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Abstract

For solving Laplace’s eigenvalue problems we propose new algorithms using the Trefftz method (TM) (i.e., the boundary ap-
proximation method (BAM)), by means of degeneracy of numerical Helmholtz equations. Since piecewise particular solutions can
be fully adopted, the new algorithms benefit high accuracy of eigenvalues and eigenfunctions, low cost in CPU time and computer
storage. Also the algorithms can be applied to solve the problems with multiple interfaces and singularities. In this paper, error
estimates are derived for the approximate eigenvalues and eigenfunctions obtained. Numerical experiments for smooth and singular
solutions are reported in this paper to show significance of the algorithms proposed and to verify the theoretical results made.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

For solving eigenvalue problems, there exist a number of numerical methods, see [5,9,11,19,21,3,24,20,8]. The
techniques using particular solutions are given in [4,7,8,18,23]. In this paper we shall follow the ideas in [8] but adopt
piecewise particular solutions as in [17], by the help of an iteration algorithm. We will solve an auxiliary Helmholtz
equation with a non-homogeneous boundary condition and choose a parameter k2 to approach an eigenvalue. In this
method, the solution domain is divided into several subdomains, and different particular solutions on subdomains (i.e.,
piecewise particular solutions) of the Helmholtz equations are employed to be admissible functions. An approximation
of the Helmholtz solutions is then obtained by satisfying only the interior and exterior boundary conditions of the
Helmholtz equation. Then approximate eigenvalues and eigenfunctions can be found by an iteration method, in which
the values of k2 are modified to approach the target eigenvalue. Obviously, using piecewise particular solutions is
well suited for solving the eigenvalue problems with multiple interfaces and singularities. Moreover, the approximate
solutions may reach high accuracy by a modest effort in computation.
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Although the new algorithms for eigenvalue problems are presented in [14], no error analysis has been provided so
far. This paper is devoted to estimate error bounds of the eigenvalues and the eigenfunctions obtained. The paper is
organized as follows. In the next section, the algorithms are described. An error analysis is made for eigenvalues and
eigenfunctions in Sections 3 and 4, respectively. In the last two sections, numerical experiments of smooth and singular
solutions are reported to support the algorithms proposed, and to confirm the theoretical analysis made.

2. Numerical algorithms

Consider the eigenvalue problem{−��l = �l�l in �,

�l |� = 0,
(2.1)

where � = �2/�x2 + �2/�y2, and � is a polygonal domain with the external boundary �. Denote the eigenvalues �l in
an ascending order

0 < �1 ��2 � · · · ��l � · · · . (2.2)

The eigenfunctions �l will satisfy the orthogonality property:

(�i , �j ) =
∫ ∫

�
�i�j d� = �ij =

{
1 i = j,

0 i �= j.
(2.3)

Let the solution domain � be divided into subdomains, �+ and �− by a piecewise straight �0. Then the eigenfunctions
�l must satisfy the following equations:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

−��l = �l�l in �+ and �−,

�+
l = �−

l ,
��+

l

��
= ��−

l

��
on �0,

�l |� = 0,

(2.4)

where � is the unit normal to �0. Define an auxiliary Helmholtz solution u to satisfy the following equation:⎧⎪⎨
⎪⎩

−�u = k2u in �+ and �−,

u+ = u−,
�u+

��
= �u−

��
on �0,

u|� = g,

(2.5)

where k > 0, g is a positive function given such that g ∈ H 1/2(�), and g ∈ H 1/2 (�) is the Sobolev space with
semi-norms. Also define the smallest, relative distance between k2 and �i ,

� = min
i

∣∣∣∣k2 − �i

k2

∣∣∣∣ . (2.6)

Since � > 0 in general, the solution u of (2.5) can be obtained by the Trefftz method (TM) (i.e., the boundary
approximation method (BAM)), see [22,12,15–17]. Hence we may choose k2 so as to approach an eigenvalue needed,
and then u also approaches its corresponding eigenfunction (see [8]). Let us describe the algorithms in detail below.

2.1. The Trefftz methods

Define a space

H = {v ∈ L2(�)|v ∈ H 1(�+), v ∈ H 1(�−) and �v + k2v = 0 in �+ and �−}, (2.7)



Z.-C. Li / Journal of Computational and Applied Mathematics 200 (2007) 231–254 233

and a functional

I (v) =
∫
�
(v − g)2 ds +

∫
�0

(v+ − v−)2 ds + �2
∫
�0

(v+
� − v−

� )2 ds, (2.8)

where H 1(�+) and H 1(�−) are the Sobolev spaces, and � is a positive weight. We shall use a bilinear form [u, v] on
H × H defined by

[u, v] =
∫
�

uv ds +
∫
�0

(u+ − u−)(v+ − v−) ds + �2
∫
�0

(u+
v − u−

v )(v+
v − v−

v ) ds, (2.9)

and the induced norm on the boundary � and �0 is defined by

|v|B = [v, v]1/2 = {|v|2� + |v+ − v−|2�0
+ �2|v+

� − v−
� |2�0

}1/2. (2.10)

The norms ‖v‖H and |v|H over H are also defined by

‖v‖H = {‖v‖2
1,�+ + ‖v‖2

1,�−}1/2, |v|H = {|v|2
1,�+ + |v|2

1,�−}1/2, (2.11)

where ‖v‖2
1,�+ and |v|2

1,�+ are the Sobolev norms. Also define the finite-dimensional space Sm,n ⊆ H such that

Sm,n =
{

v|v = v+ =
m∑

i=1

ci	
+
i in �+, and v = v− =

n∑
i=1

di	
−
i in �−

}
, (2.12)

where {	±
i } are the complete particular solutions of (2.5) in �±, and ci and di are the coefficients.

When � > 0, a boundary approximation um,n ∈ Sm,n to problem (2.5) can then be found by the TM:

I (um,n) = min
v∈Sm,n

I (v), (2.13)

which leads to a system of linear algebraic equations

Ax = b, (2.14)

where x is the unknown vector consisting of all expansion coefficients ci and di in (2.12). This TM can also be presented
in a weak form

[um,n, v] =
∫
�

gv ds, ∀v ∈ Sm,n, (2.15)

and the stiffness matrix A is non-negative definite and symmetric, given in

[um,n, um,n] = 1
2 xT

m,nAxm,n. (2.16)

The Helmholtz solution should be scaled by dividing the leading coefficient c1 in (2.12) (see [14]), i.e.,

um,n = um,n/c1, xm,n = xm,n/c1, c1 �= 0. (2.17)

Since um,n in (2.15) is essentially a least squares solution of (2.13), we will employ the QR method or the singular
value decomposition of Golub and van Loan [9] and Atkinson [2], to reduce the condition number, given by

Cond. = Cond.(A) =
[
�max(A)

�min(A)

]1/2

, (2.18)

where �max(A) and �min(A) are the maximal and the minimal eigenvalues of A, respectively.
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2.2. Iterative algorithms for seeking eigenvalues and eigenfunctions

For seeking both eigenvalues and eigenfunctions, we give an iterative algorithm by the following five steps, to modify
k for minimizing �min(A(k)).

Step 1. To approximate a target eigenvalue �l , choose suitable term numbers m and n, and three good initial values

ki ≈
√

�l , i = 0, 1, 2. (2.19)

Step 2. Form the admissible functions um,n for ki from (2.12), obtain the scaled solution ūm,n by the TM in Section
2.1, and evaluate the minimal eigenvalue

f (ki) = �min(A(ki)) = d2
min. (2.20)

Step 3. A quadratic function P2(k) to approximate f (k) can be formulated by interpolation through three pairs:
(ki, f (ki)), i = n, n − 1, n − 2, where ki are distinct. A new value kn+1 can be found by P ′

2(kn+1) = 0, to get

kn+1 = kn + kn−1

2
− 1

2

f [kn, kn−1]
f [kn, kn−1, kn−2] , n�2, (2.21)

where the divided differences are given by (see [2])

f [kn, kn−1] = (f (kn) − f (kn−1))/(kn − kn−1), (2.22)

f [kn, kn−1, kn−2] = (f [kn, kn−1] − f [kn−1, kn−2])/(kn − kn−2). (2.23)

Step 4. If f (k) is satisfactorily small, the values k2 can be regarded as a good approximation to �l , and so can um,n

to its corresponding eigenfunction �l . Otherwise return back to Step 2. If f (k) cannot diminish enough even through
Steps 2–3 iteratively, suitably increase the term numbers, m and n, and go to Step 1 for a new trial.

