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Abstract

A numerical method is proposed for estimating the blow-up time and the blow-up rate of the solution of ordinary
differential equation (ODE), when the solution diverges at a finite time, that is, the blow-up time. The main idea is
to transform the ODE into a tractable form by the arc length transformation technique [S. Moriguti, C. Okuno, R.
Suekane, M. Iri, K. Takeuchi, Ikiteiru Suugaku—Suuri Kougaku no Hatten (in Japanese), Baifukan, Tokyo, 1979.],
and to generate a linearly convergent sequence to the blow-up time. The sequence is then accelerated by the Aitken
�2 method. The present method is applied to the blow-up problems of partial differential equations (PDEs) by
discretising the equations in space and integrating the resulting ODEs by an ODE solver, that is, the method of lines
approach. Numerical experiments on the three PDEs, the semi-linear reaction–diffusion equation, the heat equation
with a nonlinear boundary condition and the semi-linear reaction–diffusion system, show the validity of the present
method.
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1. Introduction

It is often the case in practice that the solution of ordinary differential equation (ODE) or partial differ-
ential equation (PDE) diverges at a finite time. Such a phenomenon is said to be blow-up phenomenon.
There exist many differential equations with blow-up solutions, such as the semi-linear reaction–diffusion
equation with a nonlinear reaction term, the heat equation with a nonlinear boundary condition, and the
nonlinear Schrödinger equation. The blow-up phenomena arise in various fields of science. For exam-
ple, combustion in chemistry [8,25,28], curvature flow in geometry [6] and chemotaxis in biology [28].
Therefore, the mathematical analysis of the blow-up phenomena gives an interesting application to those
fields.

There are many mathematical researches on the blow-up phenomena, including the condition for the
solution to blow up, the blow-up set, i.e. the set of points at which the solution becomes unbounded,
the blow-up time, and the asymptotic rate of divergence (blow-up rate). For the blow-up conditions, the
conditions for the solutions of semi- or fully discretised equations of PDEs to blow up are derived (see
e.g. [1,3,9,10,12,23]). For the blow-up sets, Fernández Bonder et al. [15] and Groisman and Rossi [18]
investigate the relation between the blow-up sets of the continuous and the semi-discretised equations,
and show the convergence of the blow-up set of the semi-discretised equation to that of the continuous
model as the spatial mesh-size approaches 0. In this situation, the convergence of the blow-up times of
the semi-discretised equations to those of the parabolic equations are also established by Abia et al. [1,2]
and Ushijima [30]. Finally, for the blow-up rate, Abia et al. [1] and Acosta et al. [5] investigate the relation
between the rate of original problem and that of the semi-discretised ones. On the other hand, Ishiwata
and Yazaki [20] give characterisations of the blow-up solutions using the blow-up rates. An excellent
survey on the blow-up solution of diffusion equations has been published [7]. In the survey, the authors
emphasise the importance of numerical studies in this area, since analytical tools for the blow-up time
and rate have not yet been given sufficiently.

In this paper, we will give an efficient numerical algorithm for estimating the blow-up time of the
solution of ODEs, and then apply the algorithm to the blow-up problem of parabolic PDEs. The organi-
zation of this paper is as follows: in Section 2 three typical blow-up problems of PDEs are presented. In
Section 3, we will give an efficient algorithm to estimate the blow-up time of ODE blow-up problems
based on the main theorem (Theorem 9) which states: let y(t) be the solution of the ODE which diverges
at time t = T (< + ∞) with the asymptotic order y(t) ∼ (T − t)−p(p > 0), and s be the arc length of the
solution, then the sequence t (sl)(l = 0, 1, . . .), the value of t at s = sl , is a linearly convergent sequence
to T, when sl is a geometric sequence diverging to +∞. In the proposed algorithm, the original equation
is transformed into a numerically tractable one, in which the independent variable is the arc length of
the original equation and t is one of the dependent variables. We integrate the transformed equation and
extract the linearly convergent sequence from the values of t. The sequence is accelerated by the Aitken
�2 method. In Section 4, the algorithm is applied to the three blow-up problems described in Section 2.
Section 5 is the conclusion.

2. PDEs with blow-up solutions

We are mainly concerned with the three initial-boundary value problems of PDEs, which are the most
famous blow-up problems.
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Fig. 1. Solution profile of (1) when � = (0, 1), f (u) = u2 and u0(x) = 100 sin �x.

Problem 1 (Semi-linear reaction–diffusion equation). The first problem is

�u

�t
= �u + f (u), (x, t) ∈ � × (0, T ),

u(x, t) = 0, x ∈ ��, t ∈ [0, T ),

u(x, 0) = u0(x), x ∈ �, (1)

where � is a bounded domain in Rd , and the initial function u0 is a smooth, non-trivial and non-negative
function satisfying u0(x) = 0 (x ∈ ��).

When the reaction term is f (u) = ur (r > 1) or f (u) = eu, Fujita [17] has shown the existence of the
blow-up solution, i.e. for a finite time 0 < T < ∞ the solution u satisfies

lim
t↑T

‖u(·, t)‖∞ = ∞,

if the initial function u0 is sufficiently large. For the case that � = (0, 1) and f (u) = u2, the numerical
solution corresponding to u0(x) = 100 sin �x is shown in Fig. 1. From the figure we can observe the
rapidly growing behaviour of the solution.

For the problem with f (u) = u2, Nakagawa [23] has proposed a fully discretised scheme, and Chen
[9,10] has extended the Nakagawa’s scheme. We explain these schemes in Appendix. These schemes
have been derived under the assumption that the solution blows up in Lq-norm (q = 1 or 2). However,
Friedman and McLeod [16] pointed out the existence of the reaction term f which does not satisfy the
assumption. Thus, the applicability of these fully discretised schemes is considerably restricted.

