  0.46145531622546 0.46145531624179 0.46145531624231 
25 -0.51027 × 1 0 3 3  0.46145531624774 0.46145531624179 0.46145531624227 
26 0.26554 × 1 0 3 5  0.46145531624378 0.46145531624184 0.46145531624210 
27 -0.14349 × 1 0 3 ~  0.46145531624025 0.46145531624186 0.46145531624197 
28 0.80408 x 1 0 3 8  0.46145531624183 0.46145531624187 0.46145531624191 
29 -0.46665 x 1 0 4 0  0.46145531624221 0.46145531624187 0.46145531624188 
30 0.28015 × 1 0 4 2  0.46145531624180 0.46145531624187 0.46145531624187 

oC 0.46145531624187 0.46145531624187 0.46145531624187 

of the Euler integral 

f o  exp( t) E(z) = -1 +-zt  dt. (88) 

The terms of the Euler series are essentially given by the moments p. = n! of the positive measure 
de(t) = exp ( -  t)dt. Hence, the Euler integral is a Stieltjes function. It is related to the exponential 
integral 

f o  exp ( -  t) dt (89) E1 (z) = t 

by the equation [11, p.144, Eq. (14)-I 

z e x p ( z ) E l ( Z ) =  E(!). (90) 

The exponential integral E1 (z), however, is for z > 0 readily computed using the routine S13AAF of 
the NAG library. This means that the exact value of the summed series is available. For this reason, 
we study in our examples the Euler series in the variable I/z, i.e., the hypergeometric series 
2Fo(1, 1; -- I/z) with partial sums 

s. = ~ (--1)Jj!z - j  (91) 
j=O 
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This hypergeometr ic  series has zero radius of convergence and is rapidly divergent for all Izl < ~ .  
The divergence is the faster the smaller z is. The aim is to sum this divergent series. The uniqueness 
of the result is ensured by Carleman's  theorem [21, p.391. 

In Tables 7 and 8, the case z = 3 is treated using the vT t ransformat ion designed in Eq. (22), and 
the vT t ransformat ion defined in Eq. (23). Compared  are 1T~o")(2, {s,}) corresponding to flk = 2, and 
2T~(fl ,  {sn}) for fl = 1 and fl = 2 corresponding to flk = 1 + k and fig = 2 + k in Table 7, with 
ll'g~(2,{sn}) corresponding to fig = 2, and 21"ton~(fl, {sn}) for fl = i and fl = 2 corresponding to 
fig = 1 + k and fig = 2 + k in Table 8. One would expect the ? variants to perform better, but  it 
turns out  that  the corresponding t variants have a tiny advantage.  The 1T and 1T transformations 
are not  as efficient as the t and ~ variants of the 2 J t ransformation.  The latter perform nearly 
identically in this example. 

Repeat ing the calculation in D O U B L E  P R E C I S I O N ,  it was observed that  at mos t  the two last 
digits for flk -- 2, and  the last digit for fig = 1 + k and fig = 2 + k, disagreed with the data  presented 
in Tables 7 and 8. Thus,  numerical  instabilities are not  impor tan t  in the case of this al ternating 
series for an a rgument  as large as z = 3. 

These results can be compared  directly to the data  given in [25, Tables 13-1, p.328; 13-2, p.329]. 
This compar i son  shows that  both  the t and t" variants for flk ---- 2 perform very similar to the 
? variant of Levin's t ransformation.  Fur thermore ,  the t and ? variants for fig = 1 + k and fig = 2 + k 
perform very similar to the ~ variant of the Weniger t ransformat ion ~0~.  This is based upon  
factorial series and defined by (see [25, Section 81). 

AkE(fl q- rl)k- l Sn 

6etkn~ (fl, Sn, tOn)= (92) 

This is a remarkable  success of the 2 . / t r ans format ion  because the Weniger t ransformat ion is 
apparent ly  able to sum strongly divergent Stieltjes series quite efficiently [28-301. 

