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Abstract 

A numerical spectral element method for the computation of fluid flows govemed by the incompressible Euler equations 
in a complex geometry is presented. The appropriate elemental interface conditions for the velocity and the pressure are 
found by using variational formulation. It is proven that spectral approximations of same degrees for the velocity and 
the pressure, called PN × PN version, conduct to well-posed discrete problems, which is not true in general in the case 
of the Navier-Stokes equations. Applications to fluid flow simulation using the Navier-Stokes/Euler coupled model are 
presented. (~) 1998 Elsevier Science B.V. All rights reserved. 

A M S  classification: 65M70 65M12 65N22 76C05 
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1. Introduction 

It is well known [4, 5] that the spectral methods are competitive as compared with the methods 
more classical such as finite difference or finite element. This competit ivity is clearly shown over 
the equations o f  elliptic or parabolic type where the solutions are in general regular. However  the 
efficacity o f  the spectral methods has not been proven over the equations o f  hyperbolic type such 
as the incompressible Euler equations. The principal difficulty lies into the fact that the solutions o f  
these equations are rarely regular. 
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In Ref. [13], we have studied a Galerkin-spectral method for approaching the two-dimensional 
Euler equations posed in a simple domain. If we want to treat a more complex and general domain, 
spectral element methods would have to be considered. 

This paper deals with the evolutional incompressible Euler equations by a spectral element method. 
We will follow the splitting idea introduced in Ref. [13] for treating the nonlinear (convection) term. 
This splitting technique, which seems to have regularization effects over the solution, consists in 
decomposing the Euler equations 

t~U 
~t+u.~Tu+~Tp=f, ~7.u = O. (1) 

into two classical problems: an elliptic problem in the velocity-pressure variable (u ,P)  

0---~ + co × u + ~7P = f ,  V'. u = 0 (2) 

and a transport problem in the vorticity variable CO 

~CO 
~--~ + (u- V')CO = V' × f  (3) 

where co-- V' × u = Ouz/Oxl -Oul/Ox2 is the vorticity, co × u = ( - o ) / 1 2 ,  o ) / l  I ) ,  P is the total pressure. 
This split formulation allows us to separately find (u,P) and CO by using suitable time schema, for 
instance the following 1-order finite difference schema: 

U n + l  _ _ H  n 

At 
+ co n x u n+l + V'P n+l = fn+l ,  V ' .  u n+l = 0 ( 4 )  

completed by 

O) n + l  __ CO n 

At 
+ (u "+l - ~7)co "+1 ---- ~7 ×fn+l.  (5) 

As regards the issue of geometric generality, it is clear that with the introduction of macro- 
element and local mappings, spectral element methods can treat a wide class of geometrically and 
physically complex problems for which global spectral methods are not appropriate. We consider 
here a general geometry which is partitioned into a certain number of  the subdomains (macro- 
elements). Each subdomain can be transformed to a square by a simple analytical mapping. The 
spectral element discretization in this kind of geometry consists essentially in treating the elemental 
interface conditions in a correct and easier way. Variational formulations permit us to generate the 
appropriate interface conditions in a natural way. We propose the discontinuous velocity/continuous 
pressure approximation for the (u,P) problem, Eq. (2), and the continuous vorticity approximation 
for the co problem, Eq. (3). These approximations showed more evidence from the point of  view of 
the Brezzi's "Inf-Sup" condition than the general approximations on the Navier-Stokes equations. 
It is well known that in the resolution of the Stokes-type equations the "Inf-Sup" condition is a 
difficult point to verify. By contrast in the spectral element approximation for the Euler equations 
proposed here, we can fulfill Brezzi's "Inf-Sup" condition in an easy way, both for the continuous 
problem and for the discrete one. Moreover we show that the constant of  the "Inf-Sup" condition is 
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independent of  the polynomial degree N. This is a very important characteristic which permits the 
simplification of  all the numerical solvers. 

We will introduce and analyze a spectral element method to approximate Eqs. (4) and (5). The 
method is validated by numerical tests which show good agreement with the theoretical analysis. 

To show potential applications of  our numerical method of  solving Euler equations, we perform 
some simulations of  fluid flow governed by the inviscid equations and also by the viscous equations. 
That is, we perform computation of  fluid flow simulations based on our initial idea of  coupling the 
incompressible Navier-Stokes and Euler equations in the context of  spectral approximation [17]. The 
goal of  these simulations is to prove the stability of the spectral element method proposed in this 
paper, and also to show its potential applications via a coupling strategy with the Navier-Stokes 
equations. 

The outline of this paper is as follows. We start in Section 2 by reviewing the basic idea of 
Galerkin-spectral approximation for the Euler equations. In Section 3 we introduce and analyze the 
spectral element discretization. A particular attention focuses on the analysis of a post-treatment 
procedure. In Section 4 we discuss how these results extend to more complex geometry situations. 
Numerical examples are given in Section 5. Lastly, in Section 6 we present the results of  some 
moderate Reynolds number unsteady flow simulation performed by using the Euler/Navier-Stokes 
coupled model. 

1.1. N o t a t i o n  

Let f2 to be a bounded, connected, open subset of  ~2. For all m>~0, we denote by Hm(f2) the 
classical Sobolev spaces, provided with the usual norm [[. [[,,,a, and also with the semi-norm [. [,,,a. 
We consider also the space L~(£2) with the norm [[. [[L~{a). For any integer N, we denote PN(£2) to 
be the set of  all polynomials of degree ~<N in £2. In all that follows, we use letters of boldface type 
to denote vectors and vector functions. Co, C, C l , " -  are generic positive constants independent of 
discretization parameters N and At, but possibly dependent on the exact solutions of the equations 
under consideration. 

2.  G a l e r k i n - s p e c t r a l  a p p r o x i m a t i o n  

We first recall the main results concerning the Galerkin-spectral approximation of  the Euler equa- 
tions which were first presented in Ref. [13]. 

