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Abstract

We relate iterates of the infinitesimal generator of a Markov process to space—time harmonic functions. First, we
develop the theory for a general Markov process and create a family a space—time martingales. Next, we investigate
the special class of subordinators. Combinatorics results on space—time harmonic polynomials and generalizec
Stirling numbers are developed and interpreted from a probabilistic point of view. Finally, we introduce the notion
of pairs of subordinators in duality, investigate the implications on the associated martingales and consider some
explicit examples.
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1. Introduction

Fundamental martingale-additive functionals can be associated to a nice Markov pfaCHssre are
of the type

t

M(N)2F (X)) — F(Xo) — /0 Le(f)(X,) ds,
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whereLe is the (extended) infinitesimal generatonoéndf is any measurable function belonging to the
domain ofLe. These martingales generate, in the Kunita—Watanabe sense, the set of all the martingales
of the Markov process.

Inthis paper, fromthe martingald# ( /), we create a family of similar space—time martingales obtained
by using some formulae involving the iterates of the generator. We illustrate this construction in the case
of the Brownian motion and the Poisson process in Section 2 of the paper. Section 3 is devoted to the case
of subordinators. Results from combinatorics (see[24])) involving space—time harmonic polynomials
and generalized Stirling numbers are developed and interpreted from a probabilistic point of view. Many
connections between stochastic processes and combinatorics can be found in Pitman’s Saint—Flour cours
[20]. Relations between stochastic processes and orthogonal polynomials are desg¢fibgdlif] and
[23].

2. lterates of the infinitesimal generator and associated martingales
2.1. Definition of the extended infinitesimal generater

In this section, we consider a general Markov procéss (X, ¢ >0) taking values in the measurable
state spaceéE, &) and endowed with the law@,, x € E) such that

P.(Xo=x)=1 for eachx.

The notion of extended (infinitesimal) generalgy associated with the Markov proceXswas first in
Kunita[14,15]and is quite convenient to exhibit important sets of martingales (undgy’a)lassociated
to X. More precisely,

Definition 2.1. Letf be a measurable function @&such that there exists a functign £ — R and

t

M (f)=f(Xs) — f(Xo) — /0 g(Xy) ds

is a (P,)-martingale for allx, thenf is said to belong tde, the domain ofLe, the operator defined on
De as

Le(f) =g-

Some assumptions are needed regarding the fungtiorparticularg may be assumed to be bounded,
but the weaker assumption

t
f lg(X)|ds <oo Py as forall x andz.
0

is sufficient.

This definition extends that of any “stronger” infinitesimal gener&tfor more details, please refer
for instance, tq17-19]or [9] in Chapter XV and its errata in the last two page§3}j. In particular, the
martingaleM;( f) is introduced in formula (2) p. 130 j4i7].
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We then define iterates @f; in the obvious manner, i.e.,
Li=Le(Lt™), neN* and LIf=f. (1)

As a particular example, we consider the case
o
fO=UM() = E, [/0 dr eXp(—Pl)h(Xt)}

for h bounded and Borel ibe(L"~1) andp a positive real number.
It is a well-known result that

Lef =pUP(h) —h=pf —h )

from which, more generally, the iterates of the infinitesimal generagazomputed orf can easily be
derived as

n—1
Lef=p"f— (ZpkLZ_(k“)h) forn e N*; L3 =f.

k=0

2.2. General result

The first result of this note is the following:

Proposition 2.2. For everyT € R, for everyN € N and f € D(LY*1), the process

(=3 T 0 pon - /( Py ds 3)

n=0
is a martingale More preciselyit satisfies

MY — MY () = Z/( " v,

For a general semi-martingale version of this result, see Exercise 647 in
2.3. Some comments

2.3.1. Some general remarks on formula (3)
We might call formula (3) a stochastic Taylor formula for the following reason. Indeéd,# x + oz
is the deterministic constant velocity (Markov) process, starting fcothnen

For anyC! function f : R — R, Lef(x) = of’(x).

So that formula (3) becomes
N

f<x>=Z( n) FO @+ at) + -V / ds™ f(N“)(eras) (4)

n=0
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since, for this degenerate Markov process, the martingale given in Eq. (3) is identically equal to its value
for+=0.And identity (4) is nothing else but Taylor’'s expansion at oNlerroundx +at), for f considered
betweerx andx + oz.