In Table 9, results for the case z = ½ are presented. Compared  are the ~variants p~on~(1, {sn}), Eq. 
(23), for p = 1 corresponding to flk = 1, for p = 2 corresponding to flk = 1 + k, and for p = 3 
corresponding to flk = 1 + 2k. 

It should be noted  that  the choices flk = fl + 2k which correspond to the 3, / t ransformation,  lead 
to corresponding t or ~ variants of Weniger's t ransformat ion (92) according to [17]. A compar ison 
of Table 9 with Table 13-3 in [25, p.3301 shows that  indeed identical numerical  results are obtained. 

Addit ional  calculations of the t variants vT~on~(2, {sn}), Eq. (22), for p = 1 corresponding t o  f lk  = 2, 
for p = 2 corresponding to flk = 2 + k, and for p = 3 corresponding to fig = 2 + 2k with rather 
similar results were performed. This leads to the conclusion that, again, the difference between 
corresponding t and ? variants is not  large. The choice of fig is more  impor tan t  than this difference 
that  is characterized by an index shift by one in con. The choices ~k = 1 and ~k -~" 2 are of similar 
performance as the ~" variant  of Levin's t ransformat ion [25, Table 13-3, p.3301. 

Repeat ing the calculations in D O U B L E  P R E C I S I O N ,  some loss of accuracy was observed. For  
flk = 2, the best results were 7 decimal digits for n = 14, 10 decimal digits for flk = 2 + k and n = 19, 
and for flk = 2 + 2k and n = 18, 7 decimal digits for n = 15 and flk = 1, 10 decimal digits for 
flk = 1 + k and n = 16, and also for flk = 1 + 2k and n = 18. For  higher n, the accuracy deterior- 
ated again. 
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In Table 9, the choice flk = fl + k, i.e., the 2 J transformation is slightly superior to the trans- 
formation At,°)(29, So) which is based on an expansion of the remainder in terms of Pochhammer  
symbols 1/( - ~ - n)j [25, Section 9.2]. One should note that this Ark ") transformation seems to be 
one of the best summation methods for the Euler series known so far. See [25, Table 13-3, p.330]. 

In Table 9, the choice flk = fl + k is seen to be significantly better than the choice fig = fl + 2k. 
Thus, the 2 J  allows an improvement of Weniger's transformation (92) in this case. This is in some 
sense similar to the results in [27]. There, convergence acceleration methods were applied to 
strongly divergent perturbation expansions of the ground state energy of anharmonic oscillators. It 
was shown that the transformation (92) was not the most efficient method, but a sequence 
transformation which can be interpreted as an interpolation between Levin's transformation and 
Weniger's transformation (92). According to [17], Levin's transformation [18] corresponds to 

t~(k) = 1 
n (n + fl)(n + fl + k + 1)' (93) 

and Weniger's transformation (92) corresponds to 

= 1 

(n + fl + 2k)(n + fl + 2k + 1)" (94) 

Hence, one observes that the quantities 

~ ( k )  = 1 
n (n + fl + k)(n + fl + k + 1) (95) 

which correspond to the 2 J transformation, range in between Levin's and Weniger's transforma- 
tions as far as the decay of the fitk) for large n (or large k) is concerned. 

In Tables 10-12 the Stieltjes series 

ln(1 + z) = 
( 1)JzJ+ 1 

j=o j + 1 - ZEFl(1, 1;2; - z ) ,  (96) 

T a b l e  10 

A c c e l e r a t i o n  o f  t he  z2F1 (1, 1; 2; - z) ser ies  for  z = - 0.9 a n d  ~o. = As._ 1 

n s. f l k= l  f l k = l + k  3 k = l + 2 k  

20 - 2 . 2 6 9  - 2 . 3 0 2 5 8 5 0 0 4 3 1 6 7 1  - 2 . 3 0 2 5 8 5 0 9 1 8 5 7 7 8  - 2 . 3 0 2 5 8 5 0 9 2 9 6 8 8 3  