On the other hand, Abia et al. [1,2] have suggested to use the semi-discretised equation

dUi

dt
= �2Ui + f (Ui), i = 1, . . . , n − 1, t > 0,

U0(t) = Un(t) = 0, t > 0,

Ui(0) = u0(xi), i = 0, . . . , n, (2)

where Ui(t) is an approximation to u(i�x, t), and �2Ui is the standard second order difference approx-
imation to �u at x = i�x. They have also shown for one-dimensional case that the blow-up time of the
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Fig. 2. Solution profile of (3) when � = (0, 1), f (u) = u2 and u0(x) = 1.

solution of (2) converges to that of (1) as �x → 0. This result is extended by Ushijima [30] to the multi-
dimensional cases. Therefore, to analyse Eq. (1) with more general reaction terms, it is advantageous to
use the semi-discretised equation instead of the fully discretised one.

Problem 2 (Heat equation with a nonlinear boundary condition). The second problem to be considered
is

�u

�t
= �2u

�x2 , (x, t) ∈ (0, 1) × (0, T ),

�u

�x

∣∣∣∣
x=1

= f (u(1, t)), t ∈ [0, T ),

�u

�x

∣∣∣∣
x=0

= 0, t ∈ [0, T ),

u(x, 0) = u0(x)�0, x ∈ [0, 1], (3)

where f > 0 is a smooth and increasing function, and u0 is a non-zero function satisfying the boundary
condition.

This equation is also shown to have a blow-up solution under certain conditions [31]. For example, for
the case that f (u)=u2, if the initial function is u0(x)= 1, the solution blows up. The numerical solution
for this case is shown in Fig. 2. Also for Eq. (3), the semi-discretised equation has frequently been used to
analyse the blow-up phenomenon [5,4,15,24], and the blow-up time of the equation is shown to converge
to that of the solution of (3), as the spatial mesh-size approaches 0 [12].

Problem 3 (Semi-linear reaction–diffusion system [13]). The third problem is

�u

�t
= �u + vr1,

�v

�t
= �v + ur2,

(x, t) ∈ Rd × (0, T ), (4)
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Fig. 3. An example of the solution u(x, t) of Eq. (4) for one-dimensional case.
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Fig. 4. An example of the solution v(x, t) of Eq. (4) for one-dimensional case.

u(x, 0) = u0(x), v(x, 0) = v0(x),

lim‖x‖→∞ u(x, t) = lim‖x‖→∞ v(x, t) = 0.

Non-trivial solutions u and v of the problem blow up, when r1r2 > 1 and

r + 1

r1r2 − 1
�

d

2
, (5)

where r = max{r1, r2} (see [13]). To analyse the blow-up phenomena of the equation, we also use the
semi-discretised equation. For the one-dimensional case that

r1 = 2, r2 = 3, u0(x) = 100 exp(−x2), v0(x) = 0,

the solution profiles are shown in Fig. 3 and 4.
Since we have decided to use the semi-discretised equations instead of the fully discretised ones, we

are now in a position to consider the problem of estimating the blow-up time of the solution of the system
of ODEs.
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3. Blow-up time and blow-up rate of the solution of ODE

Also for the solution of the ODE: y′(t) = f (y), if |y(t)| or ‖y(t)‖ diverges at a finite time t = T , then
y and T are called the blow-up solution and the blow-up time, respectively. As an example of the ODEs
with blow-up solutions, consider the following initial value problem of scalar ODE:

Problem 4 (A simple ODE with blow-up solution).

dy

dt
= y�, t > 0, � > 1,

y(0) = 1. (6)

The exact solution is

y(t) = 1

{1 − (� − 1)t}1/(�−1)
, (7)

so that the solution has a pole of order 1/(� − 1) at t = 1/(� − 1).

For a while, we consider the problem of estimating the blow-up time for this equation.

3.1. A simple method for estimating the blow-up time

At first we can think of a simple method: let us take a sufficiently large constant M > 0, and compute
the numerical solutions y1, y2, . . . , which correspond to the exact solutions at the points t = t1 < t2 < · · ·,
respectively. Suppose that the numerical solution grows up gradually, and at last the condition |ym| > M

or ‖ym‖ > M is satisfied for some m. Then stop the computation immediately, and take the value t = tm
as an approximation to the blow-up time T = 1/(� − 1).

Let us apply this simple method to Eq. (6) with � = 2. We set M = 105 and use the forward Euler
method. The obtained approximations for the step-sizes �t = 0.1, 0.05 and 0.02 are 1.6, 1.3 and 1.14,
respectively. The numerical solutions, together with the exact solution, are shown in Fig. 5. As might be
expected, the numerical solutions appear even in the region t �1, where the exact solution is not defined.
The error analysis of this simple method when applied to Eq. (6) is given by Sanz-Serna and Verwer [26].
We explain this analysis briefly.

Let t∗ be the point tm = m�t (m is not necessarily an integer) at which the linearly interpolated value
of the numerical solution (the Euler polygon) satisfies ym = M . Then Sanz-Serna and Verwer [26] gives

t∗ − T = − 1

(� − 1)M�−1 + ��t

2
log M + O((�t)2). (8)

Here, if we set

�t = 2

�(� − 1)M�−1 log M
, (9)

then we have

t∗ − T = O((�t)2).
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Fig. 5. Exact and numerical solutions of (6) with � = 2, where the numerical method is the explicit Euler method with the
step-sizes 0.1, 0.05, and 0.02.

Relation (9) implies that the larger the value of M, the smaller the step-size �t , particularly when � is
large, although it is necessary to take a large M to raise the accuracy of the estimated blow-up time.