Let £2 = ( - 1 ,  +1 )2. For the sake of simplification, we consider the Euler equations with the 
homogeneous boundary condition u . n  = 0. The semi-discrete equations (4) can be rewritten as 
follows: 

~un+l + {On × un+l + ~7pn+l : ~u n + f , + t  in £2, 

W. u n+l : 0 in f2, 

u n+l • n = 0 o n  8£2. 

(6) 

where :~ = 1~At.  
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The equivalent variational statement of Eq. (6) is: Find (un+',P"+I)EL2(I2)2× (Hl(f2)/~) such 
that 

~(un+', V) + ((O n X un+I, V) + ( ~7pn+', V) = ( ( xu  n + fn+', V) 

(U n+l, l~Tq) = 0 

where (., .) denotes the usual L2-scalar product. 
. n+l ,~,+1 ~ ~ pN(f2)2 × (PN((2)/~) such that U N ~ 1- N ] 

n+l n+l _ l .  n+, V ) - I -  ((O~/ × U N ,IV)-~- 1)) (~TP u ,V) = (OtUnN + f,+l,  ~LI, U N , 

(U"u +' ,  V q  ) = 0 

VV E L2(~) 2, 
(7 )  

VqEH'(~2)/~, 

Its Galerkin-spectral approximation ~s: Find 

and 

where CO~v is the discrete vorticity computed by a discrete transport equation. 
Define the space VN: 

VN = {V E PN((2)2; (V, Vq) = 0 for all q E PN(f2)/~}. 

Let RN to be the orthogonal projection operator from L2(f2) 2 into VN, and R~v the orthogonal pro- 
jection operator from Hi(O) into PN(f2). 

Theorem 2.1. For all (O~N ELf( f2 ) ,  U~v EL2((2), fn+, EL2(f2), the Problem (8) admits one unique 
solution. Furthermore, if  (un+l,P n+l ) and k U N  [" n+l, r-Nr~n+l "~) are respectively the solutions of Problems (4) 
and (8), then 

O ~ l l R u u n + l  . n+l n n - "N ,,O,a <~ <IRNU" -- UNII0o + IIRNu"+IIk~(~)II (o° -- (ONII0," 

+ l p " + '  _ R'NP°+' t , ,~  + II(o"llL~(a)ll un+~ - RNU°+' IIo, ~ 

II ~7(pn+' n+l n+l __ O' O°+' ,  ""+ '  110,4 -- PN )l l0,a~<21e , , ~ *  ,,,~ + (~ + II(OT~IIL~(~)Ilu "+a -- UU 

+11 un - u~,ll0,. + Ilu °+' IIL~o)II (on - G I I 0  ~. 

The Galerkin-spectral approximation of  the semi-discrete equations (5) is: Find (oTv+' E PN(Q), 
such that for all z E PN(f2), 

n+l . n+l O{((D u ,Z) -[- ( ("U • gT)(o~v+',z ) = (c¢(o~v + ~7 ×f"+l ,z ) .  (9) 

Remark 2.2. In the case of  nonhomogeneous boundary condition u.  n = ~p ~ 0, a well-posed spectral 
discrete problem would be 

n+l . n+l n+l Of F n+l o f  F ]7)(O N ,Z) do" = (~(o~v + V' × f "+ l , z )  ~. q ~ z d o  0{((D N ,Z) "q- ((~N 
• - -  i n  q)fDN Z 

where G = {x E Of2; u. n(x) < 0}, ~b is the "inflow" boundary condition, i.e., (o[rm = ~9. 

V,~ E PN(fa)  2, 
(8) 

Vq E PN(g)/~, 
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Theorem 2.3. Let co "+l and CO"N +1 respectively be the solutions of  Problems (5) and (9), and let 
QN be the orthogonal projection from L2(O) into DN((2). Then 

[~ - CN2 I1# "+1 - RN u"+l I IL~> - CN4 )IRN un+l - "U" ,+1 ii0.d IIQN~O,< -- ~U'"+' II0.~ 

<~Ccl]QNOO" - ~oTvllo.a + II ."+111L=~a>llOu~o "+1 - ~o "+1111.~ 

+11V(QN ~o"+1)11~=~11 u"+l - u;g '  11o.o. 

L e m m a  2.4. For all uE{v6Hm(Q)2;  (v, T q )  = O, Vq6HI(Q) /~ ,  all p6Hm+l(Q), and all 
~o E Hr"(o), there exists a constant C independent of  N, such that 

Ilu - RNUl[o. a <~ CN-mlluIlm, a, 

[P - R~Nla[ ,.a ~ CN-" 11 Pll,.+1,a, 

lifo - QN~IIo ~ ~CN-mllc°llma, 
I1~ - QN~OlI1,~ ~ CN-mll~°llm+,~ 

L e m m a  2.5. Let {a,,}, {b,,} be two positive series, satisfying the recurrent relation 

a.+l <<.an + C /Xtbn + c~, (10) 

(1 - C A t  - C A t  N 4  an+l )bn+l <~ b~ + C /kt a,+l + c~ (11) 

¢7, e~ are two given series satisfying, for all positive integer n < T/~t, T > 0: 

e~ <~ C At  N -m, e~ <. C /kt N -m (12) 

where m is a large enough integer (m >_-4 at least). I f  ao <% C1N -m, bo <% CzN -m, then for all positive 
integer n, n + 1 <% T/At, the following estimates hold: 

a,+l +bn+l  ~< C3(ao + b o  +N-m).  (13) 

From the above lemma and Theorems 2.1 and 2.3, we obtain the following results. 