3. Error bounds of eigenvalues

In the above algorithms, the magnitude as well as the error of �min(A) is an important criterion to measure the
accuracy of numerical eigenvalues and eigenfunctions. This fact will be justified by a posteriori error analysis below.
The eigenvalue problem (2.1) can be presented in a weak form: Seek � ∈ R, 0 �= u ∈ H 1

0 (�) such that

(∇u, ∇v) = �(u, v), ∀v ∈ H 1
0 (�), (3.1)

where ∇ = (�/�x, �/�y)T, and the Sobolev space H 1
0 (�) = {v|v ∈ H 1(�), v|� = 0}. Define a space H ∗

0 such that

H ∗
0 = {v|v ∈ H 1(�+), v ∈ H 1(�−), v+ = v− in �0, v

+
� = v−

� in �0, v|� = 0}. (3.2)

Problem (2.4) can also be written in a weak form: Seek � ∈ R, 0 �= u ∈ H ∗
0 such that

〈∇u, ∇v〉 = �(u, v), ∀v ∈ H 1
0 (�), (3.3)

where

〈u, v〉 =
∫ ∫

�+
uv d� +

∫ ∫
�−

uv d�. (3.4)

From Hall and Porsching [10], we can prove the following lemma.
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Lemma 3.1. The weak forms (3.1) and (3.3) are equivalent to each other, and

〈∇�i , ∇�j 〉 = (∇�i , ∇�j ) = ��i,j . (3.5)

From Lemma 3.1, we conclude that any a function v(∈ H ∗
0 ) can be expressed by the eigenfunctions {�i},1 i.e.,

v =
∞∑
i=1


i�i , (3.6)

with the true expansion coefficients 
i . Suppose that there exist jumps �1 of v and �2 of v�, across the interface �0, then
the Helmholtz equation (2.5) is reduced to⎧⎪⎨

⎪⎩
�u + k2u = 0 in �+ and �−,

[u]�0 = �1, [u�]�0 = �2,

u|� = g,

(3.7)

where the notation [u]�0 = (u+ − u−)|�0 . We use an auxiliary function w defined:⎧⎪⎨
⎪⎩

�w = 0, in �+ and �−,

[w]�0 = �1, [w�]�0 = �2,

w|� = g.

(3.8)

Note that function w is only for analysis but not for real computation. Now we have the following lemma.

Lemma 3.2. Let k2 be close to a target eigenvalue of (2.1), and let u and w be the solutions of (3.7) and (3.8) satisfying2

|w|0,� � 1
2 |u|0,�. (3.9)

Then there exists an eigenvalue �l such that

|k2 − �l |
k2 �2

|w|0,�

|u|0,�
. (3.10)

Proof. Let v = u − w, then⎧⎪⎨
⎪⎩

�v + k2v = −k2w, in �+ and �−,

[v]�0 = 0, [v�]�0 = 0,

v|� = 0.

(3.11)

So v ∈ H ∗
0 , and the function v can be expressed by (3.6). We obtain from (2.4), (3.11) and (3.6) that

|w|20,� = 1

k2 |�v + k2v|20,� =
∞∑
i=1

(
k2 − �i

k2

)2


2
i . (3.12)

Also from (2.3), (3.6) and assumption (3.9)

∞∑
i=1


2
i = |v|20,� = |u − w|20,� �(|u|0,� − |w|0,�)2 � 1

4
|u|20,�. (3.13)

1 In fact, when v ∈ H∗
0 , we have v+ = v− and v+v+

� = v−v−
� , to give |v|2

1,�+ + |v|2
1,�− = |v|21,� + ∫

�0
(v+v+

� − v−v−
� ) = |v|21,�. Hence

v ∈ H∗
0 implies v ∈ H 1

0 (�), and v can be expanded by the complete set of eigenfunctions �i (∈ H 1
0 (�)).

2 When k2 is close to a target eigenvalue, u is close to its corresponding eigenfunction. Hence �= max{g, �1, �2} is small, and |u|0,� =O(1) for
some kinds of normalization. On the other hand, the maximal value of Laplace’s solution w occurs only on the boundary, and then |w|0,� � � Area(�).
Hence assumption (3.9) can be provided.
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Therefore, combining (3.12) and (3.13) yields

min
i

∣∣∣∣k2 − �i

k2

∣∣∣∣
2

�
∑∞

i=1

(
(k2 − �i )/k2

)2

2
i∑∞

i=1 
2
i

�4
|w|20,�

|u|20,�

. (3.14)

The desired bound (3.10) is obtained. This completes the Proof of Lemma 3.2. �

The bounds (3.10) can also be derived from Kuttler and Sigilloto [11] for the entire solution domain. We cite two
lemmas from [17].

Lemma 3.3. Suppose that the auxiliary function of (3.8) satisfies the following inverse properties

|w�|0,� �Kw‖w‖H , |w+
� |0,�0 �Kw‖w‖H , ∀w ∈ H , (3.15)

where the constant Kw may depend of w. Then for any � > 0 there exists a constant C independent of w such that

‖w‖H �C(Kw + �−1)|w|B . (3.16)

Lemma 3.4. Let u be the solution of (2.5). Then for � > 0 there exists a unique function um,n ∈ Sm,n by the TM such
that

|um,n|B � |g|0,�, |u − um,n|B �C inf
v∈Sm,n

|u − v|B . (3.17)

Now let us prove a new theorem.

Theorem 3.1. Let u be the piecewise particular solution of the Helmholtz equation (2.5). Suppose that all conditions
in Lemmas 3.2 and 3.3 hold. Then ∃�l such that

|k2 − �l |
k2 �C(Kw + �−1)

|u|B
|u|0,�

, (3.18)

where C is a bounded constant independent of u. Moreover, let um,n ∈ Sm,n, then

|k2 − �l |
k2 �C(Kw + �−1)

|um,n|B
|um,n|0,�

. (3.19)

Proof. From Lemmas 3.2 and 3.3 we obtain that

|k2 − �l |
k2 �2

|w|0,�

|u|0,�
�2

‖w‖H

|u|0,�
�C(Kw + �−1)

|w|B
|u|0,�

. (3.20)

Since the functions u and w have the same values on � and �0 by comparing (3.7) with (3.8), the desired result (3.18)
is obtained, and so is (3.19) by letting u = um,n. This completes the Proof of Theorem 3.1. �

It is worthy pointing out that the ratio in (3.19)

� = |um,n|B
|um,n|0,�

(3.21)

plays an important role in error estimates for both eigenvalues and eigenfunctions. Note that um,n solves the Helmholtz
equation (2.5) under a given g on �. From Lemma 3.4 we directly have the following lemma.

Lemma 3.5. Let um,n(∈ Sm,n) be the solution to (2.5) from the TM. Suppose that there exists a constant �10(> 0)

independent of m and n such that

|um,n|0,� ��10|c1|, (3.22)
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where �10 may depend of k (see Lemma 5.1 in Section 5). Then ratio (3.21) has the bounds

�� 1

�10
|um,n|B, �� 1

�10

1

c1
|g|0,�, (3.23)

where the scaled solution um,n is given by (2.17).

Let us consider the stiffness matrix A in (2.16). Denote the eigenvalues 
i and eigenvectors x̄i , then Axi = 
ixi,
where 0 < 
1 �
2 � · · · �
N, N = m + n, and xT

i xj = �ij .
We can also prove the following lemma by following [2, p. 604].

Lemma 3.6. Let xm,n be the vector of the coefficients of the solution um,n in (2.5) by the TM using the least squares
method. Suppose that 
1 = �min(A)>1, the next minimal eigenvalue 
2 = �next(A) = O(1), and x1 is the leading
eigenvector of A(k) corresponding to 
1 such that

(xm,n, e1) = (
x1, e1) = c1 �= 0, (3.24)

where e1 is the N-dimensional unit vector, e1 = (1, 0, . . . , 0)T. Then there exist the bounds

c1 = O

(
1√

�min(A)

)
, (3.25)

and

‖xm,n − 
x1‖ = O

(√
�min(A)

�next(A)

)
, (3.26)

with a suitable constant 
 �= 0.