However, we shall refrain from using the terminology “stochastic Taylor formula”, as this term is
already used in a number of different contexts. In particular, Azerf8pttonsiders Taylor expansion
with respect to a parametemear: =0, of a family of solutions of SDE’s depending arAnother variant
has also been recently developeddd], who iterate 1t6’s formula for the Poisson process.

2.3.2. Proper functions
Moreover, applying formula (3) to the particular case of proper functions, i.e. fundtismsh that
there exists a parameteéandLe(f) = /4 f, we obtain that

Z—U(T O fx,) - f 7 ﬂN“f(X ) ds
n!

n=0

is a martingale. Then, the well-known result of éxfir) f (X;) being a martingale is immediate, letting
N tend tooco and considering the cage= 0.

2.3.3. Polynomial case
Finally, a very particular and interesting situation is that of polynomials.A_.et R and consider a
Markov process$X,; ¢t >0) such thatle has the following stability property with respect to polynomials:

Le(=@n) C Zy_1, (5)

where2,, is the space of polynomials of degree less than or equal to

Then, applying Proposition 2.2 to polynomials leads to an interesting family of space—time harmonic
polynomials in the sense that we obtain a sequence of polynomials in both vaxasids Moreover,
denoting byIT this polynomial I1(X;, t) is a martingale so that

o
Lo+~ |I=0,
(2 5)

More precisely,

Proposition 2.3. Letp € #y. Then

Z(_) (Lip) () (6)

n
n=0

is a space—time harmonic polynomiad other terms

MO (p) = Z(_) (L) (X))

n=0

is a martingale
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We indicate two directions towards which we shall go in the sequel of our paper:

1. We shall look for a sequencgy) y—o,1.2,... Of polynomials inx with respective degreds, such that

In this case, the formula (6) reduces to a space—time harmonic polynomial

N

> . )

n=0

We shall consider especially this notion of space—time harmonic polynomials when working with
subordinators.

2. However, it would be a pity to limit ourselves to the hypothesis (5) as there are many interesting cases
of real-valued diffusions for which

Le(2,) C Py (8)

holds and (5) is not satisfied, as we will see later in Section 2.5.3. In fact, Nlb&Ebbtains a
characterization of diffusion semigroups which is related to the property (8). Mazet’s definition of a
diffusion is that its infinitesimal generatdi acts on polynomials with the “It6 rule”

Le(@(f) =@ (f)Lef + 30" (Le(f?) — 2f Lef],

where® andf are polynomials. He then shows that, again on the space of polynoiialsegual to

2 d
2 — —
(Ax —|—Bx+C)dx2 —|—(ax—{—b)dx

thus, obtaining a five-parameter family of Markov processes which satisfy (8). This discussion is also
held in various references among which the S.M.F. publicati¢g]in

2.3.4. Some heuristic considerations
Before proving Proposition 2.2, we begin with the following heuristic consideration: for any bounded
measurable functioff : E — Rand for 0<t < T, if 7, = 0(X;; 0<s<1), the process
Ex(f(X1)/ 7)) =211 f(X1) 9)
is a martingale.
Now 2, is “generated” byLe, the extended infinitesimal generator, i.e.,
2, =expuLe),
so that formula (9) may be written informally as

— (T —1)"
Ed(f(X1)/F) =)  ———LLf(X0). (10)
=0 n.
For nicef’s, the right-hand side of this equation is meaningful for &hyg R andz>0. This defines a
martingale.
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2.4. Proof of Proposition 2.2

In order to prove Proposition 2.2, we proceed in several steps:

(i) For N =0, we have

MY (f) = Mi(f) + f(Xo).
Hence, this is a martingale.

(i) For N € N*, consider

T_ n
MM (f) = Z( — DL x) + AN,

n=0
where
a7 =00 e - / T vt px, d,
which, using integration by parts, is equal to
ANT T_N /(—S)N N /(—S)NlN
(f)=— Le f(Xo) + dM(Lg f) — VD Ly f(Xy)ds.
Consequently, we have obtained
M = M T )+/ T gag, 1 g,
Iterating this formula, we get
N T}’l ( _ s)n
M =30 L (X )+Z/ dM,(LL ).
n=0
Or equivalently
T _ n
MY (f) =M} (f)+Z/ ( S) = dM(LLf).

