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Abstract

We relate iterates of the infinitesimal generator of a Markov process to space–time harmonic functions. First, we
develop the theory for a general Markov process and create a family a space–time martingales. Next, we investigate
the special class of subordinators. Combinatorics results on space–time harmonic polynomials and generalized
Stirling numbers are developed and interpreted from a probabilistic point of view. Finally, we introduce the notion
of pairs of subordinators in duality, investigate the implications on the associated martingales and consider some
explicit examples.
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1. Introduction

Fundamental martingale-additive functionals can be associated to a nice Markov processXt . There are
of the type

Mt(f )�f (Xt)− f (X0)−
∫ t

0
Le(f )(Xs)ds,
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whereLe is the (extended) infinitesimal generator ofX andf is any measurable function belonging to the
domain ofLe. These martingales generate, in the Kunita–Watanabe sense, the set of all the martingales
of the Markov process.
In thispaper, from themartingalesMt(f ),wecreatea familyof similar space–timemartingalesobtained

by using some formulae involving the iterates of the generator. We illustrate this construction in the case
of the Brownian motion and the Poisson process in Section 2 of the paper. Section 3 is devoted to the case
of subordinators. Results from combinatorics (see e.g.[26]) involving space–time harmonic polynomials
and generalized Stirling numbers are developed and interpreted from a probabilistic point of view. Many
connections between stochastic processes and combinatorics can be found in Pitman’s Saint–Flour course
[20]. Relations between stochastic processes and orthogonal polynomials are described in[10], [11] and
[23].

2. Iterates of the infinitesimal generator and associated martingales

2.1. Definition of the extended infinitesimal generatorLe

In this section, we consider a general Markov processX= (Xt , t�0) taking values in the measurable
state space(E,E) and endowed with the laws(Px, x ∈ E) such that

Px(X0 = x)= 1 for eachx.

The notion of extended (infinitesimal) generatorLe associated with the Markov processX was first in
Kunita[14,15]and is quite convenient to exhibit important sets of martingales (under allPx ’s) associated
toX. More precisely,

Definition 2.1. Let f be a measurable function onE such that there exists a functiong : E → R and

Mt(f )�f (Xt)− f (X0)−
∫ t

0
g(Xs)ds

is a (Px)-martingale for allx, thenf is said to belong toDe, the domain ofLe, the operator defined on
De as

Le(f )= g.
Some assumptions are needed regarding the functiong. In particular,gmay be assumed to be bounded,

but the weaker assumption∫ t

0
|g(Xs)|ds <∞ Px a.s. for all x and t .

is sufficient.
This definition extends that of any “stronger” infinitesimal generatorL (for more details, please refer

for instance, to[17–19]or [9] in Chapter XV and its errata in the last two pages of[8]). In particular, the
martingaleMt(f ) is introduced in formula (2) p. 130 in[17].
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We then define iterates ofLe in the obvious manner, i.e.,

Lne = Le(L
n−1
e ), n ∈ N∗ and L0

ef = f . (1)

As a particular example, we consider the case

f (·)= Up(h)(·) ≡ E(·)
[∫ ∞

0
dt exp(−pt)h(Xt)

]
for h bounded and Borel inDe(L

n−1) andp a positive real number.
It is a well-known result that

Lef = pUp(h)− h ≡ pf − h (2)

from which, more generally, the iterates of the infinitesimal generatorLe computed onf can easily be
derived as

Lnef = pnf −
(
n−1∑
k=0

pkLn−(k+1)
e h

)
for n ∈ N∗; L0

ef = f .

2.2. General result

The first result of this note is the following:

Proposition 2.2. For everyT ∈ R, for everyN ∈ N andf ∈ D(LN+1
e ), the process

M
N,T
t (f )=

N∑
n=0

(T − t)n
n! Lnef (Xt)−

∫ t

0

(T − s)N
N ! LN+1

e f (Xs)ds (3)

is a martingale.More precisely, it satisfies

M
N,T
t (f )−MN,T

0 (f )=
N∑
n=0

∫ t

0

(T − s)n
n! dMs(L

n
ef ).

For a general semi-martingale version of this result, see Exercise 6.17 in[7].

2.3. Some comments

2.3.1. Some general remarks on formula (3)
Wemight call formula (3) a stochastic Taylor formula for the following reason. Indeed, ifXt = x + �t

is the deterministic constant velocity (Markov) process, starting fromx, then

For anyC1 function f : R → R, Lef (x)= �f ′(x).

So that formula (3) becomes

f (x)=
N∑
n=0

(−�t)n

n! f (n)(x + �t)+ (−�)N+1
∫ t

0
ds
sN

N !f
(N+1)(x + �s) (4)
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since, for this degenerate Markov process, the martingale given in Eq. (3) is identically equal to its value
for t=0.And identity (4) is nothing else butTaylor’s expansion at orderN, around(x+�t), for f considered
betweenx andx + �t .
However, we shall refrain from using the terminology “stochastic Taylor formula”, as this term is

already used in a number of different contexts. In particular, Azencott[3] considers Taylor expansion
with respect to a parameter�, near�=0, of a family of solutions of SDE’s depending on�.Another variant
has also been recently developed in[24], who iterate Itô’s formula for the Poisson process.