C o r o l l a r y  2.6. Assume (u"+l,P n+l ) and ~o "+l to be the solutions of  Eqs. (4) and (5), k ['u Nn+l, l-N'n+l ) 
and CO~u +l to be the solutions of  Eqs. (8) and (9). Furthermore assume that there exists m,m>~4, 
such that u "+l EHm(E2) 2, pn+l 6Hm+l((2) ,  ~on+l EHm+1(E2). Then for all positive integer n,n + 
I<<.T/At, T > 0 ,  

II u°+' - "Nn+'llo ~ < C ( l l u °  - u°llo'~ + II co° ~°°11o~ + N - m ) ,  

i1~o°+1 .+1 U~N ii0.~ ~< C(IIu 0 o o uNIIo ~ + IIo~ ° ), - - - Oaul]o,o + N - "  

( 1 )  o o 
-- , -- -- ¢ON[[O,~ + N -m IP "+' PN+II1 o ~ c  1 + Z 7  (llu° u~llo,,~ ÷ IIo? ), 

where C depends on T and Ilullm, a, IlPllm+~,a, II°llm<Q. 
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F3 f23 
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F2 

Fig. 1. An example of computational multidomain 

Remark 2.7. In Corollary 2.6, we assume u E Hm(O) 2, m~>4. This is a technical hypothesis which 
is needed only during the proof of  Lemma 2.5. In fact the numerical experiments presented in 
Section 5 will show that this hypothesis is not really necessary for numerical solutions to be stable, 
and that accurate numerical solutions could also be obtained by increasing the polynomial degree 
even if the solutions to be approximated are of low regularity. 

3. Spectral element discretization 

In spectral element discretization we break f2 into K disjoint subdomains, and then approximate 
the dependent and independent variables by Nth-order polynomial expansions within the individual 
subdomains. 

To fix the idea, first consider the case where f2 is the rectangular domain ( - 2 , + 2 )  2 partitioned 
into 4 squares (see Fig. 1). 

All the quantities defined in f2k (k = 1,. . .  ,K)  are identified by an indice k. For example if ~o 
is a function defined in f2 then the restriction of  ~o in f2k is denoted by q~k- For k, 1 ~<k ~<K, EN, k 
denotes the set of the Gauss-Lobatto-Legendre points 1 2 (~ i , k '~ j , k ) '  O<~i,j<~N in Oh. '-"~U = 0 k L 1  ~-'~N,k" 
The corresponding weights in two spatial directions are denoted respectively by w ~ and w 2 Let i,k j,k" 
~k = [~1 , 2 k = W 1 W 2 For all q~, q~ E C°(Oh) d e f i n e  ". i,k ~j,k) '(Oij i,k j,k" 

N N 
k k k (~0, qS)N,k = ~--~y~q~(¢ij)dp(¢ij)Wij, k = 1, . . . ,K.  (14) 

i=0 j=0 

We recall that the quadratic formula: 

N N 
£ k k 

k i=0 j=0 

holds for all ~p E P2N-,(f2k), and that, for all ~p E Pu(f2k) we have the inequality: 

N N 

£ q~2dx~< Z ~ - - - ~ p 2 ( ~ j ) w ~ < 9 £  q92dx. (16) 
i=0 j=0 
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According to inequality (16), the bilinear form (14) is uniformly equivalent to the LZ-scalar product 
in the space Pu(f2k). Moreover, defining 

YN = {V;Vk C PU(~-~k), VI <.k <.K} 

and the bilinear form 

K 

((~P, ~))x = E(q% ~)X,*, (17) 
k=0 

((~o, ~b))N is a scalar product in YN. If I1" [IN the associated norm is noticed, then 

II~ol10,~<ll~ollN~<311~ol10,~, V~oE rN. (18) 

3.1. Elliptic problem on velocity-pressure (u,P)  

For purpose of simplification, hereafter we drop all time superscripts n. 
Problem (7) can be written in the multidomain form: Find (u ,P)E  L2(f2): x (HI(f2)/N) such that, 

for  all v6LZ(Q) 2 and qEHI ( f2 ) /R ,  

K K 

E a(u,, v,), +( to  × . , , v , ) ,  + ((K'P)ia,, v,) k ---- E ( f ,  vk)k, 
k=l  k= l  
K (19) 

~ ( u , ,  (~7q)b,), = 0, 
k=l  

where f_ = ~u n + fn+~, (q~, ~),  = f~, qg~ dx, k = 1,.. .  ,K. 
The spectral element discretization proceeds by approaching the velocity space Lz(~Q) 2 by its 

subspace of finite dimension XN: 

xN = {v  ~ ( L 2 ( ~ ) ) 2 :  vk E a~(f~k) 2, k = I , . . . ,K}  

and the pressure space H~(f2)/~ by mu: 

MN = {q E C°(~2)/~: q, E PU(f2k), k = 1,... ,K} 

(it is well known that the space MN is subspace of HI(f2)/~) .  We consider the following spectral 
element discrete problem: Find UN E XN and PN E MN such that, for  all VN E XN and qN E MN, 

O~( ( lgN , 1)N ) )N 71- (((I) u X lgU , VN ) )N Jv ( ( ~7 PN , IJN ) )N = ( ( f  , VN ) )N , 
- ( 2 0 )  

((Us, ~7qN )) N = O, 

where the notation ((., "))N is defined in Eq. (17). 
It is standard to write Eq. (20) more concisely in the abstract form: Find UN EXu and PN EMN 

such that, 

aN(llN, I)N ) ~- bN(I~N,PN ) = ( ( f  , VN ) )N VI3N ~ XN, 
- (21) 

bN(UN, qN ) = 0 VqN E MN, 
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where the bilinear forms aN and bN a r e  defined as 

aN( UN, I~N ) : O~( ( UN , IJN ) )N 91- (((I))< UN , VN ) )N ~UN , I~ u ~ Y N 

and 

(22) 

bN(VN,qN)=((~YqN, I~N))N Vl)N EXN, VqN EMN. (23) 

Theorem 3.1. Problem (21) admits  one unique solution. 

Proof. The proof of the theorem proceeds by verifying the four conditions of Lax-Milgram theorem: 
the continuity and the coercivity of the form as,  the continuity and "Inf-Sup" condition of the 
form bs. 