Applying (3.19), (3.23) and (3.25) leads to the following corollary.

Corollary 3.1. Let all conditions in Theorem 3.1 and Lemmas 3.5 and 3.6 hold. Then ∃�l such that∣∣∣∣k2 − �l

k2

∣∣∣∣ �C
(Kw + �−1)

�10
|g|0,�

√
�min(A). (3.27)

Note that the function g|� in (2.5) may not be necessarily small. In fact, let g = O(1), we can still conclude that if
�min(A) → 0 then k2 → �l . Also the bounds of Kw can be derived by following [17,13] to give Kw �C

√
max{m, n}

for a circular domain �+.

4. Error bounds of eigenfunctions

In the algorithms in Section 2.2, the solution um,n in (2.17) by the TM can also be regarded as an approximation to
the eigenfunctions �l . First, let us assume the distinct eigenvalues

0 < �1 < �2 < · · · < �l < · · · . (4.1)

Also the values k2 are chosen to be closer to a target eigenvalue �l . We provide the following lemma.

Lemma 4.1. Let u and w be the solutions of (3.7) and (3.8), respectively, and suppose that

|�i − �j |�� > 0, i �= j ,

|w|0,� < min

{
1

2
,

�

4k2

}
|u|0,�. (4.2)
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Then there exists the bound,

|k2 − �l | < 1
2�. (4.3)

Proof. From (4.2) and the first part of (3.20) we have

|k2 − �l | = min
i

|k2 − �i | = k2 min
i

|k2 − �i |
k2 �k2 2|w|0,�

|u|0,�
<

�

2
, (4.4)

where we have used (3.10) under assumption (3.9). �

Theorem 4.1. Let the conditions in Lemmas 3.3 and 4.1 hold. Then there exists a real constant al �= 0 such that

|u − al�l |0,� �C
�l

�
(Kw + �−1)|u|B . (4.5)

Proof. Let v = u − w, then v satisfies (3.11). The functions v(∈ H ∗
0 ) can also be expressed by (3.6). Since the

coefficients can be obtained explicitly from the orthogonality (3.5), we have


i = − k2

k2 − �i

(w, �i ). (4.6)

Then the solution u of (3.7) is given by

u = w + v = w −
∞∑
i=1

k2

k2 − �i

(w, �i )�i

= w + al�l −
∞∑

i=1∧i �=l

k2

k2 − �i

(w, �i )�i , (4.7)

where al = −k2

k2−�l
(w, �l ). Since mini �=l |k2 − �i |��/2, we obtain from (4.7) and the Parceval’s inequality

|u − al�l |0,� � |w|0,� +
√√√√√

∞∑
i=1
i �=l

(
k2

k2 − �i

)2

(w, �i )
2

� |w|0,� + 2k2

�

√√√√ ∞∑
i=1

(w, �i )
2 �

(
1 + 2k2

�

)
|w|0,�. (4.8)

Also it follows from (4.3) that

k2 ��l + |k2 − �l |��l + �

2
. (4.9)

Finally by applying (4.8), (4.9) and Lemma 3.3,

|u − al�l |0,� �C
�l

�
|w|0,� �C

�l

�
‖w‖H

�C
�l

�
(Kw + �−1)|w|B = C

�l

�
(Kw + �−1)|u|B . (4.10)

This completes the Proof of Theorem 4.1. �

Theorem 4.2. Let all conditions in Theorem 4.1 hold. Then there exists a real constant al such that

‖u − al�l‖H ≤ C
�3/2
l

�
(Kw + �−1)|u|B . (4.11)
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Proof. Let v = u − al�l , we have from (3.7), (2.4) and (2.5)

|v|2H �〈−�v, v〉 + C(Kw + �−1)2|v|2B
= (k2u − �lal�l , v) + C1(Kw + �−1)2|v|2B
= (�lv + (k2 − �l )u, v) + C1(Kw + �−1)2|v|2B , (4.12)

where we have used al�l = u − v, and C1 is a constant. Then we obtain

|v|2H ≤ �l |v|20,� + |k2 − �l ||u|0,�|v|0,� + C(Kw + �−1)2|v|2B . (4.13)

Moreover from Theorem 3.1,

|k2 − �l ||u|0,� ≤ k2(Kw + �−1)|u|B . (4.14)

Consequently, we can conclude from (4.13) and (4.14) and |u|B = |v|B that

‖v‖2
H = |v|20,� + |v|2H
≤ (1 + �l )|v|20,� + k2(Kw + �−1)|u|B |v|0,� + C(Kw + �−1)2|v|2B . (4.15)

From Theorem 4.1

|v|0,� = |u − al�l |0,� �C
�l

�
(Kw + �−1)|u|B . (4.16)

Eq. (4.15) is reduced to

‖v‖2
H ≤ C

{
(1 + �l )

(
�l

�

)2

(Kw + �−1)2 + k2(Kw + �−1)2 �l

�

}
|u|2B . (4.17)

The desired results (4.11) are obtained immediately by noting v = u − al�l . This completes the Proof of Theorem 4.1.
�

Corollary 4.1. Suppose that all the conditions in Theorem 4.1 hold, and let u(=um,n ∈ Sm,n) be the solution of (2.5)
by the TM. Then there exists the true al �= 0 such that

|um,n − al�l |0,�

|um,n|0,�
≤ C

�l

�
(Kw + �−1)

|um,n|B
|um,n|0,�

, (4.18)

and

‖um,n − al�l‖H

|um,n|0,�
≤ C

�3/2
l

�
(Kw + �−1)

|um,n|B
|um,n|0,�

. (4.19)

Compared with (3.19), the error bounds (4.18) and (4.19) for eigenfunctions contain the same ratios � of (3.21).
Therefore, other results as to (3.27) can be similarly provided from Corollary 4.1, Lemmas 3.5 and 3.6.

To close this section, we consider the eigenvalues with multiplicity r �1:

· · · < �l−1 < �l = �l+1 = · · · = �l+r−1 < �l+r < · · · . (4.20)

Moreover, we assume that all eigenfunctions are distinct. By similar arguments as above, we can conclude that there ex-
ists a linear combination of the eigenfunctions, �l , �l+1, . . . ,�l+r−1, such that �∗

l =∑r−1
j=0 al+j�l+j , with coefficients

al+j . There also exist the error bounds,

|um,n − �∗
l |0,�

|um,n|0,�
≤ C

�l

�
(Kw + �−1)

|um,n|B
|um,n|0,�

, (4.21)
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and

‖um,n − �∗
l ‖H

|um,n|0,�
≤ C

�3/2
l

�
(Kw + �−1)

|um,n|B
|um,n|0,�

. (4.22)

5. Numerical experiments

5.1. A basic model

Let us consider a simple eigenvalue problem (see Fig. 1 ){
�u + �u = 0 in �∗,
u|� = 0,

(5.1)

where �∗ is the square solution domain {(x, y)| − 1 < x < 1, −1 < y < 1}. The corresponding Helmholtz equation is{
�u + k2u = 0 in �∗,
u|� = 1.

(5.2)

For simplicity, based on symmetry we may seek the solution only in �, one eighth of �∗ (see Fig. 2)⎧⎨
⎩

�u + k2u = 0 in �,

u�|AC = 0, u�|AB = 0,

u|BC = 1.

(5.3)

Choose the admissible functions

vm =
m∑

i=0

ĉiJi(kr) cos i�, m = 4M − 1, (5.4)

where ĉi are the coefficients to be sought, (r, �) are the polar coordinates with the origin O, and Ji(z) is the Bessel
functions defined by [1]

J
(r) =
∞∑
i=1

(−1)i

�(i + 1)�(i + 
 + 1)

( r

2

)2i+

. (5.5)

 X

Y

C

u=1

u=1  

 

 

A B

Ω*

Fig. 1. The entire solution domain.
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Fig. 2. One-eighth of Fig. 1 in Partition I.
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Fig. 3. One-eighth of Fig. 1 in Partition II.