Hence(M™'T (f),1>0) is a martingale. O

2.5. Some examples

2.5.1. Brownian motion

Let us consider on a probability spa¢e, 3, P), a standard®-Brownian motion(W;; r >0) and a

function f which belongs toC?V+Y < D(LY+1). Applying 1té’s lemma tof(W,), we obtain the
characterization of the generatbg as

Le(f)(x) = 3£ (x).
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This case corresponds to
Le(yn) C Z?y 2.

Hence, by a simple recurrence argument, we get the iterates of the generator as

1d*f
YO<n<N, Lg(f)(x)= > — 2, (X).
According to Proposition 2.2
1 (=) d2nf N1 d2(N+1)f
A g (0 D [} o5ty Sz 000 (1)

is a martingale.
Let nowf be a polynomial of degreld. For instance

fx)y=xV

whose derivatives are obviously computed. Denotind My?2] the integer part oivV/2, formula (11)
simply becomes

|:N] 1 |:N]
ézz_ o N(N—l)...(N—Zn—{—l)(Wt)N—Zn:N!(@)NZ

n=0

)N 2n

1" (%
n! (N —2n)!’

Therefore, the proce$MtN*0; t >0) is a martingale.
Moreover, this process can be expressed in terms oivttheHermite polynomials. More precisely,
using the following definition of the Hermite polynomials, found1i3]

LN/2]

_1\n N—2n
= 3 CD @
n=0

n! (N —2n)!’

we directly obtain the following equality:

MO = (JZ)NHN(%).

Hence, the standard result that the above version of the Hermite polynomials are martingales is easily
found in this framework (see for instanf28,25)). See als¢28].

Remark 2.4. Another way to obtain some relationship between Brownian motion and Hermite polyno-
mials is to compute conditional moments

)(\/ (T —0)N, 1<T.

EWN|7,) =

N(JZ(T
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2.5.2. Poisson process

Let us consider a probability spa@e, 3, P) and(N;; ¢ >0) aP-Poisson process with intensity param-
eter 1. Moreover, letbe a function which belongs (L5 *1) wherek e N*. Applying Itd’s lemma to
f(Ny), we obtain the characterization of the generdigas

Le(f/)(x) = f(x +1) — f(x).
Let nowf be defined as

[x]k
K!

fx)=pgx) =

where
[x],=x(x—21)..(x —n+1) forxeR.

Applying 1td's lemma tof(N;), we obtain the explicit characterization of the generdigrand the
following recurrence relation:

Le(pk) = pr-1.
Note that we are precisely in the case
Le(yn) CZy 1.
Hence, using Proposition 2.2, the following process
K K K
=" _, (—=n)" (—=0)" [Nilg -
MEOEN LU (i) (N) = Y ———pra(N) = Y ——

! ! —n)
ar R S (K —n)!

is a martingale.
Moreover, this proces(sil/lf{’o; t >0) can be related to Charlier polynomials. More precisely, using the
following definition of the Charlier polynomials, found j&3]:

Crtrny = k13 Lkon 0
n=0 (K —n)! n!

we directly obtain the following equality:

Cg (N, t
MtK’O _ Kk (N; ).
K!
Hence, the close relationship existing between Poisson process and Charlier polynomials is underlined
in this equality (see alsf25]).

Remark 2.5. Tsilevich and Vershik develop if27] some isomorphism between the Fock spaces of
Brownian motion and the Poisson process which relates the Hermite and Charlier polynomials.
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2.5.3. Exponential of Brownian motion
Let us consider a probability spa@e, 3, P), a standard-Brownian motion(W;; ¢ > 0), the following
procesg X;; t >0) defined as

X; = exp(Wy)

and a functiorf which belongs taD (LY +1).
Applying Ité’s lemma tof (X,), we obtain the expression of the generatgion C? functions as

Le(f)(x) = 3G £ () + xf' (x)).