The first three conditions are classical. We verify the Brezzi's "Inf-Sup" condition of the form 
def 

bN(Vs ,qs )  as follows: given qs EMN, then qu, k = qN ~ belongs to BZs(f2k). Let VN, k = ~7qs, k, then 
VN,~ E OZS(f2k). If VN is defined such that VN]O, =Vs, k, we have Vs EXN and 

K 

((I~N' ~TqN))N ~- E (rN'k' ~7qN'k)N'k 
k=0 

K 

= E ( ~ 7 q U ,  k, ~Tqu, k)U,k 
k=0 

= IlVqNII2N 

= [IVNI]NII~7qNI[N 

which means that the "Inf-Sup" condition: 

inf sup ((VN'~7qN))N 
qNEMN v, EX, NVNIINII~7qNIIN >~fU 

holds with "Inf-Sup" constant fiN = 1. 
The existence and the unicity of problem (21) is then a direct consequence of the saddle theory 

(see, e.g. Ref. [9]). [] 

Remark 3.2. In Eqs. (20) we do not impose any explicit interface conditions for the discrete velocity 
on Fk, k- -  1, . . . ,K.  Indeed the second equation of (20) implies that 

• e = • U u ,  e UN, k nk(~ij)+UN, l .nl(¢ij)  (~7.UN, k(¢ij) + ~7 e 1 

e , k , l =  1, . . . ,K such that ~ . E ( f 2 k N f 2 t ) N Y ,  u \ { O ,  be} 

where w I is the first weight corresponding to the interface Fe, nk denotes the outward unit normal 0,e 

on ~3f2k related to subdomain Ok. Note that w~, e is proportional to 1IN 2 which means that on the 
elemental interfaces, the spectral element discretization "naturally" generates a weak C O continuous 
condition of the velocity solution in the normal direction. 
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3.2. Hyperbolic problem in the vorticity 09 

The vorticity ~o is governed by the equations as follows: 

~co + (u.  ~7)~o = g in f2, (24) 

where 9 = ~co" + W x f  "+l . 
We approximate problem (24) by finding ON E EN, such that 

C~((OON,ZN))N + I((UN" ~7CON,ZN))N + ½((~7"(IN(UNOON)),ZN))N =((g, ZN))N VZN dEN, (25) 

where discrete space EN is defined by 

IN is the Lagrange interpolation operator over the Gauss-Lobatto points. UN is the discrete solution 
of the velocity computed precedently. 

3.3. Global stability results 

We have first a stability estimate for the solution of Problem (21 ). 

Theorem 3.3. Assuming UN to be the solution of  (21), the following stability estimate holds 

~IlUNIIN <-IIf_l[N" (26) 

Proof. Taking VN = UN in the first equation of (21) and using the second and the coercivity of the 
form aN, we obtain 

~lluN 11,~ - -  ((UN,f))N 

which gives Eq. (26) by appling the Schwartz inequality. [] 

For the discrete solution of  problem (25), we need the following numerical technique. 
Post-treatment: To deduce the stability estimate over the approached vorticity CON, we first intro- 

duce a post-treatment for the velocity UN computed by Problem (20). This post-treatment procedure, 
on the one hand, permits to regularize the discrete velocity near the elemental interfaces, on the 
other hand it conducts to a better stability estimate for ~ON. It consists in averaging the values of  
UN, k on both sides of  each interface, and forcing UN, k into zero (in our homogeneous case) on the real 
boundary 0f2. Precisely we construct the post-treatment discrete solution u_ N as follows: supposing 
Om and ~Q. are two adjacent subdomains on the interface Fk, then 

{ UN, m(a:~.) + uN,,(~,~) v~. ~ zN n(t~\{o}), 
UN, m(~ k ) : UN, n(~ k) : 2 ( 2 7 )  

1 K k ~k. ~ ,--,~U (] { 0 } ,  2~k=l UN, k(~u) for v 

and 

- '  o v ~  c z~ n a~. (28) 
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An important question related to this post-treatment procedure is whether the post-treated solution 
is stable, in other words, if  the equivalence between II//N IIN and IlllUllU holds. In order to illustrate 
the equivalence we consider K = 2 for simplicity, then 

2 N i=N-- 1 ]=N 

4(<)w~, + 
/=0 2 

2 )w2 + Z  w0,+ Z ~ j=o \ 2 i=,,S=o UN(~'~J u 

i=N-- I,j=N 

Z 
i,j=O 

N 2 1 
2 1 )W!. l lN(~NJ)(w1 ~- W2j) 

"N( ~,j ,, + Z ~ , NJ 
j=0 

N 2 2 N 

+ Z  .~(~o~),w, w~,)+ Z ~ ~ \ Nj DI- UN(~ij)Wij" 
j=O i= l, j=O 

In our case, we have 

w~j = w2j. 

Therefore 

2 N 

k=l i,j=O 

i=N--I,j=N 

Z 
i , j=0 

N 
_t_~ -'~ 2 2 2 UN( ~oj )Woj -~- 

j=0 

2 N 

Z ~ 4(~)w~, 
k-1 i,j=O 

N 

j = 0  

N 
Z 2 2 2 

UN(~ij)Wij 
i= 1,j=O 

which gives 

(29) 

II~.IIN < II"N I1> (30) 

We state the following property. 

Proposition 3.4. The post-treated discrete solution ~N has an equivalent estimate in discrete norm 
[[" [IN to the solution UN without the post-treatment. 

Theorem 3.5. For (DN, solution of  Problem (25) with UN replaced by IIN, the following stability 
estimate holds 

HogN I]N <~ IIg]]N. (31) 
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We first prove the following equality: 

Lemma 3.6. For the post-treated discrete velocity lg u a n d  a n y  do x E EN, we have 

((  ~7 . ( IN( IINCO N ) ), CO N ) )N = --(  ( lg N " ~TCON, CON ) )N" ( 3 2 )  

Proof. Using Definition (15) and the exact quadratic formula (17), we obtain 

( ( ~7 " ( IN( U NCON ) ), CON ) )N 

K N N 

: E X E 
k - I  j=0  i=0 

E i i=0 • 2 i ,-o • t + E t 

= - E  IN(U--NCO" )F~xl W),* dx' + E IN(U--NCO" ) '~W' ,k  dx2 
k=l j : 0  ' i  i : 0  '2 

K 

k=l 

: - - ( ( U  N " ~TCON, CO" ) ) N ,  

where 1~ denotes the intervals in the xi direction of  the subdomain £2k, q~N, ij = q~N(~],k,~k), ~PN,, = 
~pN(~]k,X2) and ~0N, j = q~N(&, ;~2 , j,k). In the last passage, we have used the equality 