Based on the study in [15], the partition, � = �0 ∪ �1 ∪ �2 ∪ �3, of � is beneficial to numerical stability, where the
interface �0 is composed of the piecewise straight lines shown in Figs. 3 and 4. The piecewise particular solutions can
be found as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v
(0)
m =∑m

i=0 ĉiJi(kr) cos i� in �0, m = 4M − 1,

v
(1)
k = 1 +∑K

i=0 d̂iJ2(2i+1)(k�) sin 2(2i + 1)� in �1,

v
(2)
n = 1 +∑N

i=0 b̂iJ2i+1(k�) sin(2i + 1)w in �2,

v
(3)
l =∑L

i=0 âiJ4i (k�) cos 4i� in �3.

(5.6)

In (5.6) âi , b̂i , ĉi , d̂i are the unknown coefficients, and (r, �), (�, �), (�, w) and (�, �) are the polar coordinates at the
origins O, C, B, A, respectively. Note that for the non-homogeneous boundary condition u|� = 1, there exists a mild
singularity O(�2 ln �) at the corner C (i.e., the corners in Fig. 4), and some singular solutions should be added for
solving the Helmholtz equation exactly (see [15]). However for the homogeneous boundary condition u|� = 0, such
a mild singularity does not exist. Since for the eigenvalue problem, only the homogeneous Dirichlet conditions are
involved, we ignore the singular functions given in [15], which have no effects on the stiffness matrix A.

The division in Fig. 3 (also see Fig. 4) using the piecewise particular solutions in (5.6) is called Partition II of the
TM; and the division in Fig. 1 using (5.4) for the entire solution domain is called Partition I of the TM.

Let us give a lemma for supporting assumption (3.22), whose proof is omitted.

Lemma 5.1. Let a semi-circus Sr0(0 ≤ r ≤ r0, 0 ≤ � ≤ �) be included in �0, and choose (5.6) as the admissible
functions, um,n ∈ Sm,n. Then there exist the bounds

|um,n|0,� � min

{
1

2
r0,

1

3

1

k

}
|ĉ0|. (5.7)
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Fig. 4. Partition II to the entire solution domain.

5.2. Expansions of eigenfunctions

Take model (5.1) as an example in computation. The eigenvalues and eigenfunctions are known as

�i,j = �2

4
[(2i − 1)2 + (2j − 1)2], ui,j = cos

(2i − 1)�

2
x cos

(2j − 1)�

2
y. (5.8)

Below, let us provide the expansions of ûl,l by means of the Bessel functions (5.5). Denote

k̂ =√
�l,l = �√

2
(2l − 1), l = 1, 2, . . . , ûl,l = cos

k̂√
2

x cos
k̂√
2

y. (5.9)

We can prove the following lemma (see [14]).

Lemma 5.2. The eigenfunctions in (5.9) can be expressed as the following expansions:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ûl,l = J0(kr) + 2
∑∞

i=1 J2i (k̂r) cos(2i + 1)�

+2(−1)l+1∑∞
i=0 (−1)iJ2i+1(k̂r) cos(2i + 1)� in �0,

ûl,l = 4
∑∞

i=0 (−1)iJ4i+2(k̂�) sin(4i + 2)� in �1,

ûl,l = 2
√

2(−1)l+1∑∞
i=0 (−1)�(i+1)/2�J2i+1(k̂�) sin(2i + 1)w in �2,

ûl,l = 2J0(k̂�) + 4
∑∞

i=1 (−1)iJ4i (k̂�) cos 4i� in �3,

(5.10)

where �i/2� is the floor function of i/2.

Comparing Lemma 5.2 with (5.6), the solutions ûl,l with even l have the following, simple true coefficients⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{ĉi} : 1, 2, 2, −2, 2, 2, 2, −2, . . .

{âi} : 2, −4, 4, −4, 4, 4, −4, 4, −4, . . .

{b̂i} : 2
√

2, −2
√

2, −2
√

2, 2
√

2, 2
√

2, −2
√

2, −2
√

2, 2
√

2, . . .

{d̂i} : 4, −4, 4, −4, 4, −4, 4, −4, . . . .

(5.11)

Since the leading coefficient c0 = 1, the errors of computed eigenfunctions can be easily discovered from (5.11).
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5.3. Numerical results

In computation, it is better to choose the scaled forms of (5.4)

vm =
4M−1∑
i=0

ci

Ji(kr)

Ji(kr0)
cos i�, (5.12)

where r0 = 1
2 and Ji(kr0) �= 0 in computation. Hence ĉi = ci/Ji(kr0). The admissible functions (5.12) already satisfy

the Helmholtz equation in � and the boundary condition u�|AC = 0. Hence the coefficients ci should be chosen to
satisfy the remaining boundary conditions in (5.3) only. Define a quadratic functional

I (ci) =
∫

BC

(v − 1)2 dl + �2
∫

AB

v2
� dl, (5.13)

where � = 1/4M . The TM in Partition I is designed by seeking the coefficients ci such that

I (c̃i) = min
ci

I (ci). (5.14)

The boundary errors are defined by

|�|B = |�|I = (|�|2
0,BC

+ �2|��|20,AB
)1/2, (5.15)

where � = u − um.
For Partition II, the continuity conditions across �0 should be added to (5.3), thus to give⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

�u + k2u = 0 in �0, �1, �2, �3,

u+ = u−,
�u+

��
= �u−

��
on �0,

�u

��
|AC = �u

��
|AB = 0,

u|BC = 1.

(5.16)

Similarly, the admissible functions (5.6) should be scaled by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v
(0)
m =∑4M−1

i=0 ci

Ji(kr)

Ji(kr0)
cos i� in �,

v
(1)
k = 1 +∑K

i=0 di

J2(2i+1)(k�)

J2(2i+1)(k�0)
sin 2(2i + 1)� in �1,

v
(2)
m = 1 +∑N

i=0 bi

J2i+1(k�)

J2i+1(k�0)
sin(2i + 1)w in �2,

v
(3)
m =∑L

i=0 ai

J4i (k�)

J4i (k�0)
cos 4i� in �3,

(5.17)

where r0 = �0 = �0 = �0 = 1
2 in computation, and all the denominators in (5.17) are assumed to be nonzero. There

exist the following relations between the coefficients,

ĉi = ci

Ji(kr0)
, d̂i = di

J2(2i+1)(k�0)
, b̂i = bi

J2i+2(k�0)
, âi = ai

J4i (k�0)
. (5.18)

The admissible functions (5.17) satisfy the Helmholtz equations in �i and the exterior boundary in �� already. Hence,
the TM in Partition II is designed for seeking the coefficients ai, bi, ci, di to minimize the functional

I2(ãi , b̃i , c̃i , d̃i ) = min
ai ,bi ,ci ,di

I2(ai, bi, ci, di), (5.19)
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Table 1
The iteration solutions of �2,2 for (a) Partition I (M = 3) and (b) Partition II (L = M = K = 3, N = 5)

n

√
�̃

(n)

2,2 �
√

�̃
(n)

2,2 �min(A) |�|I Cond.