Hence, by a simple recurrence argument, we get its iterates as
1 < dkr
VOSSN, Le(N)) =50 Y dau(0) (),
k=1

whereg,, (x) is the Bell polynomial of degreek2 More precisely, the Bell polynomials of degreare
generated by

by =2y (’,j N }) b1, do()=1 and ¢,(1) =B
k=1

oo k"

where(’,ﬁ) are the binomial coefficients arj, are Bell numbers given bg, = %Z,:OF.
Therefore, according to Proposition 2.2

N1

2

f<X>+( v+t [fg L SR &f x 12
o X s2N+1NvZ¢2’<( o) ok Xs) (12)

is a martingale.
Let nowf be a polynomial of degreld. For example

fx)=xV.

The different derivatives of the functidrare explicitly known. In particular, one has

2
Le(f)(x) = —

and

N2n
YO<n<N,  Le(H) ==, XN

Note that we are precisely in the case

Le(@n) g gn-



P. Barrieu, W. Schoutens / Journal of Computational and Applied Mathematics 186 (2006) 300—323 309

Hence, formula (12) simply becomes

N N t N
w023 C o) + (- /o ds— LX)

n=0
N \n ar2n _ A\N+1 A72(N+D) ot
"N 1 N
= Z - XN + = / ds sV (xN
= o2 N! 2N+ ],

and(M"%; 1 >0) is a martingale.

3. Space—time harmonic polynomials associated with subordinators
An important class of Markov processes are Lévy processes, i.e. processes with independent and

homogeneous increments. We shall even consider the more particular case when the process is increasing
that is a subordinator (for more details on Lévy processes, please refer for instfgh@2jo

3.1. Framework

In the following, (X;; ¢ >0) denotes a general subordinator with no drift and Lévy meagdse such
that

o
for somee > 0, f v(dy)(expey) — 1) < oo. (13)
0
This condition is equivalent to requiring that
o0
for some¢’ > 0, / v(dy)y exp(e'y) < oo. (14)
0

In particular, stable subordinators do not satisfy condition (13), or (14) eveh=00!
Denote, for any > 0, the associated Lévy exponent

¥(S) 2/0 v(dy) (1 — exp(—<y))

so that(exp(—¢&X; + P(&)t), t >0) is a martingale.
The expression of the infinitesimal generakqrof X, acting on a functiof, is written as

Lef(x) = / WAL +3) — FOL.

Note that it is well defined for any polynomitl
As previously, we denote by, the space of polynomials of degree less than or equal to this
framework, we always have

Le(yn) =Zp-1.
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Indeed, let us consider the following polynomialdt:
fo) =) fix.

k=0
Then

n—1 n—1
~ ~ [+1
Le(f)(x) =Y fix", where fy = (k+ ) Ji1va+1-1 and
k=0 1=k
Vim) = / v(dy)y™ (<oo form=>1), (15)

where(,’() are the Binomial coefficients.

It follows from Eqg. (15) that the coefficients, f2, ..., f») can be retrieved fromﬁ; k=0,1,...,
n — 1). Hence the result

Le(yn) =Py-1.
3.2. Space—time harmonic polynomials

First note that the associated Lévy exponehtis strictly increasing from[0; co) to [0;7)
wherey = [ v(dy)(<00). Thus¥ 1 is well-defined ori0; ).
Developing the following expressions:

exp(—éx +1¥(9))=> & Q;(x. 1) and exg—¥ a)x+ta)=) a'Pi(x,1),

we obtain two sequences of polynomials in both variakkesdt, with P; andQ ;, respectively, of degree
i andj in either variablex andt. Moreover, forll = P; or Q;, II1(X;, t) is a martingale so that

o
Lo+~ |m=0.

There has been a long standing interest in such functibnahich are calledspace—time harmonic
(relative toX).

3.3. Main results

The following theorems are related to results in the combinatorics literature (sg6ekxercise 5.37]
as was pointed out to us by Jim Pitman. Here, we make some connections with stochastic processes.

