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Abstract

The present paper is concerned with the convergence problem of the variants of the Chebyshev–Halley iteration family with
parameters for solving nonlinear operator equations in Banach spaces. Under the assumption that the first derivative of the operator
satisfies the Hölder condition of order p, a convergence criterion of order 1+p for the iteration family is established. An application
to a nonlinear Hammerstein integral equation of the second kind is provided.
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1. Introduction

Let X and Y be (real or complex) Banach spaces, � ⊆ X be an open subset and let F : � ⊆ X → Y be a nonlinear
operator on �. Finding solutions of the nonlinear operator equation

F(x) = 0 (1.1)

in Banach spaces is a very general subject which is widely used in both theoretical and applied areas of mathematics.
When F is Fréchet differentiable, the most important method to find the approximation solution is Newton’s method.
One of the famous results on Newton’s method is the well-known Kantorovich theorem (cf. [21]) which guarantees
convergence of Newton’s sequence to a solution under very mild conditions. Further researches on Newton’s method
are referred to [24–26].

As it is well known, in the case when F has the second continuous Fréchet derivative on �, there are several kinds
of cubic generalizations for Newton’s method. The most important two are the Chebyshev method and the Halley
method, see e.g., [1–4,17,20,28], respectively. Another more general family of the cubic extensions is the family of
Chebyshev–Halley-type methods, which was proposed in [13] by Gutiérrez and Hernández. This family includes the
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Chebyshev method (� = 0) and the Halley method (� = 1
2 ) as well as the convex acceleration of Newton’s method (or

the super-Halley method) (�= 1, cf. [5,15,14]) as its special cases and has been explored extensively in [13,16,27]. Let
� ∈ [0, 1]. Then the family of Chebyshev–Halley-type methods is defined by

x�,n+1 = x�,n −
[
I + 1

2LF (x�,n)[I − �LF (x�,n)]−1
]
F ′(x�,n)

−1F(x�,n), n = 0, 1, . . . , (1.2)

where I is the identity and, for each x ∈ X, LF (x) is a bounded linear operator from X to Y defined by

LF (x) = F ′(x)−1F ′′(x)F ′(x)−1F(x), x ∈ X. (1.3)

Recent interests are focused on the study of the variants of the Chebyshev iteration and the Halley iteration as well
as the convex acceleration of Newton’s method, which are obtained by replacing the second derivative in (1.3) with the
difference of the first derivatives at x and z:

F ′′(x)(z − x) ≈ F ′(z) − F ′(x),

where z = x + �(−F ′(x)−1F(x)) while � ∈ (0, 1] is a parameter. This is equivalent that LF (x) is replaced by the
bounded linear operator H(x, y) : X → Y defined by

H(x, y) = 1

�
F ′(x)−1[F ′(x + �(y − x)) − F ′(x)], (1.4)

where y = x − F ′(x)−1F(x).
Such a variant has the advantage that avoids the computation of the second derivatives (so works for operators

with the first derivatives only) but keeps the higher orders of convergence. The variant of the convex acceleration of
Newton’s method was first presented by Ezquerro and Hernández in [7], where a cubical convergence criterion based
on the Lipschitz constant and the boundary of the second derivative was established under the assumption that the
second derivative of F satisfies the Lipschitz condition. The same variant was done in [18] for the Chebyshev method,
and cubical convergence criterions for this variant were studied in [18,19]. Convergence criterions under the Lipschitz
condition of the first derivative were discussed for the variants of the convex acceleration of Newton’s method, the
Chebyshev method and the Halley method, respectively, in [8,18,30].

The variant of the family of Chebyshev–Halley-type methods was presented in [29]. Under the assumption that the
second derivative F ′′ satisfies the Hölder condition on some suitable closed ball B(x0, R):

‖F ′′(x) − F ′′(y)‖�K‖x − y‖p for all x, y ∈ B(x0, R), (1.5)

a unified convergence criterion depending on the values of the operator, its first derivative and second derivative at the
initial point x0 as well as the Hölder constant K was established for the variant.

The present paper is a continuation of the paper [29]. More precisely, just assuming that the first derivative F ′ satisfies
the Hölder condition on some suitable closed ball B(x0, R):

‖F ′(x) − F ′(y)‖�K‖x − y‖p for all x, y ∈ B(x0, R) (1.6)

(its second derivative is not necessary), we establish a unified convergence criterion only depending on the values of
the operator and its first derivative at the initial point x0 as well as the Hölder constant for the variant of the family of
Chebyshev–Halley-type methods. The main theorem is stated in Section 3, which includes the corresponding results
for the variant of the convex acceleration of Newton’s method and the variant of the Chebyshev method as well as the
variant of the Halley method obtained in [8,18,30] as special examples. An application to a nonlinear Hammerstein
integral equation of the second kind (cf. [22]) is given in the final section.