Although the experiment and the error analysis above are for the forward Euler method, which is the most
primitive numerical method, even for more sophisticated methods the same difficulty would be expected,
since conventional numerical methods are designed without taking into account the singularity such as
blow-up. On the other hand, several numerical methods were proposed to deal with the singularity (see
[14, pp. 125–139], [21, pp. 209–216]). These special methods, however, were not for systems of equations
but for scalar equations, so that these methods cannot be applied to the semi-discretised equations derived
from PDEs. Thus, the best way to analyse the blow-up phenomena is to eliminate the singularity by a
change of variables, and to keep the magnitudes of the values appearing in the computation as small as
possible to avoid overflows.

3.2. Arc length transformation

As a change of variables which eliminates the singularity of the blow-up solution, two methods are
currently known. The first one is proposed by Acosta et al. [4]. They have suggested to solve the reciprocal
equation

dt

dy
= 1

f (y)
, y ∈ (y0, ∞),

instead of dy/dt = f (y). In the case of a system of ODEs, we must choose the most rapidly growing
component of y as the independent variable. In practice, however, we will seldom know such a component
in advance. Therefore, the method has very limited applicability.
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The second method is the one proposed by Moriguti [22], which can be used without knowing which
component blows up, and therefore easily applied to systems of ODEs. Consider the following initial
value problem of the system of ODEs:

dy

dt
= f (y(t)), 0 < t < T ,

y(0) = y0, (10)

where y = (y1, y2, . . . , yn)
T, f (y) = (f1(y), f2(y), . . . , fn(y))T and y0 = (y0

1 , y0
2 , . . . , y0

n)T. Hereafter,
we regard the variables t and yi as functions of the arc length s. Since ds2 = dt2 + dy2

1 + · · · + dy2
n , the

variables t (s) and yi(s) satisfy the differential equation

d

ds

⎛
⎜⎜⎝

t

y1
...

yn

⎞
⎟⎟⎠= 1√

1 +∑n
i=1 f 2

i

⎛
⎜⎜⎝

1
f1
...

fn

⎞
⎟⎟⎠ , 0 < s < ∞,

t (0) = 0, y(0) = y0. (11)

We call this transformation arc length transformation. Note that in the transformed equation (11), the
solution y never blows up for finite s. Thus, the difficulty described in the previous section never arises.
Moreover, when t approaches T (s approaches +∞) each component of the right-hand side of (11) satisfies

lim
t→T

fk√
1 +∑n

i=1 f 2
i

=
{

const (	= 0) if k ∈ B,

0 otherwise,
(12)

where

B = {k | yk blows up with highest order}. (13)

Therefore, the original equation is transformed into a numerically tractable one. To show this visually,
consider Eq. (6) with � = 2. The equation is transformed into

d

ds

(
t

y

)
= 1√

1 + y4

(
1
y2

)
def=
(

g0
g1

)
.

The behaviours of g0 and g1, which denote the gradients of the solutions t and y, together with the
behaviours of the solutions are shown in Figs. 6 and 7. We can find from the figures that g0 and g1
approach 0 and 1, respectively, as s → +∞.

Next, in order to see how well the arc length transformation works, we will practically estimate the
blow-up time of the solution of the ODE (6) by applying the simple method in the previous sub-section.
We can easily understand from Figs. 6 and 7 that considerably larger step-size will be permitted when s
is large. Therefore, we use the adaptive code for the integration of the ODEs.

We use the DOPRI5 [19], which is one of the famous ODE codes, throughout our experiments, since
the extensive study by Hairer et al. [19] shows that the code is most efficient among the codes of the same
order. Here we briefly explain the DOPRI5. This code has been written by Hairer and Wanner based on
the pair of the 4th and 5th order explicit Runge–Kutta methods by Dormand and Prince [11]. In the code
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the higher order method is used to carry the numerical solution, and the lower order method, together with
the higher order one, is used to control the step-size so as to keep the local error within the user-specified
tolerances. For the tolerances, the code has three parameters, ATOL, RTOL and ITOL. The parameters
ATOL and RTOL specify the tolerances of the absolute and relative errors, respectively, and ITOL is used
to choose the manner in which the errors are controlled; if we set ITOL= 0 then the error is controlled
in normwise manner, and if we set ITOL= 1 then the error is controlled in componentwise manner. In
our experiments we set ATOL= RTOL= 1.d-15 and ITOL= 0.

The experimental results for Problem 4 with the two parameters in Table 1 are shown in Tables 2 and 3.
In these experiments the double precision IEEE arithmetic is used. From the results, we can find that the
values of s become very large even for the transformed equation, although the arc length transformation
reduces the computational work tremendously.
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Table 1
Examples of Problem 4

� Equation Initial value Solution Blow-up time T Blow-up rate

2 y′ = y2 y0 = 1 y(t) = 1

1 − t
1 1

11
10 y′ = y11/10 y0 = 1 y(t) = 1

(1− t
10 )10 10 10

Table 2
Eq. (6) with � = 2

log10 M Untransformed eq. Transformed eq.

tm − T Steps s tm − T Steps

4 −9.994d − 05 4178 1.014d + 04 −9.857d − 05 1079
5 −9.995d − 06 5240 1.024d + 05 −9.767d − 06 1157
6 −9.997d − 07 6302 1.005d + 06 −9.950d − 07 1207
7 −9.999d − 08 7364 1.080d + 07 −9.261d − 08 1241
8 −9.979d − 09 8427 1.095d + 08 −9.135d − 09 1263
9 −9.980d − 10 9489 1.109d + 09 −9.019d − 10 1278

10 −9.982d − 11 10551 1.279d + 10 −7.814d − 11 1289
11 −9.980d − 12 11613 1.104d + 11 −9.041d − 12 1296

Steps: the number of the steps in the DOPRI5 code.
tm: The first t-value at which |ym| > M .