√
�min(A)

�next(A)

(a)

1 6.5 0.190 (−2)

2 6.51 0.168 (−2)

3 6.52 0.147 (−2)

4 6.6667792506 0.246 (−2) 0.429 (−6) 0.283 (−2) 2.06 (4) 0.174 (−2)

5 6.6650330025 0.709 (−3) 0.358 (−7) 0.805 (−3) 7.11 (4) 0.503 (−3)

6 6.6643113338 0.131 (−4) 0.947 (−10) 0.381 (−3) 1.38 (6) 0.259 (−4)

7 6.6643245328 0.126 (−6) 0.824 (−10) 0.375 (−3) 1.48 (6) 0.241 (−4)

8 6.6643244951 0.879 (−7) 0.824 (−10) 0.388 (−3) 1.48 (6) 0.241 (−4)

9 6.6643238340 0.573 (−6) 0.824 (−10) 0.987 (−3) 1.48 (6) 0.241 (−4)

10 6.6643242774 0.130 (−6) 0.824 (−10) 0.988 (−3) 1.48 (6) 0.241 (−4)

(b)

1 6.5 0.426 (−3)

2 6.51 0.379 (−3)

3 6.52 0.334 (−3)

4 6.7032345641 0.389 (−1) 0.283 (−4) 0.323 (−2) 369. 0.0995
5 6.6692226997 0.490 (−2) 0.436 (−6) 0.450 (−3) 2.89 (3) 0.0124
6 6.6616269133 0.270 (−3) 0.132 (−6) 0.254 (−3) 5.24 (3) 0.678 (−2)

7 6.6643544781 0.301 (−4) 0.164 (−10) 0.291 (−5) 4.71 (5) 0.757 (−4)

8 6.6643188680 0.554 (−5) 0.566 (−12) 0.521 (−6) 2.53 (6) 0.141 (−4)

9 6.6643243807 0.265 (−7) 0.107 (−13) 0.279 (−5) 1.84 (7) 0.193 (−5)

10 6.6643244076 0.357 (−9) 0.107 (−13) 0.417 (−5) 1.84 (7) 0.194 (−5)

where I2(ãi , b̃i , c̃i , d̃i ) involves only the interior boundary conditions, given by

I2(ãi , b̃i , c̃i , d̃i ) =
∫
�0

(v+ − v−)2 dl + �2
∫
�0

(v+
� − v−

� )2 dl, (5.20)

and � = 1/ max(4M, 4K + 2, 2N + 1, 4L). Also the boundary errors are

|�|II = (|v+ − v−|20,�0
+ �2|u+

� − u−
� |20,�0

)1/2. (5.21)

Since the minimal eigenvalue and its corresponding eigenfunction have been investigated in [14] of this model
already, in this paper, we will apply the algorithms in Section 2 to seek �2k,2k and ũ2k,2k, k = 1, 2, . . .. For �2,2, the
initial values of k are chosen as k0 = 6.5, k1 = 6.51, k2 = 6.52. Numerical solutions have been obtained with about 10
iterations, and listed in Tables 1 and 2. Since the relative errors

� =
∣∣∣∣k2 − �l

k2

∣∣∣∣ ≈ 2

k
��̃l as k → �l , (5.22)

we can evaluate from Table 1 that � ≈ 4 × 10−8 and � ≈ 5 × 10−11 at the tenth iteration for Partition I and II,
respectively.

Comparing the coefficients ĉi etc. in Table 2 with the true values in (5.11), the following coefficient errors �ĉi etc.
can be observed

�ĉ0 = 0, �ĉi = O(10−3), i = 1, 2, 3, 4
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Table 2
The calculated coefficients at the 10th iteration of �2,2 for (a) Partition I (M = 3) and (b) Partition II (L = M = K = 3, N = 5), where ci =
ĉi /Ji (k/2)/ĉ0/J0(k/2), ai = âi /J4i (k/2)/ĉ0/J0(k/2), bi = b̂i /J2i+1(k/2)/ĉ0/J0(k/2), di = d̂i /J4i+2(k/2)/ĉ0/J0(k/2)

i ĉi ci

(a)

0 −0.95619748 (3) 1.00000000
1 −0.11305572 (4) −2.00195468
2 0.25927238 (4) 2.00186645
3 0.19820519 (4) 2.00205952
4 0.97612797 (3) 2.00236195
5 −0.36094094 (3) −2.00101585
6 0.10781086 (3) 2.00244818
7 0.27021200 (2) 1.99980194
8 0.58890895 (1) 2.00946683
9 −0.11268614 (1) −2.01130915

10 0.19365346 2.02112074
11 0.29412495 (−1) 1.98332728
(b)

0 −0.52528202 (5) 1.00000000
1 −0.62046747 (5) −2.00006037
2 0.14230026 (6) 2.00005406
3 0.10877407 (5) 2.00005951
4 0.53560610 (5) 2.00002638
5 −0.19817038 (5) −1.99989163
6 0.59139322 (4) 1.99952794
7 0.14860825 (4) 2.00205815
8 0.32059004 (3) 1.99128394
9 −0.60473551 (2) −1.96482272

10 0.97431101 (1) 1.85102922
11 0.20891285 (1) 2.56433910

i âi .ai

0 −0.10506037 (6) 2.00007559
1 −0.10712071 (6) −4.00003377
2 0.64399398 (3) 4.00004584
3 −0.47412716 −4.11594336

i b̂i .bi

0 −0.87746737 (5) −2.82824927
1 0.15382803 (6) 2.82847929
2 0.28028332 (5) 2.82855724
3 −0.20993087 (4) −2.82819972
4 −0.86653283 (2) −2.81541823
5 0.26238770 (1) 3.22072597

i d̂i .di

0 0.28459973 (6) 4.00009709
1 −0.11844975 (5) −4.00484102
2 0.21303647 (2) 4.04733943
3 −0.10016769 (1) −5.53818749 (2)

for Partition I, and

�ĉ0 = 0, �ĉi = O(10−4), i = 1, 2, 3, 4,

�â0 = O(10−4), �b̂0 = O(10−4), �d̂0 = O(10−4),

for Partition II. Evidently, Partition II has a better performance. For �̃6,6 and ũ6,6, the results are provided in Table 3.
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Table 3
The approximate eigenvalues �̃6,6 and other results for Partitions I and II

M

√
�̃6,6 �

√
�̃6,6 �min(A) |�|I Cond. �c∗

2

4 24.22245279 0.213 0.753 (−2) 0.0297 96.4 0.714
5 24.43569090 0.165 (−3) 0.811 (−4) 0.0492 1.22 (4) 0.138
6 24.43585345 0.271 (−5) 0.206 (−7) 0.192 (−2) 1.02 (6) 0.0932
7 24.43584108 0.151 (−5) 0.752 (−11) 0.176 (−5) 4.89 (7) 0.255 (−3)

L M N K

√
�̃6,6 �

√
�̃6,6 �min(A) |�|I Cond. �c∗

2 �a∗
0

3 3 5 3 24.48826656 0.524 (−1) 0.548 (−2) 5.31 1.08 (3) 6.20 21.7
4 4 7 4 24.43595816 0.102 (−4) 0.613 (−5) 0.299 (−1) 7.83 (4) 0.114 0.311
5 5 9 5 24.43585339 0.223 (−6) 0.370 (−9) 0.117 (−2) 9.46 (6) 0.543 (−2) 0.157 (−1)
6 6 11 6 24.43585558 0.584 (−6) 0.947 (−12) 0.225 (−6) 1.81 (8) 0.245 (−5) 0.703 (−5)

Table 4
The calculated results for �̃l,l for Partitions I and II

l M

√
�̃l,l �

√
�̃l,l �min(A) |�|I Cond.

1 2 2.2214414879 0.191 (−7) 0.298 (−11) 0.242 (−4) 2.99 (6)
2 3 6.6643242774 0.129 (−6) 0.824 (−10) 0.988 (−3) 1.48 (6)
3 4 11.10720797 0.628 (−6) 0.135 (−10) 0.546 (−4) 9.77 (6)
6 7 24.43584108 0.151 (−5) 0.752 (−11) 0.176 (−5) 1.02 (9)

10 10 42.20738481 0.310 (−5) 0.562 (−10) 0.194 (−4) 4.89 (7)

l L M N K

√
�̃l,l �

√
�̃l,l �min(A) |�|II Cond.

1 2 2 3 2 2.2214414716 0.251 (−8) 0.471 (−14) 0.970 (−6) 3.13 (7)
2 3 3 5 3 6.6643224076 0.357 (−9) 0.107 (−13) 0.417 (−5) 1.84 (7)
3 4 4 7 4 11.10722750 0.158 (−6) −0.273 (−13) 0.419 (−7) 8.10 (8)
6 7 7 13 7 24.43585593 0.226 (−6) 0.199 (−14) 0.752 (−8) 3.85 (8)

10 10 10 19 10 42.20738867 0.754 (−6) 0.218 (−14) 0.361 (−7) 1.47 (9)

Finally we have obtained the solutions for �l,l and ul,l with l = 1, 2, 3, 6, 10, and listed in Table 4. When l = 10,

k ≈
√

�̃10,10 ≈ 42.2 ≈ 7(2�), the relative errors in the approximate eigenvalue �̃10,10 with � ≈ 1.5 × 10−7 and

� ≈ 3.5 × 10−8 have been obtained by using 39 particular solutions in Partition I and 83 piecewise particular solutions
in Partitions II, respectively. Note that the algorithms in this paper work well for the repeated eigenvalue �3,3, where
�3,3 = �1,4 = 25.5�2, with the relative errors � ≈ 1.1 × 10−7 and � ≈ 2.8 × 10−8 for Partitions I and II, respectively.
Evidently, Partition II using piecewise particular solutions may yield a higher accuracy than that by Partition I.