Theorem 3.1. Consider a sequence of polynomiéisy (x)) y—o,1.2..., €xactly of degree Nsatisfying the
condition

(c): po=1 and py(0) =0 VN>=1.
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Then the following properties are equivalent
() L(pn)=pn-1 YN=1;
(i) The polynomialsPy (x, t) defined by

N

Py =Y :—(_l)ktN_kp ) (16)
N\X, = k
P (N —k)!

are space—time harmonic;
(i) (pn(x))y=0,1.2.. Isthe sequence obtained from the development of

o0

exp(—? Ha)x) = Y (=) pn(x). (17)

N=0

More preciselydefining the double sequen@fé” (n>m) as follows

o0 n
— m m a4

FH@)" =m! Y o (18)

n=m :

there is the formula for the polynomialy
1 N
pr@) =~ D (DN e, (19)
"m=0

Looking at Eq. (7), it is also natural to exchange the rolex@ndt, i.e. to look for a sequence
(gN)N=0.1.2.... Of polynomials int with respective degred$, such that

N

S o

n!
n=0

is a space—time harmonic polynomial.

Theorem 3.2. Consider a sequence of polynomiadg (r));—o 1.2.., exactly of degree ksatisfying the
condition

(c2:go=1 and ¢ (0)=0 Vk>1.
Then the following properties are equivalent

() The polynomial);(x, r) defined by

J (_x)j—k
Qj(x,1) =k§0 G (20)

are space—time harmonic
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(i) (gr(1)k=0.1,2.. is the sequence obtained from the development of
o0
expt (&) =Y &"qu(t). (21)
n=0
More preciselydefining the double sequeng@ (n>m) as follows

W) =m Y 5= (22)

n=m

there is the formula for the polynomiaj}
1 n
an(0) =~ Z;s,ﬁ'”zm. (23)

Note that some similar results are presented in Pitman’s Saint Flour d@0jd€hapter 2) when he
studies moments of Lévy processes and relates them to sequences of polynomials of Binomial type.

3.3.1. Anintroduction to certain generalized Stirling numbers
The classical Stirling numbers and the Gamma procd#ghe subordinator process is the Gamma
procesqI;;t>0)i.e.

Elexp(—¢In] =

1+9"
so that
vr(&) =log(l+ &), ¥ '(a)=(expa) — 1),
then(c"™) are the classical Stirling numbers of the second kind, defined by (s€@ .eCGhapter 24, p.
824)

00 a"
_ m __ (m)
(expla) — 1" =m! E o, pr}

n=m

and(s\™) are the classical Stirling numbers of the first kind, defined by (see fofle.Ghapter 24, p.

824)

(log(1+ &))" =m! Z s,(lm)%.

n=m

The classical Stirling numbers and the Poisson procHsthe subordinator process is the Poisson
procesgy;; t >0) i.e.

Elexp(—én,)] = exp—1 (1 — exp(—4))],
so that

V(&) =1—exp—9), ¥, (a)=—log(l-a).
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The classical Stirling numbers of the first and the second kind may be related to the Poisson process, with
their role inverted in comparison with the Gamma process case.

A generalization of the Stirling numbersrom the two above examples, the coefficie(mfﬁ”) and
(s,S’")) deserve the name of generalized Stirling numbers of the second, resp., first, kind.

We are well aware that the terminology “generalized Stirling numbers” designates a vast class of
generalizations of Stirling numbers (see, ¢1¢] or [6]).

The generalized Stirling numbers, which appear in, e.g. these two papers do not necessarily fit into our
framework. We shall show later that the intersection between our generalized Stirling numbers and those
for e.g. in[12] is, however reasonably large. In particular, our generalized Stirling numbers associated
with the Esscher transformed stable subordinators, whose Lévy measure is

v(dy) = c%:fy) dy forb<1,
y

appear in the generalized Stirling numbers’ family proposgd2h
These subordinators are well-known to play an essential role in the study of the Poisson—Dirichlet laws
(see e.g[21]).