21 - 2.273 - 2 .30258505436952  - 2 . 3 0 2 5 8 5 0 9 2 6 1 0 8 9  - 2 . 3 0 2 5 8 5 0 9 2 9 8 7 2 3  

22 - 2 . 2 7 7  - 2 .30258507617057 - 2 . 3 0 2 5 8 5 0 9 2 8 6 4 8 6  - 2 . 3 0 2 5 8 5 0 9 2 9 9 2 2 0  

23 - 2 . 2 8 0  - 2 . 3 0 2 5 8 5 0 8 5 6 6 6 3 1  - 2 .30258509295049 - 2 . 3 0 2 5 8 5 0 9 2 9 9 3 5 5  

24 - 2 . 2 8 3  - 2 . 3 0 2 5 8 5 0 8 9 8 0 2 3 2  - 2 .30258509297937 - 2 .30258509299391 

25 - 2 . 2 8 6  - 2 . 3 0 2 5 8 5 0 9 1 6 0 3 8 3  - 2 . 3 0 2 5 8 5 0 9 2 9 8 9 1 0  - 2 . 3 0 2 5 8 5 0 9 2 9 9 4 0 1  

26 - 2 . 2 8 8  - 2 . 3 0 2 5 8 5 0 9 2 3 8 8 5 1  - 2 . 3 0 2 5 8 5 0 9 2 9 9 2 3 8  - 2 . 3 0 2 5 8 5 0 9 2 9 9 4 0 4  

27 - 2 . 2 9 0  - 2 . 3 0 2 5 8 5 0 9 2 7 3 0 2 9  - 2 . 3 0 2 5 8 5 0 9 2 9 9 3 4 8  - 2 . 3 0 2 5 8 5 0 9 2 9 9 4 0 4  

28 - 2 . 2 9 1  - 2 .30258509287916  - 2 . 3 0 2 5 8 5 0 9 2 9 9 3 8 6  - 2 . 3 0 2 5 8 5 0 9 2 9 9 4 0 4  

29 - 2 . 2 9 3  - 2 . 3 0 2 5 8 5 0 9 2 9 4 4 0 1  - 2 . 3 0 2 5 8 5 0 9 2 9 9 3 9 8  - 2 . 3 0 2 5 8 5 0 9 2 9 9 4 0 5  
30 - 2.294 - 2 . 3 0 2 5 8 5 0 9 2 9 7 2 2 5  - 2 . 3 0 2 5 8 5 0 9 2 9 9 4 0 2  - 2 . 3 0 2 5 8 5 0 9 2 9 9 4 0 5  

oe - 2.303 - 2 . 3 0 2 5 8 5 0 9 2 9 9 4 0 5  - 2 . 3 0 2 5 8 5 0 9 2 9 9 4 0 5  - 2 .30258509299405 
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Table 11 
Acceleration of the z2Fl(1, 1; 2; - z) series for z = 1 and ~o, = As,_ 1 

n s. ] /k=l  flk-=l + k  & = l + 2 k  

3 0.583 0.69312169312169 0.69318181818182 0.69321533923304 
4 0.783 0.69314489928525 0.69314592545799 0.69314971751412 
5 0.617 0.69314752228759 0.69314712706300 0.69314726571364 
6 0.760 0.69314715292958 0.69314718127769 0.69314718328808 
7 0.635 0.69314718212288 0.69314718062868 0.69314718064517 
8 0.746 0.69314718051087 0.69314718056011 0.69314718056257 
9 0.646 0.69314718055803 0.69314718055987 0.69314718056003 