2.3.2. Proper functions
Moreover, applying formula (3) to the particular case of proper functions, i.e. functionsf such that

there exists a parameter� andLe(f )= �f , we obtain that

N∑
n=0

(�(T − t))n
n! f (Xt)−

∫ t

0

(T − s)N
N ! �N+1f (Xs)ds

is a martingale. Then, the well-known result of exp(−�t)f (Xt) being a martingale is immediate, letting
N tend to∞ and considering the caseT = 0.

2.3.3. Polynomial case
Finally, a very particular and interesting situation is that of polynomials. LetE = R and consider a

Markov process(Xt ; t�0) such thatLe has the following stability property with respect to polynomials:

Le(Pn) ⊆ Pn−1, (5)

wherePn is the space of polynomials of degree less than or equal ton.
Then, applying Proposition 2.2 to polynomials leads to an interesting family of space–time harmonic

polynomials in the sense that we obtain a sequence of polynomials in both variablesx andt. Moreover,
denoting by� this polynomial,�(Xt , t) is a martingale so that(

Lx + �

�t

)
� = 0.

More precisely,

Proposition 2.3. Letp ∈ PN . Then

N∑
n=0

(−t)n
n! (Lnep)(x) (6)

is a space–time harmonic polynomial, in other terms

M
N,0
t (p)=

N∑
n=0

(−t)n
n! (Lnep)(Xt)

is a martingale.
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We indicate two directions towards which we shall go in the sequel of our paper:

1. We shall look for a sequence(pN)N=0,1,2,... of polynomials inxwith respective degreesN, such that

Lne(pN)= pN−n, n�N .

In this case, the formula (6) reduces to a space–time harmonic polynomial

N∑
n=0

(−t)n
n! pN−n(x). (7)

We shall consider especially this notion of space–time harmonic polynomials when working with
subordinators.

2. However, it would be a pity to limit ourselves to the hypothesis (5) as there are many interesting cases
of real-valued diffusions for which

Le(Pn) ⊆ Pn (8)

holds and (5) is not satisfied, as we will see later in Section 2.5.3. In fact, Mazet[16] obtains a
characterization of diffusion semigroups which is related to the property (8). Mazet’s definition of a
diffusion is that its infinitesimal generatorLe acts on polynomials with the “Itô rule”

Le(�(f ))= �
′
(f )Lef + 1

2�′′(f )[Le(f
2)− 2fLef ],

where� andf are polynomials. He then shows that, again on the space of polynomials,L is equal to

(Ax2 + Bx + C) d
2

dx2
+ (ax + b) d

dx

thus, obtaining a five-parameter family of Markov processes which satisfy (8). This discussion is also
held in various references among which the S.M.F. publication in[2].

2.3.4. Some heuristic considerations
Before proving Proposition 2.2, we begin with the following heuristic consideration: for any bounded

measurable functionf : E → R and for 0� t�T , if Ft = �(Xs;0�s� t), the process

Ex(f (XT )/Ft )= PT−t f (Xt) (9)

is a martingale.
NowPu is “generated” byLe, the extended infinitesimal generator, i.e.,

Pu = exp(uLe),

so that formula (9) may be written informally as

Ex(f (XT )/Ft )=
∞∑
n=0

(T − t)n
n! Lnef (Xt). (10)

For nicef’s, the right-hand side of this equation is meaningful for anyT ∈ R andt�0. This defines a
martingale.
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2.4. Proof of Proposition 2.2

In order to prove Proposition 2.2, we proceed in several steps:

(i) ForN = 0, we have

M
0,T
t (f )=Mt(f )+ f (X0).

Hence, this is a martingale.
(ii) For N ∈ N∗, consider

M
N,T
t (f )=

N−1∑
n=0

(T − t)n
n! Lnef (Xt)+ �N,Tt (f ),

where

�N,Tt (f )= (T − t)N
N ! (LNe f )(Xt)−

∫ t

0

(T − s)N
N ! LN+1

e f (Xs)ds,

which, using integration by parts, is equal to

�N,Tt (f )= T N

N ! L
N
e f (X0)+

∫ t

0

(T − s)N
N ! dMs(L

N
e f )−

∫ t

0

(T − s)N−1

(N − 1)! L
N
e f (Xs)ds.

Consequently, we have obtained

M
N,T
t (f )=MN−1,T

t (f )+ T N

N ! L
N
e f (X0)+

∫ t

0

(T − s)N
N ! dMs(L

N
e f ).