5.4. The crack eigenvalue problem

Finally, let us consider a new eigenvalue problem for the crack problem with singularity (see Fig. 5)⎧⎨
⎩

−�u = �u in �,

u = 0 on AB ∪ BC ∪ CD ∪ DO,

u� = 0 on OA,

(5.23)

where � = (−1, 1) × (0, 1). We may seek the Helmholtz problem⎧⎨
⎩

−�u = k2u in �,

u = 1 on AB ∪ BC ∪ CD, u = 0 on DO,

u� = 0 on OA.

(5.24)
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Fig. 5. The crack problem.

The particular solutions are given by

v+ =
∞∑
i=1

ĉiJi− 1
2
(kr) cos

(
i − 1

2

)
�, (5.25)

where ĉi are expansion coefficients. In computation, we choose

v+ =
L∑

i=1

ci

Ji−1/2(kr)

Ji−1/2(kr0)
cos

(
i − 1

2

)
�, (5.26)

where the parameter r0 is chosen to be r0 = 1. There exist the following relations between ĉi and ci

ĉi = ci

Ji− 1
2
(kr0)

. (5.27)

For Step 1 of the iterative algorithms in Section 2.2, a good initial guess of
√

�min (or
√

�next) is important to the
convergence of the iteration algorithm. Let us derive a lower bound of �min. First consider an auxiliary eigenvalue
problem,{−�u = �u, in Ŝ,

u = 0, on �Ŝ,
(5.28)

where Ŝ = {(x, y)| − 1 < x < 1, −1 < y < 1}. The eigenfunctions of (5.28) are

u = cos

{
(2i − 1)�

2
x

}
cos

{
(2j − 1)�

2
y

}
. (5.29)

Hence the minimal eigenvalue is found as

�̂min = �2

2
. (5.30)

In fact, the crack problem in (5.23) has more the Dirichlet condition on a section OD in Fig. 5. Hence based on the
variational description of the eigenvalue problems in [6], the minimal eigenvalue of problem (5.23) will not decline
when the admissible functions are constrained under this Dirichlet condition:

�2

2
= �̂min ��min. (5.31)
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Fig. 6. A partition for the crack eigenvalue problem.

Next, consider the other auxiliary eigenvalue problem on S+ = (−1, 1) × (− 1
2 , 1

2 ) with the Dirichlet condition on
the entire boundary �S+. Since the eigenfunctions are

u = cos

{
(2i − 1)�

2
x

}
cos(2j − 1)�y, (5.32)

the minimal eigenvalue is given by

�+
min = �2

4
+ �2 = 5

4
�2. (5.33)

For the crack eigenvalue problem (5.23),3 there also exists the Neumann condition on OA, a part of �S+ (see
Fig. 5). Hence from [6] again, when this Neumann condition is changed to the Dirichlet condition of the other auxiliary
problem, the minimal eigenvalue of this problem will not decline, either. Then, we have the upper bound

�min ��+
min = 5

4
�2. (5.34)

Combining (5.30) and (5.34) gives

�2

2
��min � 5

4
�2,

�√
2

�
√

�min �
√

5

2
�. (5.35)

Based on the bound of (5.35), we may easily find a good initial value (as well as three good initial values) of k for√
�min. By increasing k, we can find a good initial value of k for

√
�next of the crack eigenvalue problem.

Assume that we divide the domain into three subdomains: � = S0 ∪ S1 ∪ S2 as in Fig. 6. Then we may choose the
piecewise particular solutions,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

vL =∑L
i=1 ci

Ji−1/2(kr)

Ji−1/2 (kr0)
cos

(
i − 1

2

)
� in S0,

vM = 1 +∑M
i=1 ai

J2i (k�)

J2i (k�0)
sin(2i)� in S1,

vN = 1 +∑N
i=1 bi

J2i (k�)

J2i (k�0)
sin(2i)� in S2,

(5.36)

where ci, ai and bi are the unknown coefficients to be sought, and the parameters r0 = �0 = �0 = √
2/2. The polar

coordinates (r, �), (�, �) and (�, �) are shown in Fig. 6. Hence there exist the relations of coefficients as in (5.27) and

âi = ai

J2i−1(k�0)
, b̂i = bi

J2i−1(k�0)
. (5.37)

3 The minimal eigenvalue is invariant for � with a shift y → y ± 1
2 .
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Table 5
The minimal and the next minimal eigenvalues from the TM for the crack problem

L
√

�̃min �min(A)

√
�min(A)

�next(A)
‖E‖B

8 2.8933 4100 66 0.148 (−4) 0.343 (−2) 1.07
12 2.8933 2486 97 0.192 (−7) 1.02 (−3) 1.06
16 2.8933 2486 56 0.699 (−10) 0.750 (−5) 1.04
20 2.8933 2524 69 0.572 (−12) 0.679 (−6) 0.647

L
√

�̃next �min(A)

√
�min(A)
�next(A)

‖E‖B

8 4.0797 8981 09 0.714 (−4) 0.672 (−2) 1.15
12 4.0798 6470 52 0.213 (−7) 0.118 (−3) 1.11
16 4.0798 6383 77 0.312 (−10) 0.455 (−5) 0.109
20 4.0798 6425 24 0.108 (−12) 0.269 (−6) 0.250

Table 6
The minimal and the next minimal eigenvalues from the TM for the crack problem by subdomains

L M N
√

�̃min �min(A)

√
�min(A)
�next(A)

‖E‖B

8 4 4 2.8932 7155 79 0.767 (−6) 0.297 (−2) 1.28
12 6 6 2.8933 2561 34 0.222 (−8) 0.239 (−3) 1.19
16 8 8 2.8933 2545 50 0.109 (−10) 0.223 (−4) 1.14
20 10 10 2.8933 3949 07 0.297 (−12) 0.459 (−5) 0.921

L M N
√

�̃next �min(A)

√
�min(A)
�next(A)

‖E‖B

8 4 4 4.0798 6447 00 0.311 (−6) 0.127 (−2) 0.430
12 6 6 4.0798 6371 57 0.248 (−9) 0.521 (−4) 0.403
16 8 8 4.0798 6471 24 0.437 (−12) 0.228 (−5) 0.391
20 10 10 4.0798 6474 89 0.424 (−11) 0.112 (−4) 0.419 (−1)

The computed results are listed in Tables 5 and 6, and the coefficients of the eigenfunction of �min in Table 7. It can be
seen from Tables 5 and 6 that√

�̃min = 2.893325,

√
�̃next = 4.079864. (5.38)

By Mathematica [25], the more accurate eigenvalues of �min and �next with 11 significant digits have been obtained as√
�min = 2.8933250269,

√
�next = 4.0798641275. (5.39)

Compared with (5.39), the values of
√

�min and
√

�next in (5.38) have six significant digits.
From Table 7 we can see the ratios ĉi/ĉ1 of leading coefficients for u1(x, y) of �min to be4

ĉ2

ĉ1
≈ 0,

ĉ3

ĉ1
≈ 0,

ĉ6

ĉ1
≈ 0,

ĉ7

ĉ1
≈ 0, . . . , (5.40)

and ratios ĉi/ĉ2 for u2(x, y) of �next to be

ĉ1

ĉ2
≈ 0,

ĉ4

ĉ2
≈ 0,

ĉ5

ĉ2
≈ 0,

ĉ8

ĉ2
≈ 0,

ĉ9

ĉ2
≈ 0, . . . . (5.41)