10 0.737 0.69314718056042 0.69314718055994 0.69314718055995 
11 0.653 0.69314718055990 0.69314718055995 0.69314718055995 
12 0.730 0.69314718055995 0.69314718055995 0.69314718055995 
13 0.659 0.69314718055995 0.69314718055995 0.69314718055995 

oO 0.693 0.69314718055995 0.69314718055995 0.69314718055995 

Table 12 
Summation of the z2F1(1,1;2; - z) series for z = 5 and oJ, = As,-1 

n s. / /k= l  ] ~ k = l + k  / / k = l + 2 k  

10 0.364 x 10 °7 1.79175940186339 1 .79175947649056  1.79175959220168 
11 - 0 . 1 6 7  x 10 °s 1.79175947401768 1.79175947012676 1.79175949178480 
12 0.772 x 10 °s 1.79175947060006 1.79175946924325 1.79175947333854 
13 - 0 . 3 5 9  x 10 o9 1.79175946873775 1 .79175946921405  1.79175946997338 
14 0.168 × 10 l° 1.79175946929034 1.79175946922545 1.79175946936268 
15 - 0 . 7 8 6  x 10 l° 1.79175946923181 1.79175946922788 1.79175946925230 
16 0.370 x 1 0 1 1  1.79175946922487 1.79175496922807 1.79175946923241 
17 - 0 . 1 7 5  × 1012 1.79175946922866 1.79175946922806 1.79175946922884 
18 0.829 x 1 0 1 2  1.79175946922803 1.79175946922806 1.79175946922819 
19 - 0 . 3 9 4  x 1013 1.79175946922804 1.79175946922806 1.79175946922808 
20 0.188 x 1014 1.79175946922806 1.79175946922805 1.79175946922806 

oo 1.79175946922806 1.79175946922806 1.79175946922806 

w i t h  p a r t i a l  s u m s  

( _  1 ) j z i +  1 
S n = 2_, 

j = o  j + l  

is investigated. The corresponding Stieltjes function is 

ln (1  + z) 11 1 d r .  

z = Jo  1 + z t  

(97) 

(98) 
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The radius of convergence of the series is 1. For  Izl > 1 the series diverges but  can be summed  for 
z not  on the cut - ~ < z ~ <  - 1 .  

For  z = - 0.9 the series is absolutely convergent,  and all its terms have the same sign. This case 
is treated in Table 10. There, results are presented for the t variants pTto")(1, {s,}), Eq. (22), for p = 1 
corresponding to flk = 1, p = 2 corresponding to flk = 1 + k, and p = 3 corresponding to 
flk = 1 + 2k. The  latter is identical to the t variant of Weniger's t ransformat ion (92). The data  may  
be compared  directly to [25, Table 13-6, p.337]. Then, one obtains the result that  1T~o~)(1, {s,}) 
performs better than  Wynn's  e a lgor i thm [321 but  worse than  Levin's t t ransformation.  The latter is 
inferior to 2Tto")(1, ~s,}) which corresponds to flk = 1 + k. The winner for this example is the 
t ransformat ion aTe)(1, {s,}), i.e., Weniger's t t ransformation.  

In D O U B L E  P R E C I S I O N ,  the best result were 9 decimal digits for flk = 1 and n = 24, 8 digits 
for flk = 1 + k and n = 17, and 8 digits for flk = 1 + 2k and n = 16. This corresponds to a heavy 
loss of accuracy due to the single sign of the terms. 

For  z = 1, the series (96) is al ternating and condit ionally convergent.  Due to the alternating signs 
of the terms, it is expected that  the numerical  stability of the sequence t ransformat ion is quite high. 
In Table 11, this case is treated. Again, results are presented for the t variants pT~o")(1, {s,} ), Eq. (22), 
for p = 1 corresponding to flk = 1, p = 2 corresponding to flk = 1 + k, and p = 3 corresponding to 
flk = 1 + 2k. Cont ra ry  to Table 10, it is seen that  the performance of the two variants 2Tt0n)(1, {Sn}) 

(n) (n) and aT o (1, {s,}) is nearly identical in this case. The t ransformat ion 1To (1, {s,}) is inferior to these 
two variants. But compar ing  Table 13-5 in [25, p.335], it is seen that  the ~Tto")(1, {s,}) transforma- 
t ion clearly performs better than  Wynn's  e a lgori thm [32]. Levin's t t ransformat ion performs 
slightly worse than  Weniger 's t t ransformat ion which is identical to sTto")(1, {s,}). As expected, in 
D O U B L E  P R E C I S I O N  no loss of accuracy was observed apart  from an occasional deviation in 
the last digit for flk = 1. 