K P 

E [ (-~. " * ) 4  do = 0 
k=l d3Qk 

due to the post-treatment ( 2 7 ) - ( 2 8 )  and the fact that CON E H ~ ( ~ )  and _u N . n = 0. [] 

Proof  of  Theorem 3.5. Taking ZN = CON in Eq. (25) and using Eq. (32), we obtain 

K N K N 

k=l i,j=O k=l i,j=0 

Estimate (31 ) is then obtained by appling the Schwarz inequality. [] 

Remark 3.7. In the case of  nonhomogeneous boundary condition u.  n = ¢p # 0, we have an analogous 
estimate but more a boundary term appeared in each of  the two sides. Hoping u ,  to be sufficiently 
close to the continuous solution u, we could also obtain the stability results. 
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4. Extension to more complex geometries 

We consider only the (u,P)-problem for illustrating the extension techniques to more complex 
geometries. Extension for the m-problem can be done in an analogous way. 

It is well known that the efficiency of the spectral methods for resolution of the Navier-Stokes 
equations depends on the behavior of  the "Inf-Sup" constant fiN. The constant fiN is associated to 
the pressure precision, and also to the convergence rate of algorithms (solvers) used. The optimal 
estimate of  the "Inf-Sup" coefficient satisfies (see, e.g. Ref. [4]): ~N ~ 1/x/N. 

In the resolution of the Euler equations, we are going to see that /~N is much more simple to 
estimate. Let us consider a general domain as it will only be assumed to be open and connected 
with a piecewise regular boundary. We assume, in addition, that a partition of the domain in curved 
rectangles is possible in such a way that: t) = Uk~l l)k, f2k A f2l = ~, Vk, l = 1 . . . .  ,K, k # l, and we 
also assume that the decomposition is geometrically conforming in the sense that the intersection of  
two adjacent elements is either a common vertex or a common entire edge. 

We notice Fk, a regular one-to-one mapping, from the reference square domain ~ = ( - 1 ,  +1)2 
to the subdomain t2k. The four edges Fk,; of  t2~ are the images by Fk of the edges F/ of  c£. 
We assume that the boundary t3f2 is sufficiently piecewise regular so that Fk • c~(¢g)  and the 
Jacobian Jk (respectively Jk)  of  Fk (respectively Fk -l  ) is larger than some positive constant. In 
this geometrically conforming situation, we assume in addition that the restrictions of Fk and F/ on 
I)k NOt coincide. 

The discrete space XN corresponding to the continuous velocity will consist of  functions that are 
piecewise continuous on each element f2k, 1 ~< k ~< K, and such that their restriction to each f2k is an 
image, via Fk, of  some polynomial over c~; more precisely, XN will be defined in the following way: 

XN = {V • L2(f2)2; V o Fk • P N ( ( ~ )  2, k = 1,... ,K}. 

The discrete space for the pressure, M N ,  will be a subset of  all continuous functions, defined by 

MN -~ {q • H'(Q)/R; q o Fk • ~CI~N((~), k---- l , . . . ,K} .  

Remark 4.1. In the multidomain case where the geometry is rectilinear (i.e. Fk are only translations 
or affine mappings), as the one shown in Fig. 1, the definitions of XN and MN are equivalent to the 
ones defined precedently in this paper. 

On discretization of  Problem (7) we have 

K N N K N N 

Z Z Z O~(UN o Fk )ij(VN o Fk )ijJkw~j + Z Z Z (raN X UN o Fk )ij(VU o Fk )ijJk wkij 
k=l i=0 j=0  k=l  i=0 j=0  

K N N K N N 

-I- Z Z ~ ((~TPN)° Fk)ij(VN° Fk)ijJkwk= Z Z Z ( f  o Fk)ij(I)NO Fk)ijJk Wk 
~:1 i=0 j=0 k:~ i:0 j:0 
VI) u • XN, 

K N N 
Z Z ~(uu°Fk)~J((V'qo)°Fk)~JJkw~ =0 VqN•MN. 
k=l i=0 j=0  



C. Xu, Y. Maday l Journal of Computational and Applied Mathematics 91 (1998) 63~85 75 

The well posedness of  this problem relies on the same arguments as in the case of  Fig. 1 domain. 
The first point is on the verification of  the continuity and the ellipticity of  the form aN defined by 

K N N 

aN("N, I~N ) = Z Z Z O~("N 0 F k )ij(vN O Fk )ijJkw~. 
k = l  i=0  j = 0  

K N N 

+ Z ~ Z (ON X UN o Fk )6(VN o F k )ijJkw~ 
k = l  i=0 j = 0  

VUN, I~N ~ XN, 

as is proven in Ref. [2] or Ref. [1] for the Navier-Stokes equations, following the techniques used 
in Ref. [6], for the reasons: 

(i) The mappings Fk are inversible and their Jacobians Jk are larger than a positive constant. 
(ii) The Gauss-Lobatto quadratic formula satisfies Property (15). 
The continuity of  the form bN defined by 

K N N 
bN(VN, qN):  Z Z Z (VN°Fk)ij((~TqN)°F,)ijJkw~ 

k : l  i=0  j = 0  

VlYN E XN, qN E MN 

follows exactly from the same argument. 
For the rectilinear domain (in the sense stated before), we have the following "Inf-sup" condition. 

Lemma 4.2. Assume that the 9eometry is rectilinear. Then the "Inf-Sup" constant fin = 1, i.e. 

bN (VN, qN ) 
inf sup 

qxEM; vv@X,, [[VNIINIIVqNIIN >~ 1. 

In the more general case of  a curved domain, we can show the compatibility between the spaces 
XN and MN. 