Iterating this formula, we get

M
N,T
t (f )=

N∑
n=0

T n

n! L
n
ef (X0)+

N∑
n=0

∫ t

0

(T − s)n
n! dMs(L

n
ef ).

Or equivalently

M
N,T
t (f )=MN,T

0 (f )+
N∑
n=0

∫ t

0

(T − s)n
n! dMs(L

n
ef ).

Hence(MN,T
t (f ), t�0) is a martingale. �

2.5. Some examples

2.5.1. Brownian motion
Let us consider on a probability space(�,I,P), a standardP-Brownian motion(Wt ; t�0) and a

function f which belongs toC2(N+1) ⊂ D(LN+1
e ). Applying Itô’s lemma tof (Wt), we obtain the

characterization of the generatorLe as

Le(f )(x)= 1
2f

′′(x).
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This case corresponds to

Le(Pn) ⊆ Pn−2.

Hence, by a simple recurrence argument, we get the iterates of the generator as

∀0�n�N, Lne(f )(x)=
1

2n
d2nf

dx2n
(x).

According to Proposition 2.2

N∑
n=0

1

2n
(−t)n
n!

d2nf

dx2n
(Wt)+ (−1)N+1

∫ t

0
ds

1

2N+1

sN

N !
d2(N+1)f

dx2(N+1)
(Ws) (11)

is a martingale.
Let nowf be a polynomial of degreeN. For instance

f (x)= xN

whose derivatives are obviously computed. Denoting by[N/2] the integer part ofN/2, formula (11)
simply becomes

M
N,0
t �

[
N
2

]∑
n=0

1

2n
(−t)n
n! N(N − 1) . . . (N − 2n+ 1)(Wt)

N−2n =N !(√2t)N

[
N
2

]∑
n=0

(−1)n

n!
( Wt√

2t
)N−2n

(N − 2n)! .

Therefore, the process(MN,0
t ; t�0) is a martingale.

Moreover, this process can be expressed in terms of theN th Hermite polynomials. More precisely,
using the following definition of the Hermite polynomials, found in[13]

HN(x)=N !
�N/2�∑
n=0

(−1)n

n!
(2x)N−2n

(N − 2n)! ,

we directly obtain the following equality:

M
N,0
t = (√2t)NHN(

Wt√
2t
).

Hence, the standard result that the above version of the Hermite polynomials are martingales is easily
found in this framework (see for instance[23,25]). See also[28].

Remark 2.4. Another way to obtain some relationship between Brownian motion and Hermite polyno-
mials is to compute conditional moments

E(WN
T |Ft )=HN

(
Wt√

2(T − t)
)
(
√
2(T − t))N , t < T .
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2.5.2. Poisson process
Let us consider a probability space(�,I,P) and(Nt ; t�0) aP-Poisson process with intensity param-

eter 1. Moreover, letf be a function which belongs toD(LK+1
e ) whereK ∈ N∗. Applying Itô’s lemma to

f (Nt), we obtain the characterization of the generatorLe as

Le(f )(x)= f (x + 1)− f (x).
Let nowf be defined as

f (x)= pK(x)= [x]K
K! ,

where

[x]n = x(x − 1)...(x − n+ 1) for x ∈ R.

Applying Itô’s lemma tof (Nt), we obtain the explicit characterization of the generatorLe and the
following recurrence relation:

Le(pK)= pK−1.

Note that we are precisely in the case

Le(Pn) ⊆ Pn−1.

Hence, using Proposition 2.2, the following process

M
K,0
t �

K∑
n=0

(−t)n
n! Lne(pK)(Nt)=

K∑
n=0

(−t)n
n! pK−n(Nt)=

K∑
n=0

(−t)n
n!

[Nt ]K−n
(K − n)!

is a martingale.
Moreover, this process(MK,0

t ; t�0) can be related to Charlier polynomials. More precisely, using the
following definition of the Charlier polynomials, found in[13]:

CK(x, t)=K!
K∑
n=0

[x]K−n
(K − n)!

(−t)n
n!

we directly obtain the following equality:

M
K,0
t = CK(Nt , t)

K! .

Hence, the close relationship existing between Poisson process and Charlier polynomials is underlined
in this equality (see also[25]).

Remark 2.5. Tsilevich and Vershik develop in[27] some isomorphism between the Fock spaces of
Brownian motion and the Poisson process which relates the Hermite and Charlier polynomials.
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2.5.3. Exponential of Brownian motion
Let us consider a probability space(�,I,P), a standardP-Brownian motion(Wt ; t�0), the following

process(Xt ; t�0) defined as

Xt = exp(Wt)

and a functionf which belongs toD(LN+1
e ).

Applying Itô’s lemma tof (Xt), we obtain the expression of the generatorLe onC2 functions as

Le(f )(x)= 1
2(x

2f ′′(x)+ xf ′(x)).