For  z = 5, the series (96) is al ternating and divergent. Its summat ion  is the topic of Table 12. 
Again, the t variants pTto")(1, {s,}), Eq. (22), for p = 1 corresponding to flk = 1, p = 2 corresponding 
to flk = 1 + k, and p = 3 corresponding to flk = 1 + 2k are compared.  It is seen that  in the case of 
this divergent series the variant  flk = 1 + k, i.e., the 2 T t ransformation,  performs better than the 
variants fig = 1 and flk = 1 + 2k. The latter variants perform very similar. 

In D O U B L E  P R E C I S I O N ,  best results were 10 decimal digits for flk = 1 and n = 13, 13 digits 
for fig = 1 + k and n = 14, and 13 digits for flk = 1 + 2k and n = 16. Thus, at least for the latter two 
variants, numerical  stability is not  critical. 

Impor t an t  results of these numerical  studies are summarized as follows: 
(a) The J t ransformat ion can be combined  profitably with the remainder  estimates in [18, 23]. 

Especially suitable u variants are seen to be powerful general purpose  accelerators similar to 
Levin's u t ransformation.  For  linearly convergent,  and also for divergent sequences, the t and 

variants can be applied successfully. The latter is not  always superior to the former. For  special 
examples, also linear variants are useful if the asymptot ic  behavior  of the remainders  can be derived 
analytically. 

(b) The 1J(k)(fl, {Sn} , {(-On} ) t ransformat ion corresponding to flk ~ "  fl and even more  the trans- 
format ion  2J~k)(fl, {S,}, {~o,}) corresponding to flk = fl + k are very useful convergence accelerators. 
For  logarithmically convergent  sequences the u variants of these two t ransformations have similar 
properties as Levin's u t ransformat ion [18]. For  al ternating divergent series, the t and ? variants of 
the 2J t ransformat ion are comparable  or superior to Weniger's t ransformat ion (92). 
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(c) The choice of the hierarchy, i.e., of fitk) seems to be more important than the difference 
between t and/" variants. 

(d) The numerical stability of the methods is similar to Levin-type methods. Logarithmic 
convergence is demanding in this respect. Stability in this case can be improved by subtraction of 
known series with similar remainders. The stability is high for alternating series. 

(e) The flexibility of the approach is very useful. Thus, it is easy to obtain rather powerful 
transformations by a suitable, heuristic combination of proper remainder estimates and hierar- 
chies. These transformations can be computed at very low costs. The numerical implementation of 
these methods can be based on a single very simple subroutine which calls a function subprogram 
to compute the 6(, k). These programs will be made available in the future. 
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Appendix  

L e m m a  A.1. Put  f o r  n ~ No 

S (k+ l )  - -  S k ~ t~o, (A.la) 
q(k)_ S(. k ) - s  ' 

bt"k ) _ S(,, k) - -  s ,  k ~ ~ o ,  (A. lb)  
(l)(n k) 

(k) 
e (k )  = 1 - e9"+-------21 k E No. (A.lc) 

o)(k) ' 

T h e n  the f o l l ow ing  relat ions hold: 
(a) W e  have bt"k)= N(, k ) -  sDt" k). In  addit ion,  

b(k+ 1) ~7(k)lo(k) .4 (k).~/.~(k) . = . ~ .  = ( _ b . , / v . .  (A.2) 

(b) T h e  qtk) m a y  be compu ted  f r o m  the f o l l ow ing  formulas:  

~(k) ~(k+ 1) 1 ~(k+ l) r.~(k) /,.~(k) ~(k+ 1) 
q(k) _ --  ~', +1 v ,  b(k ) ~,_____ _ _ _  b(k)" 