We should compare the convergence criterion in the present paper with that in [29]. The main difference between
them is that we use condition (1.6) here instead of (1.5). Clearly, (1.5) implies (1.6) (with different constant K). In
particular, in the case when F ′′ does not exist or F ′′ is unbounded, condition (1.5) is not satisfied. Section 4 of the
present paper provides such an example (cf. Example 4.1), where the operator F has the first derivative F ′ satisfying
(1.6) (so the convergence criterion in the present paper may be applicable) but does not have the second derivative on
any closed ball containing x0 and the convergence criterion in [29] is not applicable.
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We end this section by introducing some notations and basic assumptions. Let � ∈ [0, 1], � ∈ (0, 1] and x0 ∈ �.
Recall that H is defined by (1.4) and define

Q(x, y) = − 1
2H(x, y)[I + �H(x, y)]−1. (1.7)

Note that, for eachx, y ∈ X, Q(x, y) is a bounded linear operator fromX to Y . Then the variant of the Chebyshev–Halley
iteration family with parameters � and initial point x�,0 = x0 can be represented as

y�,n = x�,n − F ′(x�,n)
−1F(x�,n) for each n = 0, 1, 2, . . . , (1.8)

x�,n+1 = y�,n + Q(x�,n, y�,n)(y�,n − x�,n) for each n = 0, 1, 2, . . . . (1.9)

Throughout the whole paper, we shall always assume that � ∈ [0, 1], � ∈ (0, 1], p ∈ (0, 1] and that x0 ∈ � such that
the inverse F ′(x0)

−1 of F ′ at x0 exists. For r > 0, we use B(x0, r) to denote the closed ball with radius r and center x0.
Moreover, for convenience, we shall delete the subscript � in (1.8) and (1.9); that is, we write yn = y�,n and xn = x�,n

for each n.

2. Iteration sequence {an}

We begin with two real-valued functions defined below, which will play an important role in analyzing the convergence
order of the variant of the Chebyshev–Halley iteration family. The technique used here was developed by Ezquerro,
Gutiérrez and Hernández in [6,12] and has been also used in papers [7–10,18,19,29], etc. For a real-valued function h

and a point t0 ∈ R, we shall use h(t0−) to denote the left limit of h at t0, i.e., h(t0−) := limt→t0−h(t). Consider the
function s defined by

s(t) := 1 − �1−pt

(
1 + t

2(1 − �t)

)p

for each t ∈
[

0,
1

�

)
.

Clearly, s is a strictly monotonic decreasing, continuous function with s(0) = 1 and s(1/�−) < 0. Hence, there exists
s� ∈ [0, 1/�) such that s(s�) = 0. Now define

f (s) := [2(1 − �s)]p
[2(1 − �s)]p − �1−ps[(1 − 2�)s + 2]p for each s ∈ [0, s�) (2.1)

and

g(s) := (p + 1)s[2(1 − �s)]p + �1−ps[(1 − 2�)s + 2]p+1

(p + 1)[2(1 − �s)]p+1 for each s ∈ [0, s�). (2.2)

Note that f and g can be, respectively, rewritten as

f (s) = 1

1 − �1−ps(1 + (s/2(1 − �s)))p
for each s ∈ [0, s�)

and

g(s) = s

2(1 − �s)
+ �1−ps

p + 1

(
1 + s

2(1 − �s)

)p+1

for each s ∈ [0, s�).

The following lemma, which describes some properties of the functions f and g, is direct.

Lemma 2.1. Let f and g be defined as above. Then

(i) f is a strictly monotonic increasing and continuous function on [0, s�) with f (0) = 1,
(ii) g is a strictly monotonic increasing and continuous function on [0, s�) satisfying

g(�s) < �g(s) for each � ∈ (0, 1), s ∈ (0, s�). (2.3)
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Define

G�(s) := f 1+p(s)gp(s) = sp{[2(1 − �s)]p + �1−p/(p + 1)[(1 − 2�)s + 2]p+1}p
{[2(1 − �s)]p − �1−ps[(1 − 2�)s + 2]p}1+p

for each s ∈ [0, s�).