Hence, by a simple recurrence argument, we get its iterates as

∀0�n�N, Lne(f )(x)=
1

2n

n∑
k=1

	2k(x)
dkf

dxk
(x),

where	2k(x) is the Bell polynomial of degree 2k. More precisely, the Bell polynomials of degreen are
generated by

	n(x)= x
n∑
k=1

(
n− 1
k − 1

)
	k−1(x), 	0(x)= 1 and 	n(1)= Bn

where
(
n
k

)
are the binomial coefficients andBn are Bell numbers given byBn = 1

e

∑∞
k=0

kn

k! .
Therefore, according to Proposition 2.2

N∑
n=0

1

2n
(−t)n
n!

n∑
k=1

	2k(Xt)
dkf

dxk
(Xt)+ (−1)N+1

∫ t

0
ds

1

2N+1

sN

N !
N+1∑
k=1

	2k(Xs)
dkf

dxk
(Xs) (12)

is a martingale.
Let nowf be a polynomial of degreeN. For example

f (x)= xN .
The different derivatives of the functionf are explicitly known. In particular, one has

Le(f )(x)= N2

2
xN

and

∀0�n�N, Lne(f )(x)=
N2n

2n
xN .

Note that we are precisely in the case

Le(Pn) ⊆ Pn.
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Hence, formula (12) simply becomes

M
N,0
t �

N∑
n=0

(−t)n
n! Lne(f )(Xt)+ (−1)N+1

∫ t

0
ds
sN

N !L
N+1
e (f )(Xs)

=
(
N∑
n=0

(−t)n
n!

N2n

2n

)
(Xt)

N + (−1)N+1

N !
N2(N+1)

2N+1

∫ t

0
ds sN(Xs)

N

and(MN,0
t ; t�0) is a martingale.

3. Space–time harmonic polynomials associated with subordinators

An important class of Markov processes are Lévy processes, i.e. processes with independent and
homogeneous increments.We shall even consider themore particular casewhen the process is increasing,
that is a subordinator (for more details on Lévy processes, please refer for instance to[4,22]).

3.1. Framework

In the following,(Xt ; t�0) denotes a general subordinator with no drift and Lévy measure
(dy) such
that

for some�>0,
∫ ∞

0

(dy)(exp(�y)− 1)<∞. (13)

This condition is equivalent to requiring that

for some�′>0,
∫ ∞

0

(dy)y exp(�′y)<∞. (14)

In particular, stable subordinators do not satisfy condition (13), or (14) even for�′ = 0!
Denote, for any�>0, the associated Lévy exponent

�(�)=
∫ ∞

0

(dy)(1− exp(−�y))

so that(exp(−�Xt + �(�)t), t�0) is a martingale.
The expression of the infinitesimal generatorLe of X, acting on a functionf, is written as

Lef (x)=
∫


(dy)[f (x + y)− f (x)].

Note that it is well defined for any polynomialf.
As previously, we denote byPn the space of polynomials of degree less than or equal ton. In this

framework, we always have

Le(Pn)= Pn−1.
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Indeed, let us consider the following polynomial inPn:

f (x)=
n∑
k=0

fkx
k.

Then

Le(f )(x)=
n−1∑
k=0

f̃kx
k, wheref̃k =

n−1∑
l=k

(
l + 1
k

)
fl+1
(l+1−k) and


(m) =
∫


(dy)ym (<∞ for m�1), (15)

where
(
l
k

)
are the Binomial coefficients.

It follows from Eq. (15) that the coefficients(f1, f2, . . . , fn) can be retrieved from(f̃k; k = 0,1, . . . ,
n− 1). Hence the result

Le(Pn)= Pn−1.

3.2. Space–time harmonic polynomials

First note that the associated Lévy exponent� is strictly increasing from[0; ∞) to [0; 
̃)
wherẽ
 = ∫∞

0 
(dy)(�∞). Thus�−1 is well-defined on[0; 
̃).
Developing the following expressions:

exp(−�x + t�(�))=
∞∑
j=0

�jQj (x, t) and exp(−�−1(a)x + ta)=
∞∑
i=0

aiPi(x, t),

we obtain two sequences of polynomials in both variablesxandt, withPi andQj , respectively, of degree
i andj in either variablex andt. Moreover, for� = Pi orQj , �(Xt , t) is a martingale so that(

Lx + �

�t

)
� = 0.

There has been a long standing interest in such functions�, which are calledspace–time harmonic
(relative toX).

3.3. Main results

The following theoremsare related to results in the combinatorics literature (seee.g.[26,Exercise5.37])
as was pointed out to us by Jim Pitman. Here, we make some connections with stochastic processes.