~l-~k) ~ =,.,(k)/ .~) 1 bt" k) fit"k) ~ , , + , / ~ , ,  v ,  e T  bt" k) (A.3) 
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(c) We have 

u + 1) .~(k) ,(k) ~(k) _ (k) (L)(k) 
n + l  t ' n + l  t '~n+2  t ~ n + l  U / n + 1  n 

n ~ n +  1 - -  U/n+ U~n+2 1 
(A.4a) 

u j ( k )  ,~(k) _(k) 
n + 2  U ' n + l  ~n - 

U / n + l  O n  ~ n + l  
(A.4b) 

and, hence, 

,~(k) ~(k) 
~(k+ 1) Vn+_____.~l e ,  (1 "°(k) 
e, = 1 - 6~, k) e,+l-(k---7--" -- ~,+ 1)- (A.5) 

(d) Eq. (50) holds. 

Proof. (a) As a direct consequence of Eq. (17) and the definition (A.lb), b~ ) = Nt, k) - sDt, k) holds. 
Then, Eq. (A.2) follows, since both  N (f) and Dr, k) satisfy the recursion Xt, k÷ 1) = v(kJx(f) as implied 
by Eq. (17). 

(k) (k) _ ( k + l )  h ( k + l ) .  ( k + l )  (b) In definition (A.la) one substitutes S (k) - -  s = b, ~o. and 3n -- S = v, U/, . In the 
.(k + 1)/, . ,(k) resulting expression, q~k) = [b~ + 1)/b~k)] [OJ. k + 1)/O9~,k)], Eq. (1 lc) is used to evaluate U/, /~,, . Eq. 

(A.3) follows. 
(c) Eqs. (A.4a) and (A.4b) are a direct consequence of Eq. (1 lc) and the definitions. 
(d) Applicat ion of the formula 

k - - 1  

= "'l-(  u l +  1 (A.6) 1 1  
U0 / = 0  Ul 

with uz = s~, t) - s allows to represent [st, k) - s ] / [s ,  - s] as a product  of the q~Z), whence item(b) can 
be used. The resulting formula can then be simplified by a second applicat ion of Eq. (A.6) with 

= '). [ ]  

L e m m a  A.2. Assume that (B2) of  Theorem 7 holds. Then, 

Ek = l imet,  k) = l - f2k ¢ l 
n " *  gC, 

exists, and the following holds: 
(a) I f  Ok V ~ 1 and, hence, Ek ~ 0 for  all k then 

O k  = Fk- 1 O k  = 1 = ~'-~O/~)k, 

kfil,.,(t) / , . , (0  t ° n + l / t ° n  __ 

l=o ~t)  k - f - - - -  F I l : o  - Oo)" 

Eq. (A.8b) also follows f rom f2o (~ {~o = 1, ~1, . . . ,  ~k-  1}. 

(A.7) 

(A.8a) 

(A.8b) 
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(b) I f  Ok = 1 and, hence, Ek = 0 for all k then 

e(k) 
" + I = F k ,  k e N o .  (A.9) lim 

n-+O0 

Conversely, if Eq. (A.9) holds then (2 o = 1 implies 0 k = 1 and, hence, Ek = 0 for all k. 
(c) I f  Ok = 1 for all k, then 

t k f i l  F ,(1) / ,(/)7"} ( k - 1  ) - 1  
/ { 1-I e~'~ (A.10) 

, /=o[_ e{. t) J J  </=0 .~ 

f o r  n ---~ 0(3. 

Proof. (a) The assumptions imply that ~notk)/'~(k)/cn+ 1 approaches Ek/E k = 1 for n ~ ~ .  Then, the first 
equality in Eq. (A.8a) is a direct consequence of Eq. (A.4b). The second equality follows from the 
iteration of the first part of Eq. (A.8a) which yields 

~"~k = F k -  l F k -  2 "'" Fo~"~o (A.ll)  

and definition (30) for the ~k. Eq. (A.8a) implies 

t o ( t )  / .(t) 
. +  l / t ~ n  ~'~l _ Y2o (A.12) 

lira e(l ) - 1 f2~ ~t f2~ 
t l  . - . *  o o  - -  - -  

Then, Eq. (A.8b) follows by taking the product over I. The last sentence of the assertion follows 
because f2o¢{~0 = 1 ,~1 , . . - ,~k-1}  and Eq. (A.8a) imply that f2~ # 1, and hence, El 5 0  for 
l e {0, 1, . . . ,  k - 1}. It follows that one may take limits as in Eq. (A.Sb). 