Table 3
Eq. (6) with � = 11/10

log10 M Untransformed eq. Transformed eq.

tm − T Steps s tm − T Steps

10 −9.997d − 01 6906 1.005d + 10 −9.995d − 01 2841
20 −9.997d − 02 13856 1.003d + 20 −9.997d − 02 4470
30 −9.997d − 03 20806 1.005d + 30 −9.995d − 03 5503
40 −9.997d − 04 27756 1.039d + 40 −9.962d − 04 6167
50 −9.997d − 05 34706 1.048d + 50 −9.953d − 05 6597
60 −9.998d − 06 41656 1.104d + 60 −9.902d − 06 6880
70 −9.998d − 07 48606 1.125d + 70 −9.883d − 07 7069

Steps: the number of the steps in the DOPRI5 code.
tm: The first t-value at which |ym| > M .

3.2.1. Linearly convergent sequence to the blow-up time and its acceleration
The algorithm to be proposed here generates a linearly convergent sequence to the blow-up time, and

accelerates the sequence by the Aitken �2 method for the case that the component y�(t)(� ∈ B) blows up
in polynomial order. First of all, we assume the following:
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Assumption 5.

• None of the components of y(t) blows up anywhere in [0, T ), but at t = T at least one component
blows up (for brevity, we call the components which blow up the blow-up components).

• There may be many blow-up components, and they may tend to +∞ or −∞ with various orders. But
the blow-up component(s) with highest order tends necessarily to +∞, and is an increasing function
on t ∈ [0, T ). That is, for all � ∈ B

y�(t) → +∞, t ↑ T and f�(y(t)) > 0, t ∈ [0, T ).

From this assumption, we can easily show that the arc length s, which can be regarded as a function of
t, also diverges at t = T , that is,

lim
t↑T

s(t) = +∞, (14)

since for some � ∈ B

s(t) =
∫ t

0

√√√√1 +
n∑

i=1

f 2
i dt >

∫ t

0
f� dt = y�(t) − y�(0) → +∞, t → T .

Moreover, the inverse function of s(t), i.e. t (s) exists and is single-valued for s > 0, since ds/dt > 0.
Therefore, taking the inverse of (14) we have the following theorem:

Theorem 6. Let us assume that the solution of (10) satisfies Assumption 5, then we have

lim
s→+∞ t (s) = T .

This theorem guarantees the convergence of t to T for any blow-up solutions satisfying Assumption 5.
On the other hand, for the divergence rate of s we have the following lemma:

Lemma 7. Let y(t) be the blow-up solution satisfying Assumption 5, and z(s) be one of the blow-up
components y�(t) for � ∈ B, then

lim
s→+∞

z(s)

s
= const.

Proof. We have from (11)

z(s) = z(0) +
∫ s

0

g√
1 +∑n

i=1 f 2
i

ds,

where we set g = f�. By Assumption 5 this integrand approaches some positive constant, say G, as
s → +∞. Therefore, if we put the integrand as

g√
1 +∑n

i=1f
2
i

= G + �(s),
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then we have

lim
s→+∞ �(s) = 0.

This means

lim
s→+∞

z(s)

s
= lim

s→+∞

(
z(0)

s
+ G + 1

s

∫ s

0
�(s) ds

)
= G,

which completes the proof. �

We note here that the above results are independent of the rate of divergence. Hereafter, we will deal
with the case that the blow-up component for � ∈ B has the following asymptotic property:

Assumption 8.

• For � ∈ B the blow-up component(s) y� satisfies

y�(t) ∼ 1

(T − t)p
, t ↑ T , p > 0.

From this and former assumptions we have the following theorem:

Theorem 9. Let the solution of (10) satisfy Assumption 5 and 8, and {sl} be the geometric sequence
given by

sl = s0 · �l , s0 > 0, � > 1, l = 0, 1, 2, . . . .

Using the sequence, if we define the sequence {tl} by

tl
def= t (sl) =

∫ sl

0

ds√
1 +∑n

i=1f
2
i

, l = 0, 1, 2, . . . , (15)

then {tl} converges to T linearly and the rate of convergence is �−1/p.

Proof. Let z(t) be one of y�(t)’s for � ∈ B as before, and denote it by

z(t) = C

(T − t)p
(1 + �(T − t)), (16)

where C is some positive constant and � is a function satisfying

lim
	→+0

�(	) = 0.

Using the new symbols 	l and Rl given by

	l
def= T − tl, Rl

def= z(sl)
−1/p, l = 0, 1, 2, . . . ,

we have

	l = C1/pRl(1 + �(	l))
1/p.
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Thus, we have from Lemma 7

lim
l→∞

	l+1

	l
= lim

l→∞

(
Rl+1

Rl

)(
1 + �(	l+1)

1 + �(	l)

)1/p

= lim
l→∞

(
Rl+1

Rl

)

= lim
l→∞

(
z(sl)

z(sl+1)

)1/p

= lim
l→∞

(
sl

sl+1

)1/p

= �−1/p < 1,

which leads to the conclusion. �

This theorem shows that the convergence of {tl} is linear and the rate of convergence is unknown when
{sl} is geometric. The following corollaries prove that the convergence of {tl} can be improved, if {sl} is
faster than geometric.

Corollary 10. Let {
l} be the sequence such that


l > 0, 
l → +∞ and

l


l+1
→ 0, l → ∞.

Using the sequence, if we define

sl = 
l · �l , � > 1,

then

lim
l→∞

	l+1

	l
= 0,

which shows the convergence of {tl} to T is being superlinear.

Corollary 11. Let {sl} be the doubly exponential sequence given by

sl = K�ql

, K > 0, � > 1, q > 1,

then we have

lim
l→∞

∣∣∣∣∣ 	l+1

	
q
l

∣∣∣∣∣< ∞.

This means that the convergence of {tl} to T is qth order.