Lemma 4.3. There exists a positive constant f such that 

bN ( IJN, qN ) 
inf sup >~ ft. 

q.,'El~v v~,,CXv IIVNIIo, oIqNI',O 

Proof. Denoting V'(r.s) the gradient operator in the reference domain c£, we can easily deduce the 
following equality: 

K N N 

bN(VN'qN) = ~ Z Z <VN° Fk)ij(<~7qN)° Fk)ijJkwk 
k = l  i=0 j = 0  

K N N 
= ~ ~ Z(VN°Fk)q(J&)-l(~7(r,s'(qN°Fk))ijJkw~ 

k = l  i=0 j = 0  
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where (JF~) -l  is the inverse of the Jacobian matrix /F~ of the mapping Fk. We know, from the 
proof of Theorem 3.1 that there exists v* = 17(r,s)(qN o F k ) (nonpolynomial generally) such that 

K N N 

~E Z Z v*,j~V~r,,,~qNo F,)),jw~ > 0 
k - 1  i=0 j = 0  

The question now is to know whether there exists a discrete function Io N E XN, o r  reciprocally a 
polynomial WN ~ VN 0 Fk E PN(C~) 2 such that 

K N N 

Z Z ~ (VN° Fk)ij(~Xh )--'(~7(r,s)(qNO Fk))ijJkw~ 
k = l  i=0  j = 0  

K N N 

:- ~ Z ~ V~,iJ (~7(r's)(qN° Fk))ijw~.. 
k=l  i=0 j - O  

For that, we introduce the projection operator FIN from L2 (~ )  2 onto PN(~) 2 defined by 

K N N 

Z ~ Z ( n N ~  - ~),j((¢~)-'Jd, N),jw~=O V~eL~(~) 2, YON ~ PN(~) ~ 
k = l  i=0 j=O 

which is well defined. We easily verify that the polynomial WN E PN(Cg)2: 

V~r 

is the one that we are looking for. 

5. Numerical tests 

We consider the evolutional Euler equations: 

c~u 
~3t + u . ~7u + ~Tp = f , ~ 7 . u = 0 ,  

in the domain showed in Fig. 1. The solutions to approximate are the analytical functions: 

u,~x,~,,)= cos (~;) sin ( ~ )  cos~), 

~,x,,,,)= sio ( ~ )  cos ( ~ )  cos~,), 

~,x, , ,)= ~cos ( ~ )  cos ( ~ )  co~,,) 

p(x, y , t ) =  x 2 + y2. 
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Fig. 2 .  ( a )  ( l e f t )  A plot o f  Ilu-u~lb(<> ), I I~ - -~ I IN(+)  a s  a function o f  time nat,  using 1-order t ime schema ( 4 ) - ( 5 )  

with A t = 0 . 0 0 1 .  ( b )  A plot o f  Ilu - UT~IIN(O),  Iko --  a ' ~ l l u ( + )  a s  a function o f  time nat,  using 2-order time 
schema ( 3 3 ) - ( 3 4 )  with A t  = 0 . 0 0 1 .  

In order to improve the time discretization accuracy, we use l-order schema ( 4 ) - ( 5 ) ,  and also a 
2-order schema: 

3u "+l - 4u" + u "-I 
+ (209" - 09 "- t  ) x u n+l + ~7P "+1 _~_fn+l, ~7" U n+l ~--- 0 ,  (33)  

2 A t  

3 0 9  n + l  - -  4 0 ) n  + ~ . - I  
(U n+l . ~7)O~ "+l : ~7 x f  "+l .  ( 3 4 )  

2 A t  

The first numerical test is related to the determination of  temporal discretization errors and proves the 
stability of  the discrete solution. The polynomial degree is chosen large enough to allow elimination 
of  all spatial errors, so errors in the solutions reflect only time differencing errors. In Fig. 2a we 
plot the discrete errors ] ] u -  u~vllN and l ie9-  (DTVI] N as a function of  time using 1-order temporal 
discretization. Fig. 2b plots Ilu- u ffN and Iio,-  OT IIN obtained by 2-order temporal schema. Note 
that in Fig. 2a, the errors behave as O(At )  while in Fig. 2b the errors behave as O(At2).  

The second test concerns numerical investigation of  the dependence of  spatial discretization er- 
rors on the polynomial degree N. The 2-order time discretization schema ( 3 3 ) - ( 3 4 )  is used. Time 
step At  is now chosen small enough such that all time differencing errors are negligible, so er- 
rors in the solutions reflect only spatial discretization errors. Fig. 3 shows the spectral accuracy 
obtained. 
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Fig.  4. A p lo t  o f  [ [ u -  U~,I1N and l i e ) -  ¢.D~rIIN as a f u n c t i o n  o f  t h e  t i m e  w i t h o u t  ( x ,1~) a n d  w i t h  ( + ,  0 ) p o s t - t r e a t m e n t .  
P o l y n o m i a l  d e g r e e  u s e d  i s  N = 11, t i m e  s t e p  ~ t  = 0.001. 

In the above computation, we did not use the post-treatment (27) - (28) .  This suggests that the 
post-treatment is not really needed to solutions of  high regularity (in this case effect of  averaging 
the discrete velocities on interfaces is negligible). 

However for solutions of  lower regularity, the post-treatment (27 ) - (28 )  could be necessary, which 
is proven by the following numerical examples. Considering now the solutions: 

ul(x, y ,  t )  = (1 - y 2 ) 3 / 2  

u2(x, y, t ) = O, 
P(x, y, t) = x 4/3 + y4/3. 

n and " with or without post- We effectuate an error comparison for the discrete solutions /gN (ON 
treatment. Fig. 4 shows an error evolution of  I lu-  u~liN and 11o9-COTvllN as a function of  time. Note 
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both the stability and accuracy are improved by the post-treatment. This confirms that the continuity 
of the velocity can stabilize the discrete vorticity coN, and hence improve the global approximation 
accuracy. In fact for all numerical examples we performed, better results are always obtained by 
computation procedure using the post-treatment technique. 