Theorem 3.1. Consider a sequence of polynomials(pN(x))N=0,1,2..., exactly of degree N, satisfying the
condition:

(c1): p0 ≡ 1 and pN(0)= 0 ∀N�1.
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Then, the following properties are equivalent:

(i) L(pN)= pN−1 ∀N�1;
(ii) The polynomialsPN(x, t) defined by

PN(x, t)=
N∑
k=0

(−1)ktN−k

(N − k)! pk(x) (16)

are space–time harmonic;
(iii) (pN(x))N=0,1,2... is the sequence obtained from the development of

exp(−�−1(a)x)=
∞∑
N=0

(−a)NpN(x). (17)

More precisely, defining the double sequence�(m)n (n�m) as follows:

(�−1(a))m =m!
∞∑
n=m

�(m)n
an

n! , (18)

there is the formula for the polynomialpN

pN(x)= 1

N !
N∑
m=0

(−1)N−m�(m)N xm. (19)

Looking at Eq. (7), it is also natural to exchange the role ofx and t, i.e. to look for a sequence
(qN)N=0,1,2,... of polynomials int with respective degreesN, such that

N∑
n=0

(−x)n
n! qN−n(t)

is a space–time harmonic polynomial.

Theorem 3.2. Consider a sequence of polynomials(qk(t))k=0,1,2..., exactly of degree k, satisfying the
condition

(c2): q0 ≡ 1 and qk(0)= 0 ∀k�1.

Then, the following properties are equivalent:

(i) The polynomialsQj(x, t) defined by

Qj(x, t)=
j∑
k=0

(−x)j−k
(j − k)! qk(t) (20)

are space–time harmonic;
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(ii) (qk(t))k=0,1,2... is the sequence obtained from the development of

exp(t�(�))=
∞∑
n=0

�nqn(t). (21)

More precisely, defining the double sequences(m)n (n�m) as follows:

(�(�))m =m!
∞∑
n=m

s(m)n

�n

n! , (22)

there is the formula for the polynomialqn

qn(t)= 1

n!
n∑
m=0

s(m)n tm. (23)

Note that some similar results are presented in Pitman’s Saint Flour course[20] (Chapter 2) when he
studies moments of Lévy processes and relates them to sequences of polynomials of Binomial type.

3.3.1. An introduction to certain generalized Stirling numbers
The classical Stirling numbers and the Gamma process: If the subordinator process is the Gamma

process(
t ; t�0) i.e.

E[exp(−�
t )] = 1

(1+ �)t
,

so that

�
(�)= log(1+ �), �−1

 (a)= (exp(a)− 1),

then(�(m)n ) are the classical Stirling numbers of the second kind, defined by (see e.g.[1, Chapter 24, p.
824])

(exp(a)− 1)m =m!
∞∑
n=m

�(m)n
an

n!
and(s(m)n ) are the classical Stirling numbers of the first kind, defined by (see for e.g.[1, Chapter 24, p.
824])

(log(1+ �))m =m!
∞∑
n=m

s(m)n

�n

n! .

The classical Stirling numbers and the Poisson process: If the subordinator process is the Poisson
process(�t ; t�0) i.e.

E[exp(−��t )] = exp[−t (1− exp(−�))],
so that

��(�)= 1− exp(−�), �−1
� (a)= − log(1− a).
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The classical Stirling numbers of the first and the second kind may be related to the Poisson process, with
their role inverted in comparison with the Gamma process case.
A generalization of the Stirling numbers: From the two above examples, the coefficients(�(m)n ) and

(s
(m)
n ) deserve the name of generalized Stirling numbers of the second, resp., first, kind.
We are well aware that the terminology “generalized Stirling numbers” designates a vast class of

generalizations of Stirling numbers (see, e.g.[12] or [6]).
The generalized Stirling numbers, which appear in, e.g. these two papers do not necessarily fit into our

framework.We shall show later that the intersection between our generalized Stirling numbers and those
for e.g. in[12] is, however reasonably large. In particular, our generalized Stirling numbers associated
with the Esscher transformed stable subordinators, whose Lévy measure is


(dy)= C exp(−ay)
y1+b

dy for b<1,

appear in the generalized Stirling numbers’ family proposed in[12].
These subordinators are well-known to play an essential role in the study of the Poisson–Dirichlet laws

(see e.g.[21]).

3.4. Proofs of Theorems 3.1 and 3.2

3.4.1. Proof of Theorem 3.1
(ii ) ⇒ (i) SincePN(x, t) is a space–time harmonic polynomial, it satisfies

Lx(PN)+ �

�t
PN = 0,

where for clarity,Lx denotes the operatorL acting on a function ofx.
This yields

N∑
k=0

tN−k

(N − k)!Lx(pk)(x)+
N−1∑
k=0

tN−k−1

(N − k − 1)!pk(x)= 0.