Above corollaries show that we can make the rate of convergence of {tl} arbitrarily fast by making
the rate of divergence of {sl} arbitrarily fast. However, the faster the divergence rate of {sl}, the higher
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the computational cost of {tl}, since {tl} is obtained by integrating (11) from s = 0 to sl . Moreover,
to avoid the danger of overflows in the floating-point arithmetic, it is advantageous not to use large
numbers. Therefore, we decide to work with the linearly convergent sequence and to accelerate it. For
the acceleration of linearly convergent sequence with unknown convergence rate, as in the present case,
the Aitken �2 method is a very useful tool [27,29]. We propose the following algorithm:

Algorithm.

(1) Let s0 > 0 and � > 1, and define the geometric sequence {sl} by

sl = s0 · �l , l = 0, 1, 2, . . . .

(2) Integrate (11) from s = 0 to sl and put tl = t (sl).
(3) Let t

(0)
l = tl(l = 0, 1, 2, . . .), and apply the Aitken �2 method to the sequence recursively:

t
(k+1)
l+2 = t

(k)
l+2 −

(
t
(k)
l+2 − t

(k)
l+1

)2

t
(k)
l+2 − 2t

(k)
l+1 + t

(k)
l

, l�2k, k = 0, 1, 2, . . .

3.2.2. Estimation of the blow-up rate
Using our algorithm, we can also estimate the rate p, which we will call the blow-up rate. We will

show the procedure.
Suppose that we have the sequences {t (k)

l } for k = 0, . . . , K, l = 2k, . . . , L where L�2K , and that

the last value t
(K)
L is satisfactory as an approximation of T. Then, we can expect for large l that

�l
def=
∣∣∣∣∣ t

(0)
l − t

(K)
L

t
(0)
l−1 − t

(K)
L

∣∣∣∣∣ 
 �−1/p,

since the linear convergence of {tl} is established in Theorem 9. Thus, we expect

pl
def= −1/log� �l = −1/log�

∣∣∣∣∣ t
(0)
l − t

(K)
L

t
(0)
l−1 − t

(K)
L

∣∣∣∣∣ (17)

to be a good approximant of the blow-up rate p.

3.3. Numerical experiments

It should be noted that the exact {tl} can never been obtained by our algorithm because of the roundoff
and discretisation errors introduced in the computations. In order to obtain the nearly theoretical results,
we use the double precision arithmetic and set the tolerance parameters very small.

We apply our algorithm to Problem 4, and estimate the blow-up time and rate. Now, let us define
the sequence sl by sl = 16 · 2l(l = 0, . . . , 10), and the parameters in the DOPRI5 be ITOL= 0 and
ATOL= RTOL= 1.d-15, as before. The numerical results are shown in Tables 4 and 5. In the tables,
e
(k)
l denotes the error of t

(k)
l , that is,

e
(k)
l

def= t
(k)
l − T .
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Table 4
Aitken �2 process for Eq. (6) with � = 2

l sl e
(0)
l

e
(1)
l

e
(2)
l

e
(3)
l

pl Steps

0 16 −5.936d − 02 547
1 32 −3.044d − 02 1.038d + 00 640
2 64 −1.542d − 02 8.281d − 04 1.019d + 00 723
3 128 −7.761d − 03 2.069d − 04 1.010d + 00 796
4 256 −3.893d − 03 5.171d − 05 4.665d − 08 1.005d + 00 860
5 512 −1.950d − 03 1.293d − 05 2.613d − 09 1.002d + 00 916
6 1024 −9.758d − 04 3.232d − 06 1.528d − 10 7.284d − 12 1.001d + 00 965
7 2048 −4.881d − 04 8.080d − 07 9.212d − 12 3.093d − 13 1.001d + 00 1008
8 4096 −2.441d − 04 2.020d − 07 5.700d − 13 1.665d − 14 1.000d + 00 1046
9 8192 −1.221d − 04 5.050d − 08 4.663d − 14 1.288d − 14 1.000d + 00 1079

10 16384 −6.103d − 05 1.262d − 08 9.992d − 15 7.327d − 15 1.000d + 00 1108

Table 5
Aitken �2 process for Eq. (6) with � = 11/10

l sl e
(0)
l

e
(1)
l

e
(2)
l

e
(3)
l

pl Steps

0 16 −7.550d + 00 485
1 32 −7.058d + 00 1.029d + 01 594
2 64 −6.591d + 00 1.877d + 00 1.014d + 01 701
3 128 −6.153d + 00 7.484d − 01 1.007d + 01 805
4 256 −5.742d + 00 3.258d − 01 7.292d − 02 1.003d + 01 906
5 512 −5.358d + 00 1.472d − 01 1.639d − 02 1.002d + 01 1004
6 1024 −5.000d + 00 6.763d − 02 3.705d − 03 3.644d − 05 1.001d + 01 1100
7 2048 −4.665d + 00 3.132d − 02 8.396d − 04 3.064d − 06 1.000d + 01 1194
8 4096 −4.353d + 00 1.456d − 02 1.907d − 04 7.491d − 07 1.000d + 01 1286
9 8192 −4.061d + 00 6.780d − 03 4.342d − 05 1.888d − 07 1.000d + 01 1376

10 16384 −3.789d + 00 3.160d − 03 9.913d − 06 4.281d − 08 1.000d + 01 1464

e
(k)
l

= t
(k)
l

− T , where T is the blow-up time, and t
(k)
l

is the sequence generated by the Aitken �2 method.
pl is the estimate of the blow-up rate (see Eq. (17)).
“Steps” denotes the number of the steps in the DOPRI5 code.

The comparison between the results of Tables 2 and 3 shows that the present algorithm is effective, in
particular, for the case �= 11

10 . In the former experiment, the equation is being integrated until s 
 y > 1070

to obtain the result with the error of −9.883 × 10−7, and the number of the steps is 7069. On the other
hand, the application of the present algorithm reduces the steps to 1464, the error to 4.281 × 10−8, and
s-value to 16 384. Moreover, the estimates of the blow-up rate are found to be very accurate for both
cases.