(2.4)

Then G� is strictly monotonic increasing and continuous on [0, s�) thanks to Lemma 2.1. Since G�(0) = 0 and
G�(s�−) > 1, there exists a unique r� ∈ (0, s�) such that G�(r�) = 1.

Let a0 ∈ [0, r�) and define an iteration {an} by

an = an−1G�(an−1) = an−1f
1+p(an−1)g

p(an−1) for each n = 1, 2, . . . . (2.5)

Then we have the following obvious lemmas.

Lemma 2.2. Let a0 ∈ [0, r�). Then

(i) f 1+p(a0)g
p(a0) < 1,

(ii) {an} is a strictly monotonic decreasing sequence,
(iii) for each n = 1, 2, . . . ,

�1−pan

(
1 + an

2(1 − �an)

)p

< 1. (2.6)

Lemma 2.3. Let a0 ∈ (0, r�) and set � := f 1+p(a0)g
p(a0). Then � = a1/a0 < 1 and the following assertions hold for

all n = 1, 2, . . .

an ��((1+p)n−1)/pa0 (2.7)

and

n−1∏
j=0

f (aj )g(aj )��((1+p)n−1)/p2
(f (a0)

−1/p)n. (2.8)

3. Convergence criterion of the iterations

Throughout this section, we shall always assume that R > 0 and

‖F ′(x0)
−1F(x0)‖��, (3.1)

‖F ′(x0)
−1(F ′(x) − F ′(y))‖�K‖x − y‖p for all x, y ∈ B(x0, R), (3.2)

where a0 := K�p−1�p and

R =
(

1 + a0

2(1 − �a0)

)
�

1 − [�f (a0)
−1]1/p

. (3.3)

Recall that r� is the unique solution of the equation G�(s) = 1 and � = f 1+p(a0)g
p(a0). Then R > 0 is well-defined

if a0 < r�. Before giving our main theorem, we first need several lemmas, the proofs of which are standard, see for
example [29].

Lemma 3.1. Suppose that a0 < r�. Then KRp < 1. Consequently, ∀x ∈ B(x0, R), F ′(x)−1 exists and

‖F ′(x)−1F ′(x0)‖� 1

1 − K‖x − x0‖p
. (3.4)

Let {yn} and {xn} be the sequences generated by (1.8) and (1.9), respectively. Recall that the functions H and Q are
defined by (1.4) and (1.7), respectively. In the remainder, we always assume that a0 < r�.
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Lemma 3.2. Let n = 1, 2, . . . and let xn, yn ∈ B(x0, R) satisfy

�K�p−1‖F ′(xn)
−1F ′(x0)‖‖yn − xn‖p < 1. (3.5)

Then

‖Q(xn, yn)‖� K�p−1‖F ′(xn)
−1F ′(x0)‖‖yn − xn‖p

2(1 − �K�p−1‖F ′(xn)
−1F ′(x0)‖‖yn − xn‖p)

(3.6)

and

‖xn+1 − xn‖�
(

1 + K�p−1‖F ′(xn)
−1F ′(x0)‖‖yn − xn‖p

2(1 − �K�p−1‖F ′(xn)
−1F ′(x0)‖‖yn − xn‖p)

)
‖yn − xn‖. (3.7)

The following lemma is a direct application of the Taylor’s expression.

Lemma 3.3. Let n = 1, 2, . . . and let xn, yn ∈ B(x0, R) satisfy (3.5). Then

‖F ′(xn)
−1F(xn+1)‖� K�p−1‖F ′(xn)

−1F ′(x0)‖‖yn − xn‖1+p

2(1 − �K�p−1‖F ′(xn)
−1F ′(x0)‖‖yn − xn‖p)

+ K

p + 1
‖F ′(xn)

−1F ′(x0)‖‖xn+1 − xn‖1+p. (3.8)

The following lemma, which plays a key role in the proof of the main theorem, can be verified by mathematical
induction similar to the proof of [29, Lemma 3.3].

Lemma 3.4. The following inequalities hold for each n = 0, 1, 2, . . .

‖yn − xn‖��((1+p)n−1)/p2
(f (a0)

−1/p)n�, (3.9)

K�p−1‖F ′(xn)
−1F ′(x0)‖‖yn − xn‖p �an, (3.10)

‖xn+1 − xn‖�
(

1 + an

2(1 − �an)

)
‖yn − xn‖, (3.11)

‖xn+1 − x0‖��

(
1 + a0

2(1 − �a0)

)
1 − (�f (a0)

−1)(n+1)/p

1 − (�f (a0)
−1)1/p

< R, (3.12)

‖F ′(xn+1)
−1F ′(x0)‖�f (an)‖F ′(xn)

−1F ′(x0)‖. (3.13)

Now we are ready to prove the main theorem of the present paper. Recall that G is defined by (2.4).