Identifying the coefficients oftk (0�k�N) gives (i).
(i) ⇔ (iii ) Existence of thepN ’s satisfying(c1) and (iii) (:(iii ) ⇒ (i))
Since the process

{exp(−�−1(a)Xt + ta), t�0}
is a martingale, we have

Lx(exp(−�−1(a)x))= −a exp(−�−1(a)x). (24)

Developing exp(−�−1(a)x) with the help of formula (17) on both sides of Eq. (24), we obtain (i). We
note that the property (c1) follows directly from Eq. (17) by takingx = 0.
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Uniqueness of thepN ’s (:(i) ⇒ (iii ))
ForN�1, we write

pN(x)=
N∑
k=1

Fk,Nx
k

and we need to show that the double sequence(Fk,N)k�N is uniquely determined from (c1)) and (i).
From the formula

Lf (x)=
∫


(dy)[f (x + y)− f (x)],
which is valid at least for polynomials, we easily obtain

L(pN)(x)=
N−1∑
j=0

xj

 N∑
k=j+1

(
k

j

)
Fk,N

 
(k−j),

where


(m)
(def )=

∫

(dy)ym,

is themth moment of
.
Thus, the property (i)

L(pN)= pN−1

amounts to

∀j�N − 1,
N−1∑
l=j

((
l + 1
j

)

(l+1−j)

)
Fl+1,N = Fj,N−1. (25)

But this linear system of equations with the unknowns(Fk,N)1�k�N admits one and only one solution
since it may be written as

(
1
0

)

(1)

(
2
0

)

(2)

(
3
0

)

(3) . . .

(
N

0

)

(N)

0

(
2
1

)

(1)

(
3
1

)

(2) . . .

(
N

1

)

(N−1)

0 0

(
3
2

)

(1) . . .

(
N

2

)

(N−2)

. . . . . . . . . . . . . . .

0 0 0 0

(
N

N − 1

)

(1)




F1,N
F2,N
F3,N
. . .

FN,N

=


F0,N−1
F1,N−1
F2,N−1
. . .

FN−1,N−1

 .

Hence, the vector(Fk,N)1�k�N is determined uniquely.
(iii ) ⇒ (ii ) As written previously, for anya >0, the process{exp(−�−1(a)Xt + ta), t�0} is a

martingale. We recall the definition of thepm’s via (iii)

exp(−�−1(a)x)=
∞∑
m=0

(−a)mpm(x).
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On the other hand

exp(ta)=
∞∑
n=0

(at)n

n! .

Hence

exp(−�−1(a)x + ta)=
∞∑
m=0

(−a)mpm(x)
∞∑
n=0

(at)n

n!
and

exp(−�−1(a)x + ta)=
∞∑
i=0

aiPi(x, t), (26)

where

Pi(x, t)=
i∑
k=0

(−1)kt i−k

(i − k)! pk(x)

is a sequence of space–time harmonic polynomials.�

3.4.2. Proof of Theorem 3.2
(ii ) ⇒ (i) Recall that for any�>0, the process{exp(−�Xt + t�(�)), t�0} is a martingale.
It follows from the classical formula:

exp(−�x)=
∞∑
m=0

(−�x)m

m!
together with (19) that

exp(−�x + t�(�))=
∞∑
m=0

(−�x)m

m!
∞∑
n=0

�nqn(t).

From which, if we define the sequenceQj by

exp(−�x + t�(�))=
∞∑
j=0

�jQj (x, t), (27)

where

Qj(x, t)=
j∑
k=0

(−x)j−k
(j − k)! qk(t).

Thus, from Eq. (27) theQj ’s are space–time harmonic polynomials.
(i) ⇒ (ii ) Consider the family(q0, q1, . . . , qj ) to be known. We want to determineqj+1.
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According to (i),Qj+1(x, t) is space–time harmonic. Hence

Lx(Qj+1)(x, t)+ �

�t
Qj+1(x, t)= 0.

Such an equation is valid for everyx, especially forx = 0

Lx(Qj+1)(0, t)+ �

�t
Qj+1(0, t)= 0. (28)

Let us denotêQj+1(x, t) the following polynomial:

Q̂j+1(x, t)=Qj+1(x, t)− qj+1(t),

i.e. the polynomial composed by the(j + 1) first terms ofQj+1(x, t), as given in (20).
Hence, Eq. (28) may also be written as

Lx(Q̂j+1 + qj+1(t))(0, t)+ �

�t
[Q̂j+1(0, t)+ qj+1(t)] = 0,

which simplifies as

Lx(Q̂j+1)(0, t)+ �

�t
qj+1(t)= 0,

sinceLx(qj+1(t))= 0 and(�/�t)Q̂j+1(0, t)= 0.
Moreover

Lx(Q̂j+1)(0, t)=
∫


(dy)[Q̂j+1(y, t)− Q̂j+1(0, t)] ≡
∫


(dy)Q̂j+1(y, t)

=
j∑
k=0

qk(t)

∫

(dy)

[
(−y)j+1−k

(j + 1− k)!