(b) This follows by taking the limit n ~ oo in Eq. (A.4b) 
(c) This follows from the definition of Ok. [] 

Lemma A.3. (a) I f  Eq. (61) holds for l = k with a(k 1) 5 ~ 0 and if 

(k) d~l) d~2) n + l  6¢k) --1 + + - -  + O ( ( n + f l ) - 3 ) ,  n o  oo, (A.13) 
. ( n + f l ) :  

holds then 

~(1)A(1)  d~l) d~ 2~ 0 ( 2 ) / ~ ( 1 )  e?+ 1) - -  a ( 1 )  - -  1 - d(k 1, a~ 2' + -k ,,, - - - - ,  /-k 3) 
- n + fl + (n + fl)2 + O((n  + f l ) -  (A.14) 

holds for large n and, hence, we have 

a(X) = ark 1) 1 dp ), _¢2) = ark z) ,,m,~¢1) dtk 1) dtk 2) _(a)/~¢,) k + l  - -  - -  U k + l  "~ ~k  t~k - -  - -  - -  ~k  / ~ k  • 

(b) If 

(A.15) 

af) = A(n + + (p - 1)k)-' ,  (a.16) 
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then 

and 

d 0) --- - 2, d~ 2) = 2(2 + (p - 1)k), 

@ )  = a(ol) + k. 

(c) I f  for  some constants u~ °) # 0 and u~ 1), 

(o(2 = (n + u O) + + O((n + 
n + f l  

holds then 

e (k ) _ _ _  
~k C~k(O~k + 1)/2 -- "k"(1)/'/"kCO) 

n + fl (n + fl)2 

for  large n and, hence, we have 

a(k 1) = COg, a(k2)_ ~k(~k + 1) U(k 1) 
2 u~ °)" 

(A.17) 

(A.18) 

n ~ ~ (A.19) 

+ O((n  + fl)-3) (A.20) 

Proof. (a) This  fol lows by  s t ra igh t forward  a lgebra  f rom Eq. (A.5). 
(b) This  follows by  series expans ion  of  ~,, x(k)+ 1/~',/x(k) in (n + f l ) - l ,  and  f rom Eq. (A.15). 
(c) This  follows f rom the definit ion of  d, k) by  series expans ion  in (n + fl)-1. [ ]  

(A.21) 

References 

[1] A. C. Aitken, On Bernoulli's numerical solution of algebraic equations, Proc. R. Soc. Edinburgh 46 (1926) 289-305. 
[2] C.M. Bender and S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New 

York, 1978). 
[3] P. Bj~rstad~ G. Dah~quist and E. Gr~sse~ Extrap~ati~n ~f asympt~tic expansi~ns by a m~di~ed 62 f~rmu~a~ B~ T 2~ 

(1981) 56-65. 
[4] C. Brezinski, Acc616ration de suites h convergence logarithmique, C. R. Acad. Sci Paris A 273 (1971) 727-730. 
[5] C. Brezinski, A general extrapolation algorithm, Numer. Math. 35 (1980) 175-180. 
[6] C. Brezinski, A new approach to convergence acceleration methods, in: A. Cuyt, Ed., Nonlinear Numerical Methods 

and Rational Approximation (Reidel, Dordrecht, 1988) 373-405. 
[7] C. Brezinski and M. Redivo Zaglia, Extrapolation Methods. Theory and Practice (North-Holland, Amsterdam, 

1991). 
[8] J.E. Drummond, A formula for accelerating the convergence of a general series, Bull. Austral. Math. Soc. 6 (1972) 

69-74. 
[9] J.E. Drummond, Summing a common type of slowly convergent series of positive terms, J. Austral. Math. Soc. B 19 

(1976) 416-421. 
[10] J.E. Drummond, Convergence speeding, convergence and summability, J. Comput. Appl. Math. 11 (1984) 145-159. 
[11] A. Erd61yi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Vol. II (McGraw- 

Hill, New York, 1953). 
[12] W.F. Ford and A. Sidi, An algorithm for a generalization of the Richardson extrapolation process, SIAM J. Numer. 