Theorem 3.1. Let F : � ⊆ X → Y be a nonlinear operator with continuous first derivative F ′ and let x0 ∈ � be
such that F ′(x0)

−1 exists. Let r� be the unique positive solution of the equation G�(t) = 1. Suppose that conditions
(3.1) and (3.2) are satisfied. Let a0 := K�p−1�p be such that a0 < r� and B(x0, R) ⊆ � where R is defined by (3.3).
Then the sequence {xn} generated by (1.8) and (1.9) with initial point x0 converges at a rate of order 1 + p to a unique
solution x∗ of the equation F(x) = 0 on B(x0, R).

Proof. We first apply Lemma 3.4 to verify that {xn} is a Cauchy sequence. For this purpose, note that, by (3.9)
and (3.11),

‖xi+1 − xi‖��

(
1 + ai

2(1 − �ai)

)
�((1+p)i−1)/p2

(f (a0)
−1/p)i

��

(
1 + a0

2(1 − �a0)

)
�((1+p)i−1)/p2

(f (a0)
−1/p)i (3.14)
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holds as ai < a0 for each i = 0, 1, . . . . This implies that, for each m, n = 0, 1, . . . with m > n,

‖xm+n − xn‖�
n+m−1∑

i=n

‖xi+1 − xi‖

�
n+m−1∑

i=n

�

(
1 + a0

2(1 − �a0)

)
�((1+p)i−1)/p2

(f (a0)
−1/p)i

�
(

1 + a0

2(1 − �a0)

)
�

(
�((1+p)n−1)/p2

(f (a0)
−1/p)n

) (
1 − ((�f (a0)

−1)1/p)m
)

1 − (�f (a0)
−1)1/p

�R
(
�((1+p)n−1)/p2

(f (a0)
−1/p)n

) (
1 − ((�f (a0)

−1)1/p)m
)

, (3.15)

since ((1 + p)i+1 − 1)/p2 � i + 1 for each i�n. Hence {xn} is a Cauchy sequence because (�f (a0)
−1)1/p < 1 by

Lemma 2.1. Consequently, {xn} converges to, say x∗. Letting m → ∞ on the two-side hands of (3.15) yields that

‖x∗ − xn‖�R
(
�((1+p)n−1)/p2

) (
f (a0)

−1/p
)n

.

This shows that {xn} converges to x∗ at a rate of order 1 + p. In particular, letting n = 0, we have that

‖x∗ − x0‖�R.

Since F ′(xn)
−1F(xn) → 0 and the function F ′−1

F is continuous, F ′(x∗)−1F(x∗) = 0; hence, F(x∗) = 0.
Thus, to complete the proof, it remains to show that the solution of the equation F(x) = 0 is unique in B(x0, R). For

this end, let y∗ ∈ B(x0, R) be such that F(y∗) = 0. Then

∫ 1

0
F ′(x0)

−1F ′(x∗ + t (y∗ − x∗)) dt (y∗ − x∗) = F ′(x0)
−1[F(y∗) − F(x∗)] = 0.

Since ∥∥∥∥
∫ 1

0
F ′(x0)

−1[F ′(x∗ + t (y∗ − x∗)) − F ′(x0)] dt

∥∥∥∥ �K

∫ 1

0
[(1 − t)‖x∗ − x0‖ + t‖y∗ − x0‖]p dt

< K

∫ 1

0
[(1 − t)R + tR]p dt

< K‖x∗ − x0‖p.

It follows from Lemma 3.1 that∥∥∥∥F ′(x0)
−1
∫ 1

0
[F ′(x∗ + t (y∗ − x∗)) − F ′(x0)] dt

∥∥∥∥< 1.

Thus by the Banach Lemma, one gets that
∫ 1

0 F ′(x∗ + t (y∗ − x∗)) dt is invertible. Hence, y∗ = x∗ and the proof is
complete. �

In particular, taking � = 0, 1
2 , 1, respectively, and p = 1, the corresponding G� are, respectively, as follows:

G0(s) = s(2 + 1
2 (s + 2)2)

(2 − 2s − s2)2 for each s ∈ [0,
√

3 − 1),

G1/2(s) = s(4 − s)

(2 − 3s)2 for each s ∈
[

0,
2

3

)
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and

G1(s) = s(2 − 2s + 1
2 (2 − s)2)

(2 − 4s + s2)2 for each s ∈ [0, 2 − √
2).