]
=

j∑
k=0

qk(t)
(−1)j+1−k

(j + 1− k)!
(j+1−k),

where
(n) denotes thenth moment of the Lévy measure
 associated withX.
Consequently

�

�t
qj+1(t)=

j∑
k=0

qk(t)
(−1)j−k

(j + 1− k)!
(j+1−k)

or

qj+1(t)=
j∑
k=0

q̂k(t)
(−1)j−k

(j + 1− k)!
(j+1−k), (29)

wherêqk(t) is the primitive ofqk(t) such that

q̂k(0)= 0

as to satisfy condition (c2).
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By recurrence, we obtain a unique sequence(qk). Moreover, the sequence(qn) presented in (ii) satisfies
(i). Hence, it is the only sequence which satisfies (i).�

Remark 3.3. The relation (29) may simply be understood as a consequence of the martingale
property of

X
j+1
t −

∫ t

0
dsLe(x

j+1)(Xs),

since, by formula (34),qn(−t) is a multiple ofE[Xnt ].

3.5. Various comments

3.5.1. Relations between both theorems
(a) Comparing formulae (26) and (27), we easily obtain the following relationship between the two

sequences(Pn) and(Qj ) of space–time harmonic polynomials:

Pn(x, t)= 1

n!
n∑
j=0

j !�(j)n Qj (x, t). (30)

Moreover, when looking deeper at formulae (16) and (20), we get

(−1)n−m

m! pn−m(x)= 1

n!
n∑

j=m
j !�(j)n

j−m∑
l=0

(−1)ls(m)j−l
l!(j − l)! x

l = 1

n!
n−m∑
l=0

(−1)l

l! xl
n∑

j=l+m

j !�(j)n s(m)j−l
(j − l)! .

Comparing this result with formula (19), i.e.

pn−m(x)= 1

(n−m)!
n−m∑
h=0

(−1)n−m−h�hn−mxh,

we deduce

�(h)n−m = 1(
n
m

) n−h∑
l=m

(
l + h
h

)
�(l+h)n s

(m)
l . (31)

In particular, whenh= 0, one has the well-known formula

p∑
n=m

�(n)p s
(m)
n = �p,m.

(b) Symmetrically, there exist formulae expressing the sequence(Qj ) in terms of the(Pn)’s

Qj(x, t)= 1

j !
j∑
n=0

n!s(n)j Pn(x, t). (32)

The relation (32) follows from Eq. (26) where we have takena = �(�), and Eq. (22).
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3.5.2. Some remarks on the generalized Stirling numbers
Recurrence relations between the classical Stirling numbers: We have shown the following results for

the Stirling numbers of the first kind(s(m)n ) and of the second kind(�(m)n ):

�(h)n−m = 1(
n
m

) n−h∑
l=m

(
l + h
h

)
�(l+h)n s

(m)
l .

Moreover, according to formula (25), applied to the Gamma process, we obtain that the Stirling numbers
of the second kind have to satisfy the following ascending recurrence relation, with respect toN:

∀j�N − 1,
1

N

N−1∑
l=j

(l + 1)!
(l + 1− j)(−1)l�(l+1)

N = (−1)j j !�(j)N−1. (33)

Relationbetween thegeneralizedStirlingnumbersand themomentsofXt andof
:Aswrittenpreviously

E[exp(−�Xt)] = exp(−t�(�)).
Developing both sides, we obtain, using Eq. (21)

∞∑
n=0

(−�)n

n! E[Xnt ] =
∞∑
n=0

�nqn(−t).

Hence

qn(−t)= (−1)n

n! E[Xnt ]. (34)

Comparing with Eq. (23),

qn(−t)= 1

n!
n∑
m=0

s(m)n (−t)m,

we obtain

E[Xnt ] =
n∑
m=0

(−1)n+ms(m)n tm.

On the other hand, the moments of
 are related to those of the variables(Xt) with t varying, since from
Remark 3.3

E[Xj+1
t ] =

j∑
k=0

(
j + 1

k

)∫ t

0
dsE(Xks )
(j+1−k).

Generalized Stirling numbers associated to the generalized stable subordinators: In this section, we
show that some particular class of particular generalized Stirling numbers, as defined in[12], are in fact
“our” generalized Stirling numbers for the generalized stable subordinators, whose Lévy measure is:


(dy)= C exp(−ay)
y1+b

dy for b<1. (35)



P. Barrieu, W. Schoutens / Journal of Computational and Applied Mathematics 186 (2006) 300–323 319

In Theorem 2 in[12, p. 372], we take the particular caser = 0, which gives(
(1+ ��)�/� − 1

�

)k
= k!

∞∑
n=0

S�,�(n, k)
�n

n! . (36)

We note that the left-hand side of Eq. (36) may be obtained as∫

�,�(dy)(1− exp(−�y)),

where


�,�(dy)= exp(−y/�)
�1+(�/�)

y1+(�/�) dy.