3.4. Proofs of Theorems 3.1 and 3.2

3.4.1. Proof of Theorem 3.1
(i) = (i) SincePy(x, 1) is a space—time harmonic polynomial, it satisfies

0
Ly (Py) + EPN =0,

where for clarity,L, denotes the operattracting on a function ox.
This yields

N N—k N—k—1

1
Z(N o L (PO () + Zmpm):o

Identifying the coefficients af* (0<k < N) gives (i).
(i) < (iii) Existence of they's satisfying(cl) and (iii) (:(iii ) = (i))
Since the process
{exp(— @)X, + ta), 1 >0}
is a martingale, we have

Ly (exp(—¥ La)x)) = —a exp(—¥ La)x). (24)

Developing exp—¥1(a)x) with the help of formula (17) on both sides of Eq. (24), we obtain (i). We
note that the property (c1) follows directly from Eq. (17) by taking: 0.
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Uniqueness of they's (:(i) = (iii))
For N >1, we write

N
pN(x) = Z Fi yx*
k=1

and we need to show that the double sequékey ), < v iS uniquely determined from (c1)) and (i).
From the formula
Lfw) = [ vl ) = Fl

which is valid at least for polynomials, we easily obtain

N

k
Z (J-)Fk,zv V(k—j)s

k=j+1

N-1 _
Lpy)(x) = ) x/
j=0

where

d
V(m) D / v(dy)y™,

is themth moment ofy.
Thus, the property (i)
L(pN) = pNn-1

amounts to
N
Vji<N -1, Z (< i ) V(H—l—j)) Fiiin =Fjn-1. (25)
[y

But this linear system of equations with the unknowng )1 < < y admits one and only one solution
since it may be written as

1 2 3 N

<O) V(D) <O) V(2 (o> V@) e <0 ) V(N)

2 3 N Fin Fon-1
0 (1) V(@) (1) Ve o - (1 ) V(N-1) o N Fin-1

3 N Fsny | =| Fan-1

0 0 (2>v(1) <2>V(N_2>
Fn.n Fn_1n-1
0 0 0 0 (N’i 1) Yy

Hence, the vectolFy y)1< <y IS determined uniquely.
(i) = (i) As written previously, for any: > 0, the procesgexp(—¥1(a)X; + ta),t>0} is a
martingale. We recall the definition of thg,’s via (jii)

exp—¥ Ha)x) = ) (=a)" pu(x).
m=0
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On the other hand

o0

explta) =) G

n!
n=0

Hence

exp(— lP—l(at))c +ta) = Z(—a)mpm (x) Z (ant’)
n=0 )

m=0
and
exp(—¥ Ya)x +ta) =) ' Pi(x,1), (26)
i=0
where
4 B i (_l)kti—k
Pi(x,t) = kg(:) ka(x)

is a sequence of space—time harmonic polynomials.

3.4.2. Proof of Theorem 3.2
(i) = (i) Recall that for any > 0, the procesgexp(—E&X; + tW(&)), t >0} is a martingale.
It follows from the classical formula:
0
} (=&x)™
exp(—<éx) = Z o

m=0

together with (19) that

00 —Ex)m 00
exp(—cx + 1) =3 n'j) Y ).
m=0 ’ n=0

From which, if we define the sequengg by

o0

exp(—éx + t¥(0) =Y & Q;(x. 1), 27)
j=0
where
J ik
(—x)’
Qjx,n=) G-

k=0

Thus, from Eq. (27) thg ;’s are space—time harmonic polynomials.
(i) = (ii) Consider the family(go, g1, . .., g;) to be known. We want to determige. ;.
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According to (i), Q j+1(x, t) is space-time harmonic. Hence
L@y, + = 0116, 1) =0
Such an equation is valid for evexyespecially forx =0
L(QDO.0 + = 0310, =0

Letus denot@Hl(x, t) the following polynomial:

§j+1(x, 1)=Qjy1(x,1) —qj+1(1),
i.e. the polynomial composed by tlig 4+ 1) first terms ofQ ;1(x, 1), as given in (20).
Hence, Eq. (28) may also be written as

Ly (QJ+1+611+1(1))(0 l)+ Q]+l(0 1) +qj+1()]=0,
which simplifies as
~ 0
Ly(Qj+1)(0, 1) + &C]Hl(t) =0

sinceL, (¢;+1(1)) =0 and(©/01)Q,41(0,1) =0
Moreover

L.(0;11)(0,1) = / v d)[Q+1(y, 1) — Qj41(0,1)] = / v(dy) 041y, 1)

1k J _ 1)/ t1-k
= ZQk(t)/V(dy) [(( —i)l k)'} ZQk(I)mV(H—l—k%

k=0

wherev(,) denotes theth moment of the Lévy measureassociated witx.
Consequently

) 1)/ =k
q]+1( ) —ZQk( )ﬁ V(j+1-k)

or

(—1/*

qj+1(t) = Z%(Um

V(j+1-k),

wheregy (1) is the primitive ofgy (1) such that

qx(0)=0

as to satisfy condition (c2).