Then r0, r1/2 and r1 are, respectively, equal to 0.326664 . . . , (4 − √
6)/5 and 0.292246 . . . . Hence, by Theorem 3.1,

we immediately obtain the following results, which have been studied, respectively, in [18,30,8].

Corollary 3.1. Let F : � ⊆ X → Y be a nonlinear operator with continuous first derivative F ′ and let x0 ∈ � be
such that F ′(x0)

−1 exists. Suppose that conditions (3.1) and (3.2) are satisfied with p = 1. Let a0 := K� be such that
a0 < r0 =0.326664 . . . and B(x0, R0) ⊆ � where R0 = (1+a0/2)�/(1−�f (a0)

−1). Then the sequence {xn} generated
by the variant of the Chebyshev method with initial point x0 converges at a rate of order 2 to a unique solution x∗ of
the equation F(x) = 0 on B(x0, R0).

Corollary 3.2. Let F : � ⊆ X → Y be a nonlinear operator with continuous first derivative F ′ and let x0 ∈ � be
such that F ′(x0)

−1 exists. Suppose that conditions (3.1) and (3.2) are satisfied with p = 1. Let a0 = K� be such that
a0 < r1/2 = (4 − √

6)/5 and B(x0, R1/2) ⊆ � where R1/2 = (1 + a0/(2 − a0))�/(1 − �f (a0)
−1). Then the sequence

{xn} generated by the variant of the Halley method with initial point x0 converges at a rate of order 2 to a unique
solution x∗ of the equation F(x) = 0 on B(x0, R1/2).

Corollary 3.3. Let F : � ⊆ X → Y be a nonlinear operator with continuous first derivative F ′ and let x0 ∈ � be
such that F ′(x0)

−1 exists. Suppose that conditions (3.1) and (3.2) are satisfied with p = 1. Let a0 = K� be such that
a0 < r1 = 0.292246 . . . and B(x0, R1) ⊆ � where R1 = (1 + a0/(2(1 − a0)))�/(1 − �f (a0)

−1). Then the sequence
{xn} generated by the variant of the convex acceleration of Newton’s method with initial point x0 converges at a rate
of order 2 to a unique solution x∗ of the equation F(x) = 0 on B(x0, R1).

4. Application to a nonlinear integral equation of Hammerstein type

In this section, we provide an application of the main result to a special nonlinear Hammerstein integral equation of
the second kind (cf. [22]). Letting � ∈ R and p ∈ (0, 1], we consider

x(s) = l(s) +
∫ b

a

G(s, t)[x(t)1+p + �x(t)] dt, s ∈ [a, b], (4.1)

where l is a continuous function such that l(s) > 0 for all s ∈ [a, b] and the kernel G is a non-negative continuous
function on [a, b] × [a, b]. This kind of nonlinear Hammerstein integral equation has been already studied by many
authors, see for example [9,10,19,29], etc.

Note that if G is the Green function defined by

G(s, t) =
⎧⎨
⎩

(b − s)(t − a)

b − a
, t �s,

(s − a)(b − t)

b − a
, s� t,

(4.2)

Eq. (4.1) is equivalent to the following boundary value problem (cf. [23]):{
x′′ = −x1+p − �x

x(a) = v(a), x(b) = v(b).

To apply Theorem 3.1, let X = Y = C[a, b], the Banach space of real-valued continuous functions on [a, b] with the
uniform norm. Let Q denote the set of all rational numbers p ∈ (0, 1] such that p = u/q for some odd number q and
positive integer u. Let

�p =
{ {x ∈ C[a, b] : x(s) > 0, s ∈ [a, b]}, p ∈ (0, 1]\Q,

C[a, b], p ∈ Q.
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Define F : �p → C[a, b] by

[F(x)](s) = x(s) − l(s) −
∫ b

a

G(s, t)[x(t)1+p + �x(t)] dt, s ∈ [a, b]. (4.3)

Then solving Eq. (4.1) is equivalent to solving Eq. (1.1) with F being defined by (4.3).
We start by calculating the parameter � in the study. Firstly, we have

[F ′(x)u](s) = u(s) −
∫ b

a

G(s, t)[(1 + p)x(t)p + �]u(t) dt, s ∈ [a, b].