We recognize the Lévy measure in Eq. (35), where

C = 1

�1+(�/�)
;

a = 1

�
;

b = �

�
.

3.6. On pairs of subordinators in duality

3.6.1. Introduction: the Poisson and Gamma processes
Let us denote, respectively, by(�t ; t�0) and(Gt , t�0) the standard Poisson and Gamma processes,

whose laws are characterized by

E[exp(−a�t )] = exp(−t (1− exp(−a))),
E[exp(−�Gt)] = exp(−t log(1+ �)).

Hence, with obvious notation, we have

��(a)= 1− exp(−a) and �G(�)= log(1+ �),

so that

−�−1
G (−a)= ��(a) or equivalently, −a = �G(−��(a)).

3.6.2. Towards a generalization
Existence of pairs of subordinators: In this section, we look for pairs of subordinatorsX andYwhich

play the roles ofG and� in that

−a = �X(−�Y (a)) (37)

or equivalently

−�−1
X (−a)= �Y (a). (38)
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In terms of the Lévy measures ofX andY, this may be written

−a =
∫


X(dx)[1− exp{−x(−�Y (a))}]

=
∫


X(dx)[1− exp{x�Y (a)}]

=
∫


X(dx)

(
1− 1

E[exp(−aY x)]
)
,

so that finally∫

X(dx)

(
1

E[exp(−aY x)] − 1

)
= a. (39)

GivenX, the existence of a subordinatorYsatisfying (37) is not obvious at all.
Implications for polynomials: We now discuss the symmetric roles which are played byX andY,

assumed to satisfy Eq. (38). Indeed, from this equation, we see that

�−1
Y (−�)= −�X(�),

so that the pairs(X, Y ) and(Y,X) entertain the same relationship.
Raising both sides of Eq. (38) to the powerm, we easily obtain

(−1)n+m�(m)n (X)= s(m)n (Y )

with obvious notation.
As a consequence, from both Eqs. (19) and (23), we obtain

pn(X; x)= qn(Y ; x).
Hence, from both Eqs. (16) and 20

Pn(X; x, t)= (−1)nQn(Y ; t, x).

3.6.3. A compound Poisson process example
Let us take for(Xt) the compound Poisson process with


X(dx)= C exp(−�x)dx,

so that

�X(�)= C
∫ ∞

0
dx exp(−�x)(1− exp(−x�))= C�/�2

1+ �/�
. (40)

We then show the existence ofYsatisfying (39), which in this case, takes the form

C

∫ ∞

0
dx exp(−�x){exp(x�Y (a))− 1} = a,

that is

C

{
1

� − �Y (a)
− 1

�

}
= a.
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It follows that

�Y (a)= �2a/C

1+ �a/C

which, when compared with Eq. (40), yields


Y (dy)= C′ exp(−�′y)dy, where C′ = C and�′ = C

�
.

3.6.4. On generalized stable subordinators
In this paragraph, we consider the three parameters family of subordinators(Xt) given by


X(dx)= Cx�−1 exp(−�x)dx for �>− 1. (41)

This subordinator is related to the CGMY process introduced in[5] where in the bounded variations case,
the CGMY process is the difference between two processes of the family (41). Moreover, we should like
to callX a generalized stable subordinator, since in case� = 0 and� = −�, 0< �<1, X is a stable(�)
subordinator. But this family (41) also contains the Gamma case (for� = 0) and the compound Poisson
case (for� = 1) with exponential jumps.
Case�>0: We now compute�X(�)

�X(�)= C
∫ ∞

0
dx x�−1 exp(−�x)(1− exp(−x�))= C
(�)

(
1

��
− 1

(� + �)�

)
. (42)

Then, we look forYsuch that

C

∫ ∞

0
dx x�−1 exp(−�x){exp(x�Y (a))− 1} = a,

which yields, after some elementary computation

�Y (a)= � − 1

( 1
�� + a

C
(�) )
1/�

= (C
(�))1/�

 1

(
C
(�)

�� )1/�
− 1(

C
(�)
�� + a

)1/�
 .

Hence, by comparisonwith Eq. (42), we find thatYbelongs to the same family, with parameters(C′, �′, �′)
given by

�′ = 1

�
, �′ = C
(�)

��
, C′


(
1

�

)
= [C
(�)]1/�.

Case−1< �<0: We now compute�X(�)

�X(�)= C
∫ ∞

0
dx x�−1 exp(−�x)(1− exp(−x�)),

i.e. when setting� = −�,

�X(�)= C
(−�)(�� − (� + �)�).
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Since


(−�)= −1

�

(1− �),

we finally obtain

�X(�)= C
(1− �)

�
((� + �)� − ��)

�X(�)= C
(1+ �)

�

(
1

��
− 1

(� + �)�

)
= C
(�)

(
1

��
− 1

(� + �)�

)
.

Hence, formula (42) may be extended to the case−1< �<0. The results of the previous case are also
extended.
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