(28)

(29)
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By recurrence, we obtain a unique sequef@ge. Moreover, the sequencg,) presented in (i) satisfies
(). Hence, it is the only sequence which satisfies (i)J

Remark 3.3. The relation (29) may simply be understood as a consequence of the martingale
property of

X/t - /0 dsLo(x (X,
since, by formula (34)g, (—t) is a multiple of E[ X} ].
3.5. Various comments
3.5.1. Relations between both theorems

(a) Comparing formulae (26) and (27), we easily obtain the following relationship between the two
sequencesP,) and(Q ;) of space—time harmonic polynomials:

Py(x.1) = Zﬂo— D0;(x. 1), (30)

Moreover, when Iooklng deeper at formulae (16) and (20), we get
(J) (m)

[ (m) n—m n
(=" o xm (CD's” o1
) =) jlo I 2 .
m! " Z 1~ D! n! g ! ];m (]—l)'
Comparing this result with formula (19), i.e.
n—m
Prn—m(x) = )' Z( ) —h h xh,
we deduce
1 n—h I
h +h
'(l)’":(n)Z( B (31)
m/ |=m

In particular, wherk = 0, one has the well-known formula

P
Z agi)sr(lm) = Op.m-
n=m

(b) Symmetrically, there exist formulae expressing the sequed¢gin terms of the(P,)’s

1
Qj(x,1)= ﬁzn!sj )P, (x, 1). (32)
"n=0

The relation (32) follows from Eq. (26) where we have takea ¥ (¢), and Eqg. (22).
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3.5.2. Some remarks on the generalized Stirling numbers
Recurrence relations between the classical Stirling numb#®eshave shown the following results for

the Stirling numbers of the first kind™) and of the second kint:{™):

1 l+h n
h § : [+h
O',(l )m— (n) ( h >O"( )Sl( 1).
m

I=m

Moreover, according to formula (25), applied to the Gamma process, we obtain that the Stirling numbers
of the second kind have to satisfy the following ascending recurrence relation, with respect to

. (l + l) 1_(+1) )
Vi< ; Tris; ~Dley™ = (=1 1oy ;. (33)
Relation between the generalized Stirling numbers and the momeéhtamd ofv: As written previously
Efexp(—<X )] = exp(—1 ¥ (9)).
Developing both sides, we obtain, using Eq. (21)

> 0 by zm( .

n=0

Hence

E[X]]. (34)

an(—t) =
n

Comparing with Eqg. (23),
1 n . N
(=== 5" D",
m=0
we obtain

m=0
On the other hand, the momentsyadre related to those of the variablgg ) with t varying, since from
Remark 3.3

j+1 Lo+ [ k
E[X] ]:Z( L )/0 ds E(X)V(j+1-k)-

k=0

Generalized Stirling numbers associated to the generalized stable subordinatdns section, we
show that some particular class of particular generalized Stirling numbers, as defih2} are in fact
“our” generalized Stirling numbers for the generalized stable subordinators, whose Lévy measure is:

exp(—ay)

vdy)=C yI+D

dy forb<l1. (35)
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In Theorem 212, p. 372] we take the particular case= 0, which gives

k
L+ )l —1 = &
<#) = k!n; Sup(n, )= (36)

We note that the left-hand side of Eq. (36) may be obtained as

/ v p(dy) (L — exp(—Ey)),

where
_ EX=Y/D) 14 (g
vy p(dy) = G Y dy.
We recognize the Lévy measure in Eqg. (35), where
c— .
- al—i—([}/d) ’
1
a= -,
o
b=l
o

3.6. On pairs of subordinators in duality

3.6.1. Introduction: the Poisson and Gamma processes
Let us denote, respectively, loy,; r >0) and(G;, r >0) the standard Poisson and Gamma processes,
whose laws are characterized by

E[exp(—an,)] = exp(—1(1 — exp(—a))),
E[exp(—EG,)] = exp(—t log(l + &)).