4 For other symmetric and anti-symmetric eigenfunctions, the similar results as in (5.40) and (5.41) have also been observed.
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Table 7
The coefficients of the eigenfunctions for the (a) minimal eigenvalues and (b) the next minimal eigenvalues for the crack problem by the Trefftz
method as L = 20

i 
i ci
ci

c1
Ratios

(
ĉi

ĉ1

)
(a)

1 0.5 0.53254711543759 (6) 0.1000 (1) 0.10000000000000 (1)
2 1.5 −0.93309909466216 −0.1752 (−5) −0.40838368080115 (−6)
3 2.5 0.14503983732722 0.2724 (−6) 0.78973941708087 (−7)
4 3.5 −0.28545700655157 (6) −0.5360 −0.32112892008726
5 4.5 −0.25920546902761 (6) −0.4867 −0.82533962645231
6 5.5 0.57717136438322 (−2) 0.1084 (−7) 0.65589290617239 (−7)
7 6.5 0.10174443125042 0.1911 (−6) 0.49641891637856 (−5)
8 7.5 0.12383285923908 (5) 0.2325 (−1) 0.30267029834767 (1)
9 8.5 −0.46085824093272 (3) −0.8654 (−3) −0.64431242483669

10 9.5 −0.67513842437962 (−1) −0.1268 (−6) −0.60660068424728 (-3)
11 10.5 0.41876616110534 (−1) 0.7863 (−7) 0.26828471564346 (−2)
12 11.5 0.18287860946787 (3) 0.3434 (−3) 0.91762896898128 (2)
13 12.5 0.37376296841277 (1) 0.7018 (−5) 0.16001621016243 (2)
14 13.5 −0.23556093109558 (−1) −0.4423 (−7) −0.93094675577475
15 14.5 0.12483799246683 (−1) 0.2344 (−7) 0.48986024128118 (1)
16 15.5 0.57427287425920 (1) 0.1078 (−4) 0.23944918535756 (5)
17 16.5 −0.12710610870740 (−1) −0.2387 (−7) −0.60006496729259 (3)
18 17.5 −0.46219913184119 (−2) −0.8679 (−8) −0.26223984979939 (4)
19 18.5 0.66569590965778 (−3) 0.1250 (−8) 0.48018626770272(4)
20 19.5 0.17184551556236 0.3227 (−6) 0.16620681834440 (8)

(b)

1 0.5 0.75428464744275 0.5382 (−6) −0.26258647082581 (−6)
2 1.5 0.14014519782431 (7) 0.1000 (1) 0.10000000000000 (1)
3 2.5 −0.95629818186976 (6) −0.6824 −0.24501413140731
4 3.5 −0.24469604128049 −0.1746 (−6) −0.72355984687393 (−7)
5 4.5 0.18015630187574 0.1285 (−6) 0.94852597972361 (−7)
6 5.5 −0.61459443064148 (6) −0.4385 −0.76063624981246
7 6.5 0.17275349424434 (6) 0.1233 0.61879793889902
8 7.5 −0.44716320823631 (−1) −0.3191 (−7) −0.54826073662432 (−6)
9 8.5 0.69793691093254 (−1) 0.4980 (−7) 0.33736062432178 (−5)

10 9.5 −0.12196039389009 (4) −0.8702 (−3) −0.26266468711605
11 10.5 −0.20639454965325 (4) −0.1473 (−2) −0.22067301704717 (1)
12 11.5 −0.47009665845852 (−1) −0.3354 (−7) −0.27493354260175 (−3)
13 12.5 0.21119274287301 (−1) 0.1507 (−7) 0.73777983835726(−3)
14 13.5 −0.97400815111797 (1) −0.6950 (−5) −0.22030049384368 (1)
15 14.5 −0.19073976558829 (2) −0.1361 (−4) −0.30087932757286 (2)
16 15.5 −0.15534114323710 (−1) −0.1108 (−7) −0.18311443354442
17 16.5 0.23687602954159 (−2) 0.1690 (−8) 0.22255500341053
18 17.5 −0.52779222782251 (−1) −0.3766 (−7) −0.41987157072731 (2)
19 18.5 −0.37373242631831 −0.2667 (−6) −0.26648799185682 (4)
20 19.5 −0.23629938531931 (−2) −0.1686 (−8) −0.15937118358056 (3)

By Mathematica [25] using more significant digits, we obtain more accurate ratios. For u1(x, y) of �min, the ratios
ĉi/ĉ1 are given as

ĉ2

ĉ1
= −0.2813(−19),

ĉ3

ĉ1
= 0.2491(−19),

ĉ4

ĉ1
= −0.3211285648,

ĉ5

ĉ1
= −0.8253397549,

ĉ6

ĉ1
= 0.8183(−19),

ĉ7

ĉ1
= −0.1656(−18), (5.42)
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and those for u2(x, y) of �next as

ĉ1

ĉ2
= −0.4585(−19),

ĉ3

ĉ2
= −0.2450141227,

ĉ4

ĉ2
= −0.4585(−19),

ĉ5

ĉ2
= −0.3344(−19),

ĉ6

ĉ2
= −0.7606363529,

ĉ7

ĉ2
= 0.6187975895,

ĉ8

ĉ2
= −0.4904(−19). (5.43)

From (5.42) and (5.43), Eqs. (5.40) and (5.41) are again confirmed. Hence we may simply assume the following trivial
coefficients:

ĉ4i−2 = ĉ4i−1 = 0, i = 1, 2, . . . for u1(x, y),

ĉ4i−3 = ĉ4i = 0, i = 1, 2, . . . for u2(x, y). (5.44)

Then the admissible functions (5.26) and vL in (5.36) can be simplified by

v+ =
L∑

i=1

{
c∗

2i−1
J4i−7/2(kr)

J4i−7/2(kr0)
cos

(
4i − 7

2

)
� + c∗

2i

J4i−1/2(kr)

J4i−1/2(kr0)
cos

(
4i − 1

2

)
�

}
(5.45)

for u1(x, y), and

v+ =
L∑

i=1

{
c∗

2i−1
J4i−5/2(kr)

J4i−5/2(kr0)
cos

(
4i − 5

2

)
� + c∗

2i

J4i−3/2(kr)

J4i−3/2(kr0)
cos

(
4i − 3

2

)
�

}
(5.46)

for u2(x, y), where L is even, and the coefficients c∗
i with star are used to distinguish ci in (5.26). By using the simplified

particular solutions (5.45) and (5.46), the numerical solutions by the TM are very close to those by using (5.26). We
omit the detailed numerical results, but only list in Table 8

the approximate coefficients in (5.36), where vL is replaced by (5.45) and (5.46) for u1(x, y) and u2(x, y), respec-
tively.

Remark 5.1. Let us provide a physical meaning for the eigenvalue problems in (5.1) and (5.23). In Courant and Hilbert
[6, p. 297], The basic model (5.1) results from the vibrating homogeneous membrane with the fixed displacements on
the exterior boundary � of �. The

√
� and the u are the frequency and the amplitude of vibrating waves, respectively. The

membrane vibration with the minimal frequency (i.e., the eigenpair of the minimal eigenvalue �min and its corresponding
eigenfunction) is most interesting in both theory and application, see [6]. Next, let us consider a rectangular membrane
with an inside crack OD (see Fig. 7), where the displacements on � ∪ OD are fixed during the vibrating. The
crack eigenvalue problem (5.23) results from a symmetry of the vibrating membrane shown in Fig. 7. For the crack
equilibrium problem, there exist numerous reports of numerical methods and numerical results. However, for the crack
eigenvalue problems, this paper is the first time to provide the numerical solutions by the TM. Since the solutions with
the coefficients in Tables 7 and 8 by the TM are highly accurate, they can be used as the true solutions to test other
numerical methods for eigenvalue problems with singularity.

6. Summaries and discussions

To close this paper, let us make a few remarks.

(1) The numerical algorithms rely on the Helmholtz equation (2.5) by modifying k to lead to a degeneracy. The
degeneracy is measured by the infinitesimal values of the minimal eigenvalue �min(A) of the stiffness matrix A(k)

in (2.14), and the modification to k is realized by the iterative algorithms in Section 2.2, based on the fact that the
eigenfunctions of (2.4) will dominate the solutions of (2.5) when a degeneracy occurs.