4. Application to the blow-up problems of PDEs

Next we consider the three blow-up problems of PDEs, Problems 1–3.
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4.1. Semi-linear reaction–diffusion equation

Consider Problem 1 when � = (0, 1), f (u) = u2 and u0(x) = 100 sin �x:

�u

�t
= �2u

�x2 + u2, (x, t) ∈ (0, 1) × (0, T ),

u(x, t) = 0, x = 0, 1,

u(x, 0) = 100 sin �x, x ∈ [0, 1]. (18)

Here, we divide the interval [0, 1] into n equi-length sub-intervals, i.e. we set �x=1/n, and denote by Ui(t)

the numerical approximation of u(x, t) at x = i�x. Using the standard central difference approximation,
we have the system of ODEs:

d

dt

⎛
⎜⎜⎜⎜⎝

U1
U2
...

Un−2
Un−1

⎞
⎟⎟⎟⎟⎠= 1

(�x)2

⎛
⎜⎜⎜⎜⎝

−2 1 0
1 −2 1

. . .
. . .

. . .

1 −2 1
0 1 −2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

U1
U2
...

Un−2
Un−1

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

U2
1

U2
2
...

U2
n−2

U2
n−1

⎞
⎟⎟⎟⎟⎠ , (19)

Ui(0) = u0(i�x), i = 0, . . . , n.

This solution has the blow-up rate 1, since for Problem 1 with f (u) = ur(r > 1), Groisman and Rossi
[18] has shown

max
i

Ui(t) ∼ (T − t)−1/(r−1), t ↑ T . (20)

This means that Assumption 8 is satisfied with p = 1.
We apply our algorithm to (19) to estimate the blow-up time and rate. Here we set n = 64 and sl =

216 · 2l (l = 0, . . . , 10), and accelerate the sequence four times by the Aitken �2 method. The parameters
in the DOPRI5 are ITOL= 0 and ATOL= RTOL= 1.d-15. The result is shown in Table 6. The table
shows that the convergences of t

(k)
l to T, which is unknown in this problem, appears to be valid, and that

the estimated blow-up rate converges steadily to that given by (20).
To be more confident in our algorithm, next we perform the same experiment many times by halving

the mesh size �x repeatedly. Let Tn be the last value of theAitken table, that is, the value in the last column
and the last row in the table, when the mesh size is �x =1/n. If Tn is a sufficiently good approximation to
the blow-up time of (19), then Tn/2 −Tn approximates the error in Tn/2. Therefore, if the value |Tn/2 −Tn|
decreases with n at a proper rate, then we can ascertain the convergence of Tn to T. The values of |Tn/2−Tn|
for varying n are shown in Table 7. From the table, we can assure the convergence of Tn to the blow-up
time of the solution of (18), since the rate of convergence is 2, which is just the accuracy of the difference
approximation in space.

As is stated in Appendix, the blow-up time of the solution of (18) can be estimated also by Nakagawa’s
(26). We compare our scheme with Nakagawa’s one with the same mesh size �x = 1

64 . The parameter

appearing in Nakagawa’s scheme is set � = 1
2 . The converging processes of t

(k)
m together with that of the

estimate by Nakagawa’s scheme are shown in Figs. 8 and 9 (Fig. 9 is an enlargement of Fig. 8). These
figures show that our algorithm is superior over Nakagawa’s scheme.
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Table 6
Blow-up time of the solution of Eq. (19) with n = 64

l t
(0)
l

t
(1)
l

t
(2)
l

t
(3)
l

t
(4)
l

pl Steps

0 1.09516d − 02 1569
1 1.09699d − 02 7.795d − 01 1762
2 1.09774d − 02 1.09827d − 02 7.801d − 01 1956
3 1.09804d − 02 1.09824d − 02 8.219d − 01 2127
4 1.09816d − 02 1.09825d − 02 1.09825d − 02 8.899d − 01 2265
5 1.09822d − 02 1.09826d − 02 1.09822d − 02 9.415d − 01 2379
6 1.09824d − 02 1.09827d − 02 1.09827d − 02 1.09823d − 02 9.703d − 01 2476
7 1.09826d − 02 1.09827d − 02 1.09827d − 02 1.09827d − 02 9.851d − 01 2561
8 1.09826d − 02 1.09827d − 02 1.09827d − 02 1.09827d − 02 1.09827d − 02 9.925d − 01 2636
9 1.09826d − 02 1.09827d − 02 1.09827d − 02 1.09827d − 02 1.09827d − 02 9.963d − 01 2703

10 1.09827d − 02 1.09827d − 02 1.09827d − 02 1.09827d − 02 1.09827d − 02 9.981d − 01 2764
11 1.09827d − 02 1.09827d − 02 1.09827d − 02 1.09827d − 02 1.09827d − 02 9.991d − 01 2821
12 1.09827d − 02 1.09827d − 02 1.09827d − 02 1.09827d − 02 1.09827d − 02 9.995d − 01 2875

t
(k)
l

is the sequence generated by the Aitken �2 method.
pl is the estimate of the blow-up rate (see Eq. (17)).
“Steps” denotes the number of the steps in the DOPRI5 code.

Table 7
Convergence behaviour of Tn to the blow-up time T of the solution of Eq. (18)

n Tn log2|Tn/2 − Tn|
16 1.095606426d − 02
32 1.097700705d − 02 −15.54
64 1.098267421d − 02 −17.43

128 1.098417002d − 02 −19.35
256 1.098455990d − 02 −21.29
512 1.098465675d − 02 −23.30

Tn: Estimated blow-up time when the mesh size is �x = 1/n.