6.  A p p l i c a t i o n s  to  f l o w  s i m u l a t i o n  

We apply in this section the precedent method to some simulations of fluid flow. Although a 
large number of engineering and scientific applications involve incompressible inviscid fluid flow 
described by the Euler equations, we present delicate kind of applications of the approximation 
method proposed. The applications are based on a coupled model of the incompressible Navier- 
Stokes and Euler equations. As a particular implementation of domain decomposition ideas, the 
strategy of coupling viscous/inviscid models has received considerable attention in recent years. We 
cite among others [8, 14] for the compressible viscous/inviscid coupling in the context of finite 
element approximation, and [16, 17] for the incompressible viscous/inviscid equations in the context 
of spectral approximation. To understand what and how the computations will be done, we review 
the basic theoretical aspects of this coupling strategy. 

Suppose that the computational domain f2 is broken into two subdomains f2_ and I2+, with the 
interface F = ~f2_ A ~2+, f2_ Nf2+ =0.  Let F k = ~ 1 2 N O f 2 k ,  k = - , + ,  n _ , n +  are the unit normals to 
f2_, f2+ respectively (so n_ = - n +  on F). The model used is as follows: 

0t 
Qu+ 

Ot 

- -  + ( u _ .  V ' )u_  - v A u _  + ~7p_ = f _  in Q_, 

- -  + (u+. ~7)u+ + ~7p+ = f +  

o u _ ( 0 )  = u ° _ in  f 2 _ ,  u + ( 0 )  = u+  

u-Iz_ : 0 ,  u+'n+l~+ : 0  

in Q+, 

in  ~2+, 

(35) 

with the incompressibility ~7. u = 0, where Qk = f2k x (0, T), Sk = Fk x (0, T), k : - ,  +, T > 0, and 
u°_, u°+ are the initial conditions. 

The nonlinear term is written in vorticity form, while the pressure p is replaced by the total 
pressure P. The matching conditions on the interfaces are 

On 
V Sn - - P _ n _  =P+n+ on F, 

u _  • n _  = - u +  • n+  on  F .  

(36) 

At each time iteration, the vorticity co in the viscous domain (i.e., co_) is computed directly by 
setting o9_ = V' × u_; meanwhile the vorticity in the inviscid domain, co+, is computed by solving 
a transport equation with "inflow" boundary conditions given on the natural boundary F~ and also 
on the interface F i", where F in = { x  C F; u+.  n + ( x )  < 0}. 
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Taking an example of  2-order time discretization, that is, we discretize Eqs. (35) - (36)  as follows: 

3u~_+l _ 4u ~_ + u~_ -l  
- v/ku"_ +1 + 2 ( V  x u n) x u ~_ - (V' ×//n--l ) X //n-1 ~_ ~7p_n+l 

2/k t  

=f_n+m in f2_, 

n - - ]  3//~ +l - 4u+ + u+ + (209n --(D+n-1 )X U~_ +1 _~_ V,p~+l =fn+,,,+ in f2+, 
2 At  

V ' .u  n+l 0 in f2_, V' - n + J = 0  in f2+, _ = " 14+ 

n- -1  3d~ +1 - 409+ + 09+ 
-~- t / / + "  n + l  . ~7)C0+ +l = ~7 x f ~  +l in f2+, 

2 /k t  

~3un+ ~ 
en+l i l  - = n n + l  V--~n_ - - r+ n+ on F, 

/ / n + l  . n +  = - - u n 2 1 "  / / _  on F, 

09 n+l __ ~7' >( U n+l o n  / - , in  

u n + l  IF-  0 ,  . n+l . n+l u +  • n + l r  + = 0, Ir~' = 0, _ ~ U 3 +  

in which (//"_,P_") represents an approximation of  (u_(x,n/kt) ,P_(x,n/kt))  in the viscous sub- 
domain, (u+,P~, 09+) represents an approximation of  (u+(x, n/kt), P+(x, n At),  09+(x, n At))  in the 
inviscid subdomain, and /kt is the time step. 

An essential computation in the above system lies on the resolution of  the first three equations, 
which can be simplified into the following form (in dropping the time superscript n + 1 ): 

~u_ - v A u _  + V'P_ = f _  in I2_, 

~u+ + e3+ × u+ + V'P+ = f +  in O+, (37)  

V ' . u _ = 0  in[2_,  V ' . u + = 0  in f2+, 

n - - I  where c~ = 3~2At, f represents the corresponding source term, and &+ = 209+ -09+ . 
The well-posedness of Eqs. (37), completed by the interface conditions (36), has been investigated 

by the author in Ref. [17]. In the case of  square computational domain, it is proven that the solution 
of  the problem (37) - (36)  can be exhibited as a limit of  the solutions of  two subproblems. Precisely, 

[U m p m x  and let u o, u ° to be two functions given in F, we define two sequences of  function pair t - ,  - jm > 1 
(um~,P~_)m>~I by solving for each m (distinguished from the time superscript n) the following inviscid 
problem in f2+ 

rn m m ~u+ + &+ × u+ + V'P~ = f + ,  X7 .u+ = 0 in f2+, 
m m = (~m u + . n + = 0  on F+, u + - n +  on F, 

and then the following viscous problem in ~2_: 

~u ~ _ - v A u  m _ + W P ' = f _ ,  V ' .u  m = 0  in f2_, 
&m 

U m_=0 on F_, v ~ n  - pm_n_=P+n+ on F, 

(38) 

(39) 
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Fig. 5. Partition of domain and Gauss-Lobatto spectral element mesh used for the classical problem of flow, past a 
cylinder. 
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Fig. 6. A plot of the detailed velocity vector distribution for flow, past a cylinder at Re = 100 at t -  5.871. 

where ~0" 0 m-1 = U _  • n+lr + (1 -- O)U~_ -1 -n+lr, satisfying the compatibility conditions f r  ~om do" -- 0, 
0 E [0, 1 ] is a relaxation parameter. 

We generalize in this section the iteration-by-subdomain procedure to a more complex geometry, 
and apply it to flow simulations. Problem (39) is a standard Stokes problem with mixed Dirichlet- 
Neumann conditions, numerous spectral discretization methods can readily be applied. We choose 
the well known (optimal) PN X PN-2 version [4]. Problem (38) is just the problem investigated in 
last sections of  this paper, the method precedently presented is used in the spatial discretization. 