Let x0 ∈ �p be fixed. Then

‖I − F ′(x0)‖�M((1 + p)‖x0‖p + �),

where

M = max
s∈[a,b]

∫ b

a

|G(s, t)| dt .

By the Banach Lemma, if M((1 + p)‖x0‖p + �) < 1, one has

‖F ′(x0)
−1‖� 1

1 − M((1 + p)‖x0‖p + �)
.

Since

‖F(x0)‖�‖x0 − l‖ + M(‖x0‖1+p + �‖x0‖),
it follows that

‖F ′(x0)
−1F(x0)‖� ‖x0 − l‖ + M(‖x0‖1+p + �‖x0‖)

1 − M((1 + p)‖x0‖p + �)
. (4.4)

Therefore, � is estimated.
On the other hand, for x, y ∈ �p,

[(F ′(x) − F ′(y))u](s) = −
∫ b

a

G(s, t)[(1 + p)(x(t)p − y(t)p)]u(t) dt, s ∈ [a, b]

and consequently,

‖F ′(x) − F ′(y)‖�M(1 + p)‖x − y‖p for all x, y ∈ �p. (4.5)

This means that K = M(1 + p). Thus, we can establish the following result from Theorem 3.1.

Theorem 4.1. Let F be the nonlinear operator defined in (4.3) and x0 ∈ �p a point such that M((1 + p)‖x0‖1+p +
�) < 1. Let r� be the unique solution of the equation G�(s) = 1 on (0, s�). Let a0 := K�p−1�p be such that a0 < r�
and B(x0, R) ⊆ � where R is defined by (3.3). Then the sequence {xn} generated by (1.8) and (1.9) with initial point
x0 converges at a rate of order 1 + p to a unique solution x∗ of Eq. (4.1) on B(x0, R).

The following example provides an operator F which has the first derivative satisfying (1.6) but does not have the
second derivative.

Example 4.1. Let G be Green’s function on [0, 1] × [0, 1] defined by (4.2). Consider the following particular case
of (4.1):

x(s) = 1

32
+
∫ 1

0
G(s, t)(x(t)4/3 + x(t)) dt, s ∈ [a, b]. (4.6)
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Table 1
The values of r� and a0

�\� 0.005 0.009 0.01 0.1 0.2 0.5

0 1.4794 1.3347 1.3070 0.6744 0.5113 0.4280
0.1 1.3249 1.2161 1.1947 0.6544 0.5017 0.3335
0.2 1.1941 1.1117 1.0951 0.6344 0.4920 0.3303
0.3 1.0833 1.0202 1.0072 0.6145 0.4822 0.3271
0.5 0.9081 0.8698 0.8616 0.5754 0.4622 0.3204
1 0.6373 0.6238 0.6208 0.4853 0.4120 0.3025
a0 1.8771 1.2685 1.1825 0.2548 0.1605 0.1225

Table 2
TF values of a0 < r�

�\� 0.005 0.009 0.01 0.1 0.2 0.5

0 F T T T T T

0.1 F F T T T T

0.2 F F F T T T

0.3 F F F T T T

0.5 F F F T T T

1 F F F T T T

The corresponding operator F : �p → C[a, b] is equal to

[F(x)](s) = x(s) − 1

32
−
∫ 1

0
G(s, t)(x(t)4/3 + x(t)) dt, s ∈ [a, b]. (4.7)

Clearly p = 1
3 and �p = C[0, 1]. Choose x0 = 0 for Theorem 4.1. Since M = 1

8 and p = 1
3 , we have K = 1

6 . By (4.4),
we can take � = 1

28 . Hence

a0 = K�−2/3�1/3 = 1

6
3
√

28�2
.

Note that B(x0, R) ⊆ � holds for each R. It follows from Theorem 4.1 that the sequence {xn} generated by (1.8)
and (1.9) with initial point x0 = 0 converges at a rate of order 4

3 provided a0 < r�.
For some special values of � and �, the corresponding values of r�, a0 and TF values of “a0 < r�” are given in the

following Tables 1 and 2, respectively.
Note that the operator F defined by (4.7) does not have the second derivative at any point x ∈ C[0, 1] with the

Lebesgue measure �{t ∈ [0, 1] : x(t) = 0} > 0. Hence, condition (1.5) is not satisfied and the convergence criterion in
[29] is not applicable. Note also that the equation given in this example cannot be solved by Halley’s method and the
convergence theorems in [11] is not applicable too.
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