4.2. Heat equation with nonlinear boundary condition

Next we consider Problem 2 when f (u) = u2 and u0(x) = 1:

�u

�t
= �2u

�x2 (x, t) ∈ (0, 1) × (0, T ),

�u

�x

∣∣∣∣
x=1

= u2, t ∈ [0, T ),

�u

�x

∣∣∣∣
x=0

= 0, t ∈ [0, T ),

u(x, 0) = 1, x ∈ [0, 1]. (21)
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Fig. 8. Convergence to the blow-up time, where nfe denotes the number of function evaluations.
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Fig. 9. Convergence to the blow-up time, where nfe denotes the number of function evaluations.

We use the central difference approximation for uxx , as before. For the ux’s in the boundary conditions,
we use the approximations ux(0, t) 
 (U1 − U−1)/(2�x) and ux(1, t) 
 (Un+1 − Un−1)/(2�x), where
U−1 and Un+1 are the approximations to the fictitious values u(−�x, t) and u(1 + �x, t), respectively.
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Table 8
Blow-up time of the solution of Eq. (22) with n = 64

l t
(0)
l

t
(1)
l

t
(2)
l

t
(3)
l

t
(4)
l

pl Steps

0 1.76845d − 01 12799
1 1.76898d − 01 7.791d − 01 12908
2 1.76918d − 01 1.76931d − 01 8.752d − 01 13000
3 1.76927d − 01 1.76934d − 01 9.329d − 01 13086
4 1.76931d − 01 1.76935d − 01 1.76935d − 01 9.649d − 01 13168
5 1.76933d − 01 1.76935d − 01 1.76935d − 01 9.820d − 01 13247
6 1.76934d − 01 1.76935d − 01 1.76935d − 01 1.76935d − 01 9.908d − 01 13324
7 1.76935d − 01 1.76935d − 01 1.76935d − 01 1.76935d − 01 9.954d − 01 13399
8 1.76935d − 01 1.76935d − 01 1.76935d − 01 1.76935d − 01 1.76935d − 01 9.977d − 01 13472
9 1.76935d − 01 1.76935d − 01 1.76935d − 01 1.76935d − 01 1.76935d − 01 9.988d − 01 13544

10 1.76935d − 01 1.76935d − 01 1.76935d − 01 1.76935d − 01 1.76935d − 01 9.994d − 01 13615
11 1.76935d − 01 1.76935d − 01 1.76935d − 01 1.76935d − 01 1.76935d − 01 9.997d − 01 13685
12 1.76935d − 01 1.76935d − 01 1.76935d − 01 1.76935d − 01 1.76935d − 01 9.999d − 01 13754

t
(k)
l

is the sequence generated by the Aitken �2 method.
pl is the estimate of the blow-up rate (see Eq. (17)).
“Steps” denotes the number of the steps in the DOPRI5 code.

By equating the right-hand sides of these approximations to the corresponding values, we have

d

dt

⎛
⎜⎜⎜⎜⎝

U0
U1
...

Un−1
Un

⎞
⎟⎟⎟⎟⎠= 1

(�x)2

⎛
⎜⎜⎜⎜⎝

−2 2 0
1 −2 1

. . .
. . .

. . .

1 −2 1
0 2 −2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

U0
U1
...

Un−1
Un

⎞
⎟⎟⎟⎟⎠+ 2

�x

⎛
⎜⎜⎜⎜⎝

0
0
...

0
U2

n

⎞
⎟⎟⎟⎟⎠ , (22)

Ui(0) = u0(i�x), i = 0, . . . , n.

Also for this problem, Acosta et al. [5] have shown

max
i

Ui(t) ∼ (T − t)−1/(r−1), (23)

when f (u) = ur(r > 1). Since r = 2 in the present case, the blow-up rate of U(t) at t = T is 1, which
means that Assumption 8 is satisfied with p = 1.

Here, we set n = 64 and sl = 27 · 2l (l = 0, . . . , 10). The parameters of DOPRI5 are set ITOL= 0
and ATOL= RTOL= 1.d-15, and the number of accelerations is 4, as before. The numerical result is
shown in Table 8. From the table, we can conclude that the convergence of tl to T, which is unknown also
in this case, appears to be valid, and that the estimated blow-up rate coincides with that given by (23).

To be more confident in our algorithm, we perform again the same experiment as in the previous
problem, and show the result in Table 9. In this table, we can observe approximately the same rate of
convergence as that of the difference approximation used, and therefore we can confirm the validity of
our algorithm also for this problem.

By the way, the solution of the problem is known to blow up at the boundary point (see e.g. [5]), so
that the transformation technique by Acosta et al. [4], which has already been introduced in Section 3.2,
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Table 9
Convergence behaviour of Tn to the blow-up time T of the solution of Eq. (21)

n Tn log2|Tn/2 − Tn|
16 1.837915627d − 01
32 1.785669900d − 01 −7.58
64 1.769353395d − 01 −9.26

128 1.764455048d − 01 −11.00
256 1.763025262d − 01 −12.77
512 1.762616488d − 01 −14.58

1024 1.762501461d − 01 −16.41
2048 1.762469497d − 01 −18.33
4096 1.762460703d − 01 −20.12

Tn: estimated blow-up time when the mesh size is �x = 1/n.
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0.176925

0.176930

0.176935

13000 13100 13200 13300 13400 13500
steps

t

t(1)

t(2) t(3) t(4)

t(0)

Acosta

Fig. 10. Convergence behaviours of Acosta’s and the present algorithms.

can be useful. The result of solving the transformed equation by the DOPRI5 is illustrated and compared
with that of our algorithm in Fig. 10. This figure shows the superiority of our method over the method of
Acosta et al. [4] even without the accelerations.