Hence, with obvious notation, we have

Y,(a)=1—exp(—a) and ¥s(&) =log(l+ ),
so that

v —a)=¥,(a) or equivalently —a = ¥G(—¥,(a)).
3.6.2. Towards a generalization

Existence of pairs of subordinators this section, we look for pairs of subordinatotandY which
play the roles ofs andy in that

—a=¥x(—=¥y(a) (37)
or equivalently

—v M —a) = Py(a). (38)
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In terms of the Lévy measures ¥fandy, this may be written
—a= /VX(dX)[l — exp{—x(—=¥y(a))}]

_ / vy (do)[L — expix Py (@))]

= d 1 —1
- / x ”( B E[exp(—an>]>’

so that finally

1
[ox (sraeari =) = .

GivenX, the existence of a subordinatdsatisfying (37) is not obvious at all.
Implications for polynomiatsWe now discuss the symmetric roles which are playedXgndY,
assumed to satisfy Eq. (38). Indeed, from this equation, we see that

Pt (=) = —¥x(9),

so that the pairgX, Y) and(Y, X) entertain the same relationship.
Raising both sides of Eq. (38) to the powarwe easily obtain

(—l)n+m0,(lm)(x) — S}gm)(y)

with obvious notation.
As a consequence, from both Egs. (19) and (23), we obtain

Pn(X;x) =qn (Y5 x).
Hence, from both Egs. (16) and 20
Po(X5x, 1) = (=1)"0,(Y; 1, x).
3.6.3. A compound Poisson process example
Let us take forX,) the compound Poisson process with
vx(dx) = C exp(—ox) dx,
so that
Célo?
1+ ¢/a
We then show the existenceYgatisfying (39), which in this case, takes the form

Py (&) =C / e exp(—ax) (1 — exp(—x¢&)) = (40)
0

C /OO dx exp(—ox){exp(x¥y(a)) — 1} = a,
0

that is

@ )
C{———— — -} =a.
o— Yy(a) o
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It follows that
%?a/C
1+o0a/C
which, when compared with Eq. (40), yields

Yy(a) =

C
vy(dy) =C'exp(—«'y)dy, where C'=C ando = —.
o

3.6.4. On generalized stable subordinators
In this paragraph, we consider the three parameters family of subordii&iorgiven by

vx(dx) = CxP~Lexp(—ax)dx for > — 1. (41)

This subordinator is related to the CGMY process introduc¢8l]iwhere in the bounded variations case,
the CGMY process is the difference between two processes of the family (41). Moreover, we should like
to call X a generalized stable subordinator, since in ease0 andp = —y, 0<y < 1, X is a stablg(y)
subordinator. But this family (41) also contains the Gamma case @o0) and the compound Poisson
case (forp = 1) with exponential jumps.

Casep > 0: We now compute? x (&)

Py (&) =C /oo dx xPLexp(—ax)(1 — exp(—x¢&)) = CI'(B) (i — ;> . (42)
0 ot of

Then, we look foiY such that

C / - dx xP~Lexp(—ax){exp(x Py (@) — 1} = a,
0

which yields, after some elementary computation

1
CIr(B~\1/8 1
(zx_ﬂ[) /B (M +a> /B

of

Py(a) =o— =(crpn’

1 1
G+ e’

Hence, by comparison with Eq. (42), we find théielongs to the same family, with paramet@rs «', ')
given by

1, CIrp) (1 18
ﬂ—ﬁ, of = —5—. CF(ﬁ)_[CF(/?)] .

Case—1 < < 0: We now computeé x (&)
o0
Py (&) = c/ dx xPLexp(—ux) (1 — exp(—x¢)),
0
i.e. when settingg = —7,

Px () =CIr(=p @ — @+ ).
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Since
-1
F(—“/) = TF(l - ”/).

we finally obtain

ra—y
Wy (®) =C(V’)<<u+5>’ — o)

r(1+ﬂ)(1 1 ) (1 1 )
P =C———— |- —-—"—)=cr ———.
x© p o (it of D\ (o + &)F

Hence, formula (42) may be extended to the cade< f < 0. The results of the previous case are also
extended.
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