Anal. 24 (1988) 1212-1232. 
[13] B. Germain-Bonne, Transformations de suites, Rev. Franfaise Automat. Reck Operat. 7(R-l) (1973) 84-90. 



112 H.H.H. Homeier /Journal of Computational and Applied Mathematics 69 (1996) 81-112 

[14] T. H~]vie, Generalized Neville type extrapolation schemes, BIT 19 (1979) 204-213. 
[15] H.H.H. Homeier, lntegraltransformationsmethoden und Quadraturverfahren fur Molekiilintegrale mit B-Funktionen 

(Roderer, Regensburg, 1990). 
[16] H.H.H. Homeier, Some applications of nonlinear convergence accelerators, Int. J. Quantum Chem. 45 (1993) 

545-562. 
[17] H.H.H. Homeier, A hierarchically consistent, iterative sequence transformation, Numer. Algo. 8 (1994) 47-81. 
[18] D. Levin, Development of non-linear transformations for improving convergence of sequences, Int. J. Comput. 

Math. B 3 (1973) 371-388. 
[19] W. Magnus, F. Oberhettinger and R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical 

Physics (Springer, New York, 1966). 
[20] N. Osada, A convergence acceleration method for some logarithmically convergent sequences, SIAM J. Numer. 

Anal. 27 (1990) 178-189. 
[21] M. Reed and B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators (Academic Press, New 

York, 1978). 
[22] A. Sidi, A new method for deriving Pad6 approximants for some hypergeometric functions, J. Comput. Appl. Math. 

7 (1981) 37-40. 
[23] D.A. Smith and W.F. Ford, Acceleration of linear and logarithmic convergence, SlAM J. Numer. Anal. 16 (1979) 

233-240. 
[24] E.O. Steinborn and E. Filter, Translations of fields represented by spherical-harmonic expansions for molecular 

calculations III. Translations of reduced Bessel function, Slater-type s-orbitals, and other functions, Theoret. Chim. 
Acta 38 (1975) 273-281. 

[25] E.J. Weniger, Nonlinear sequence transformations for the acceleration of convergence and the summation of 
divergent series, Comput. Phys. Rep. 10 (1989) 189-373. 

[26] E.J. Weniger, On the derivation of iterated sequence transformations for the acceleration of convergence and the 
summation of divergent series, Comput. Phys. Commun. 64 (1991) 19-45. 

[27] E.J. Weniger, Interpolation between sequence transformations, Numer. Al9o. 3 (1992) 477-486. 
[28] E.J. Wenigpr and J. (~i2ek, Rational approximations for the modified Bessel function of the second kind, Comput. 

Phys. Commun. 59 (1990) 471-493. 
[29] E.J. Weniger, J. (~i2ek and F. Vinette, Very accurate summation for the infinite coupling limit of the perturbation 

series expansions~of anharmonic oscillators, Phys. Lett. A 156 (1991) 169-174. 
[30] E.J. Weniger, J. t~2ek and F. Vinette, The summation of the ordinary and renormalized perturbation series for the 

ground state energy of the quartic, sextic, and octic anharmonic oscillators using nonlinear sequence transforma- 
tions, J. Math. Phys. 34 (1993) 571-609. 

[31] J. Wimp. Sequence Transformations and their Applications (Academic Press, New York, 1981). 
[32] P. Wynn, On a device for computing the em(S,) transformation, Math. Tables Aids Comput. 10 (1956) 91-96. 
[33] P. Wynn, On a Procrustean technique for the numerical transformation of slowly convergent sequences and series, 

Proc. Camb. Phil. Soc. 52 (1956) 663-671. 