4.3. Semi-linear reaction–diffusion system

As an example of Problem 3, consider the following problem:
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Table 10
Estimation of the blow-up time of the solution of Eq. (25), where n = 512

l t
(0)
l

t
(1)
l

t
(2)
l

t
(3)
l

t
(4)
l

pl Steps

0 6.55219d − 04 1680
1 6.55231d − 04 7.724d − 01 1787
2 6.55236d − 04 6.55239d − 04 7.861d − 01 1892
3 6.55238d − 04 6.55239d − 04 7.930d − 01 1996
4 6.55238d − 04 6.55239d − 04 6.55239d − 04 7.965d − 01 2099
5 6.55239d − 04 6.55239d − 04 6.55239d − 04 7.982d − 01 2202
6 6.55239d − 04 6.55239d − 04 6.55239d − 04 6.55239d − 04 7.991d − 01 2305
7 6.55239d − 04 6.55239d − 04 6.55239d − 04 6.55239d − 04 7.995d − 01 2408
8 6.55239d − 04 6.55239d − 04 6.55239d − 04 6.55239d − 04 6.55239d − 04 7.998d − 01 2511
9 6.55239d − 04 6.55239d − 04 6.55239d − 04 6.55239d − 04 6.55239d − 04 7.999d − 01 2614

10 6.55239d − 04 6.55239d − 04 6.55239d − 04 6.55239d − 04 6.55239d − 04 7.999d − 01 2717

t
(k)
l

is the sequence generated by the Aitken �2 method.
pl is the estimate of the blow-up rate (see Eq. (17)).
“Steps” denotes the number of the steps in the DOPRI5 code.

�u

�t
= �2u

�x2 + vr1,

�v

�t
= �2v

�x2 + ur2,

(x, t) ∈ R × (0, T ), (24)

u(x, 0) = 100 exp(−x2), v(x, 0) = 0, x ∈ R,

u(±∞, t) = v(±∞, t) = 0, t ∈ [0, T ).

For the numerical computation we consider the equation on the finite interval x ∈ [−5, 5] instead of
the whole space R, and use the initial-boundary conditions

u(x, 0) = 100 exp(−x2), v(x, 0) = 0, x ∈ (−5, 5),

u(±5, t) = v(±5, t) = 0, t ∈ [0, T ),

instead of the exact conditions. Let n be the number of divisions in the interval, and ui and vi be
approximations to the solutions at the ith point xi = −5 + i�x, where �x = 10/n. The semi-discretised
equation to be used is

dui

dt
= ui+1 − 2ui + ui−1

(�x)2 + v
r1
i ,

dvi

dt
= vi+1 − 2vi + vi−1

(�x)2 + u
r2
i ,

ui(0) = 100 exp(−x2
i ), vi(0) = 0.

i = 0, 1, . . . , n, (25)

Here we analyse the case r1 = 2 and r2 = 3, for which condition (5) holds. We apply our algorithm by
setting sl = 220 · 2l(l = 0, 1, . . . , 10).

The result is given in Table 10. In the table the observed blow-up rate is approximately 0.8, which is
just the value given by (max{r1, r2} + 1)/(r1r2 − 1), the left-hand side of the inequality (5).
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Table 11
Convergence behaviour of Tn to the blow-up time T of the solution of Eq. (24)

n Tn log2|Tn/2 − Tn|
64 6.551052754d − 04

128 6.551944188d − 04 −23.42
256 6.552278025d − 04 −24.84
512 6.552390173d − 04 −26.41

1024 6.552425366d − 04 −28.08
2048 6.552435922d − 04 −29.82
4096 6.552438991d − 04 −31.60

Tn: estimated blow-up time when the mesh size is �x = 10/n.

As before, we denote by Tn the estimated blow-up time when the number of divisions in space is n. The
values of Tn are shown in Table 11 for varying n. From the table, the convergence of Tn to T seems to be
valid, although for this problem, the convergence has not yet been established theoretically. By the way,
the cpu-time required to obtain the result on the PC with Pentium IV (2.4 GHz) is 40.6 s, when n= 4096.

Finally, we give some comments on our experiments. We have used very large values of s for the two
reasons. Firstly, the arc length s becomes inevitably large for multi-dimensional cases. Secondly, in order
to obtain nearly theoretical results, we have integrated the equation over fairly long ranges and chosen
small values as the tolerance parameters. As a result, the results obtained for the blow-up problems of the
PDEs are satisfactory, although the computation times become larger. Needless to say, if high accuracies
are not required then we are able to relax the restrictions on the integration interval and the tolerance
parameters.

5. Conclusion

We have proposed a method of estimating the blow-up time and the blow-up rate of the solution of the
ODEs, and then applied the method to the blow-up problem of PDEs. The method is always applicable
if the solution has a asymptotic property given by Assumption 8. To extend the present method to the
solutions with another type of singularity such as that discovered by Angenent and Velázquez [6] will be
a future work.
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Appendix A. Nakagawa’s scheme

Let us consider Problem 1 for the case that � = (0, 1) and f (u) = u2. Then we denote by Um
i the

numerical approximation to the solution at the point (xi, tm), where xi and tm are the ith and mth grid
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points on the x- and t-axis, respectively. Nakagawa’s scheme to compute Um
i is given by

Um+1
i − Um

i

�tm
= Um

i+1 − 2Um
i + Um

i−1

(�x)2 + (Um
i )2, i = 1, . . . , n − 1,

Um
0 = Um

n = 0, m = 0, 1, 2, . . . ,

�x = 1

n
. (26)

In this scheme, although the spatial mesh size �x is fixed, the time step-size �tm is adjusted by the formula

�tm = tm − tm−1 = � × min

{
1,

1

‖Um‖
}

, t0 = 0, � = �(�x)2,

where � is a predetermined constant satisfying 0 < �� 1
2 , and ‖Um‖ is defined by

‖Um‖ =
(

n∑
i=0

�x · (Um
i )2

)1/2

.

Since tm → T (m → ∞) has been established in [23], we could estimate the blow-up time by pursuing
the values of tm, no matter what the efficiency is. Chen has extended Nakagawa’s scheme to any case that
f (u) = ur(r > 1) [9], and further to the case that � is a closed ball in Rd [10].
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