We perform two series of  simulations in which we try to capture the main features of  flow 
when using our coupling model, as compared to the results obtained by using the pure viscous 
equations. In both tests the velocity is computed on the Gauss-Lobatto grid throughout the domain. 
The pressure in the Euler subdomain is also computed on the Gauss-Lobatto grid, while the pressure 
in the Navier-Stokes subdomain is computed on a staggered Gauss grid. For a sake of  simplicity, 
we make the partition of  domain according to physical and experimental considerations. 

As our first example we consider the classical problem of flow, past a cylinder at a Reynolds 
number of  Re = UooD/v = 100, where Uoo is the freestream velocity on the artificial boundary and 
D is the cylinder diameter. The initial flow velocity is set to the constant 1. Fig. 5 shows the 



82 C. Xu, Y. Maday/Journal of Computational and Applied Mathematics 91 (1998) 63~85 

Fig. 7. Contourlines of the horizontal velocity of flow at Re = 100. 

Fig. 8. A plot of the streamlines for flow, past a cylinder. 

partition of  the viscous and inviscid subdomains, and the Gauss-Lobatto-Legendre spectral element 
grid used. The end of  the computational time is t = 5.871. Figs. 6 and 7, respectively, plot the 
instantaneous velocity vectors and contourlines of  the horizontal velocity. The streamlines is given 
in Fig. 8. Note the continuity of  the flow traversing the interface is obtained, which implicates that 
velocity interface relationship in Eq. (36) be satisfied. In Fig. 9 we present the contourlines of  the 
pressure. We see that the pressure lines near the interface is smooth enough, which is indicative of  
the smallness of  the viscous term in the interface relationship. Meanwhile we are very content with 
the fact that the numerical schema used remains stable, until effects of  the outflow boundary become 
large. 

In our second experiment we consider the problem of  internal flow, past a stepped-channel with a 
step presented near the entry at a Reynolds number of  Re = U m a x ( H  - h)/v = 100, where Uma x is the 
maximum velocity on the entry boundary, H and h are respectively the height of  the exit and the 
entry of  the channel. The profile of  the "inflow" boundary condition is taken as parabolic (Poiseuille 
flow). For simplifying our calculation we choose the "outflow" boundary condition of  parabolic 
profile such that the incompressible compatibility condition be satisfied. The partition of  the viscous 
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Fig. 9. Pressure contourlines for flow, past a cylinder. 
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Fig. 10. Partition of domain and spectral element mesh used for the stepped-channel Poiseuille flow. 
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Fig. 11. Instantaneous velocity vectors distribution for the stepped-channel Poiseuille flow at Re = 100. 
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Fig. 12. A plot of the streamlines for the stepped-channel Poiseuille flow at Re = 100. The flow is essentially parallel 
with the exception of a small region corresponding to the wake of the step. 

and inviscid subdomains and the Gauss-Lobatto spectral element mesh used in the calculation is 
shown in Fig. 10. Fine resolution is placed near the step in order to resolve the thin boundary layers 
and eddy structures expected in the vicinity o f  the step. In Figs. 11 and 12, we respectively plot 
the instantaneous velocity vectors and the steamlines at t = 1.753. Fig. 13 shows the contourlines o f  
the horizontal velocity. The pressure contourlines at time 1.034 are ploted in Fig. 14. As in the first 
example, the continuity of  the flow and the pressure traversing the interface is observable. Hence 
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Fig. 13. Contourlines of the horizontal velocity. The continuity near the interface implicates the satisfaction of the interface 
conditions for the velocity solutions. 

Fig. 14. Contourlines of the pressure. The continuity near the interface is indicative of the satisfaction of the interface 
conditions for the fluid flow. 

we believe that the interface F has been taken sufficiently far from the effective viscous region for 
the time we computed, such that the resolution of our coupled model gives reasonable results, at 
least comparable to the results obtained by using the full Navier-Stokes equations within whole 
domain. In fact we have simultaneously resolved the pure Navier-Stokes equations throughout the 
entire (figures nonpresented in this paper), the results obtained do not have obvious difference. 

7. Conclusion and discussion 

We have established a stable numerical schema for the time-dependent incompressible Euler equa- 
tions. In our schema, the temporal variable is discretized via a standard finite difference method while 
the spatial variable is discretized via a spectral element method. Approximation accuracy is proven 
by the numerical tests. Although it is known that in the approximation of  coupled equations, interface 
interactions play an important role in destabilizing the numerical schema used, our flow simulations 
performed show that spectral element discretization for the Euler equations is stable even if coupled 
by the Navier-Stokes equations, provided correct matching conditions and appropriate post-treatment 
procedure be applied. The simulation results obtained with this coupling model show a reason- 
ably good agreement with results obtained by using the pure Navier-Stokes equations (see also 
Refs. [7, 12]). 

Concerning application of the viscous/inviscid coupled model, further developments will consist 
in: 

(1) Optimizing the locations o f  the artificial interface boundaries. In view of reducing overall 
computational cost, it is desirable to take interface boundaries as close as possible to a region where 
the viscous effect is "small". A realizable procedure would be to use an adaptive mesh following an 
initial idea proposed by Brezzi et al. [3]. According to the point of  view of Brezzi et al., locations 
of the artificial interface boundaries could be determined via computing the distribution of the values 
of v Au. Precisely, neglecting the diffusion effects in the Navier-Stokes equations is justified only in 
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the region where the divergence of  the stress tensor is negligible, that is if, for a constant Reynolds 
number, (1/Re)Au is negligible. This means that even for moderate Reynolds number, it is still 
possible to reduce the Navier-Stokes equations to the Euler equations in the region where (1/Re)Au 
is smaller than an optimistic estimate of  the discretization error. A first step toward this direction 
can be found in Ref. [15]. 

(2) Applying our viscous/inviscid coupled model to the research of  the eddy-promoter stability 
theory related to viscous/inviscid analysis (see, e.g., [11, 10] and references therein). In particular, 
it could be applied to determine i f  the viscous mean flows induced by eddy-promoter are inviscidly 
unstable, or if they still require the Tollmien-Schlichting viscous mechanism to achieve positive 
growth rates. 
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