(2) The main results of error analysis are given in Theorems 3.1, 4.1 and 4.2, as well as Corollary 3.1, which indicate
that the errors of the solutions of the leading eigenvalues and their eigenfunctions can be measured by

√
�min(A).

Such conclusions have been confirmed by the numerical experiments in Section 5.
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Table 8
The coefficients of the eigenfunctions for the (a) minimal eigenvalues and (b) the next minimal eigenvalues for the crack problem with the shortlist
coefficients by the Trefftz method as L = 20 and N = M = 10 in subdomains

c∗
i 
i c∗

i

c∗
i

c∗
1

Ratios

(
ĉ∗
i

ĉ∗
1

)

(a)
c∗

1 0.5 −0.30778385362611 (7) 0.1000 (1) 0.10000000000000 (1)

c∗
2 3.5 0.14621985564119 (6) −0.4751 (−1) −0.32112683765581

c∗
3 4.5 0.89321048082330 (5) −0.2902 (−1) −0.82533661779926

c∗
4 7.5 −0.14014784360115 (4) 0.4553 (−3) 0.30267798094757 (1)

c∗
5 8.5 0.36363026198509 (2) −0.1181 (−4) −0.64401388090113

c∗
6 11.5 −0.49768655603368 (1) 0.1617 (−5) 0.91965094670667 (2)

c∗
7 12.5 −0.81653033273586 (−1) 0.2653 (−7) 0.18322339576440 (2)

c∗
8 15.5 −0.28574875276399 (−1) 0.9284 (−8) 0.17918763946890 (5)

c∗
9 16.5 0.20203718849703 (−2) −0.6564 (−9) −0.20361260416549 (5)

c∗
10 19.5 −0.29989648939942 (−2) 0.9744 (−9) 0.17669152572679 (9)

ai i ai
ai

a1
Ratios

(
âi

â1

)

a1 2 −0.30870864864183 (7) 0.1000 (1) 0.10000000000000 (1)

a2 4 0.13267913489024 (6) −0.4298 (−1) −0.42314432754102

a3 6 −0.24137383758068 (5) 0.7819 (−2) 0.20739216504490 (1)

a4 8 −0.14491091653193 (4) 0.4694 (−3) 0.64407532955675 (1)

a5 10 0.51100994160756 (3) −0.1655 (−3) −0.19120060568909 (3)

a6 12 0.36632601757803 (2) −0.1187 (−4) −0.17036350792643 (4)

a7 14 −0.16232840981491 (2) 0.5258 (−5) 0.12988947718730 (6)
a8 16 −0.13347398477504 (1) 0.4324 (−6) 0.24293918124378 (7)
a9 18 0.52849875158320 −0.1712 (−6) −0.27946963324189 (9)
a10 20 0.48334466869797 (−1) −0.1566 (−7) −0.92329368183736 (10)

bi i bi
bi

b1
Ratios

(
b̂i

b̂1

)

b1 2 −0.12787126642683 (7) 0.1000 (1) 0.10000000000000 (1)
b2 4 −0.32031576689594 (6) 0.2505 0.24662666991583 (1)
b3 6 −0.99979969522290 (4) 0.7819 (−2) 0.20739151318936 (1)
b4 8 0.34984590002732 (4) −0.2736 (−2) −0.37539473736210 (2)
b5 10 0.21165845388863 (3) −0.1655 (−3) −0.19119272540117 (3)
b6 12 −0.88438923988631 (2) 0.6916 (−4) 0.99295162194911 (4)
b7 14 −0.67153595351149 (1) 0.5252 (−5) 0.12972525531485 (6)
b8 16 0.32223470427494 (1) −0.2520 (−5) −0.14159537860692 (8)
b9 18 0.21674276928799 −0.1695 (−6) −0.27670124131640 (9)
b10 20 −0.11668972546849 0.9126 (−7) 0.53813517357257 (11)

(b)

c∗
i 
i c∗

i

c∗
i

c∗
1

Ratios

(
ĉ∗
i

ĉ∗
1

)

c∗
1 1.5 0.61599463304656 (8) 0.1000 (1) 0.10000000000000 (1)

c∗
2 2.5 −0.12063691541673 (8) −0.1958 −0.24501413291495

c∗
3 5.5 −0.17750818372509 (7) −0.2882 (−1) −0.76063638180196

c∗
4 6.5 0.33526817833132 (6) 0.5443 (−2) 0.61879767433502

c∗
5 9.5 −0.76567762005311 (3) −0.1243 (−4) −0.26265829416980

c∗
6 10.5 −0.89950924012844 (3) −0.1460 (−4) −0.22068737654207 (1)

c∗
7 13.5 −0.14773427746429 (1) −0.2398 (−7) −0.22560483930827 (1)

c∗
8 14.5 −0.19481134770270 (1) −0.3163 (−7) −0.29626194827807 (2)

c∗
9 17.5 0.14212054712923 (−3) 0.2307 (−11) 0.31529612445227 (1)

c∗
10 18.5 −0.26136744437305 (−1) −0.4243 (−9) −0.73936509686488 (4)
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Table 8 (Continued)

ai i ai
ai

a1
Ratios

(
âi

â1

)

a1 2 −0.28642405118339 (8) 0.1000 (1) 0.10000000000000 (1)
a2 4 −0.16281863883837 (8) −0.5685 −0.23420622751470 (1)
a3 6 −0.35191501695889 (6) −0.1229 (−1) −0.64166218136308
a4 8 −0.77722517142999 (5) −0.2714 (−2) −0.35595897889798 (1)
a5 10 0.29439863060583 (4) 0.1028 (−3) 0.55852293694566 (1)
a6 12 0.10051318255285 (4) 0.3509 (−4) 0.11743714949760 (3)
a7 14 −0.49125947629686 (2) −0.1715(−5) −0.49131093584465 (3)
a8 16 −0.21315366087734 (2) −0.7442 (−6) −0.24186842518176 (5)
a9 18 0.11566375414079 (1) 0.4038 (−7) 0.19052735996715 (6)
a10 20 0.57289419741525 0.2000 (−7) 0.17055073440733 (8)

bi i bi
bi

b1
Ratios

(
b̂i

b̂1

)

b1 2 −0.69148885713114 (8) 0.1000 (1) 0.10000000000000 (1)
b2 4 −0.67441688413979 (7) 0.9753 (−1) 0.40183434219792
b3 6 0.84959770616639 (6) −0.1229 (−1) −0.64166192820582
b4 8 −0.32193720702407 (5) 0.4656 (−3) 0.61072902993556
b5 10 −0.71073636012472 (4) 0.1028 (−3) 0.55851913698850 (1)
b6 12 0.41633923410504 (3) −0.6021 (−5) −0.20149028579870 (2)
b7 14 0.11855106927365 (3) −0.1714 (−5) −0.49110602534763 (3)
b8 16 −0.88291137184113 (1) 0.1277 (−6) 0.41498059440972 (4)
b9 18 −0.27796176603088 (1) 0.4020 (−7) 0.18965723937764 (6)
b10 20 0.23730054594633 −0.3432 (−8) −0.29261878633888 (7)

C B

OD
A

Fig. 7. A rectangular membrane with an inside crack.

(3) A basic model of eigenvalue problems is given in Section 5.1, and the new crack eigenvalue problem with singularity
is explored in Section 5.2. Since the eigenvalues and the expansion coefficients of eigenfunctions are very accurate,
they can be regarded as the exact solutions, which may provide an evaluation of the true errors of solutions by
other numerical methods, e.g., FEM, FDM, FVM, BEM, etc.

(4) This paper may be regarded as a further development of Fox et al. [8] by using piecewise particular solutions. The
methods in [8] use uniform particular solutions to seek the eigenvalues of (2.1). The algorithms in this paper adopt
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piecewise particular solutions, which may lead to a wide range of applications of complicated eigenvalue problems,
for instance those with multiple singularities (see [12]). In these cases, we may partition the solution domain into
finite subdomains, local particular solutions can be employed in the subdomains, to extend the collocation TM for
the eigenvalue problems on rather arbitrary domains.
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