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a b s t r a c t

Iterative solvers in combination with multi-grid have been used extensively to solve large
algebraic systems. One of the best known is the Runge–Kutta iteration. We show that
a generally used formulation [A. Jameson, Numerical solution of the Euler equations for
compressible inviscid fluids, in: F. Angrand, A. Dervieux, J.A. Désidéri, R. Glowinski (Eds.),
Numerical Methods for the Euler Equations of Fluid Dynamics, SIAM, Philadelphia, 1985,
pp. 199–245] does not allow to form all possible polynomial transmittance functions and
we propose a new formulation to remedy this, without using an excessive number of
coefficients.
After having converted the optimal parameters found in previous studies (e.g. [B.

Van Leer, C.H. Tai, K.G. Powell, Design of optimally smoothing multi-stage schemes for
the Euler equations, AIAA Paper 89–1923, 1989]) we compare them with those that we
obtain when we optimize for an integrated 2-grid V -cycle and show that this results
in superior performance using a low number of stages. We also propose a variant of
our new formulation that roughly follows the idea of the Martinelli–Jameson scheme
[A. Jameson, Analysis and design of numerical schemes for gas dynamics 1, artificial
diffusion, upwind biasing, limiter and their effect onmultigrid convergence, Int. J. Comput.
Fluid Dyn. 4 (1995) 171–218; J.V. Lassaline, Optimal multistage relaxation coefficients
for multigrid flow solvers. http://www.ryerson.ca/~jvl/papers/cfd2005.pdf] used on the
advection–diffusion equationwhich that can be extended to other types. Gains in the order
of 30%–50% have been shown with respect to classical iterative schemes on the advection
equation. Better results were also obtained on the advection–diffusion equation than with
the Martinelli–Jameson coefficients, but with less than half the number of matrix-vector
multiplications.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Euler/Navier–Stokes solvers have long been using explicit multi-stage time-marching schemes because of their
simplicity. Acceleration techniques like multi-grid have been successfully added, which depend heavily on the smoothing
properties of the multi-stage scheme. Despite its simplicity, the one-dimensional wave equation has been used as a model
with remarkably good results to find optimal coefficients for real flow solvers for the Euler or Navier–Stokes equations. One
of themain reasons is the observation that the locus of the one-dimensional scalar Fourier symbol of the advection equation
forms the envelope of the loci of the eigenvalues of the discretization matrix of the two-dimensional Euler equations if
block-Jacobi preconditioning is used [4,5]. For that reason we focus on this simple equation.
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It has already been discovered [5] that coefficients that optimize the smoothing properties of a multi-stage scheme used
in conjunction with multi-grid does not automatically result in the fastest overall performance. To find out why this is,
we extend the Fourier analysis to other components of an idealized two-grid V -cycle (restriction, defect correction and
prolongation) and look at the resulting transmittance for which we try and find the optimal set of coefficients.
This paper is organized as follows. In Sections 2 and 3 we give a brief introduction on multi-stage solvers of the

Runge–Kutta type; in Section 4 we propose our alternative formulation; in Section 5 we detail the different objective
functions that we use in the optimization procedure and discuss the results which show that this integrated approach gives
improved convergence speeds, but also show that a high number of stages is not necessarily beneficial. Finally, in Section 6,
we introduce a variant that splits the discretization matrix in its Hermitian and anti-Hermitian part and show that further
improvements can be obtained.

Remark. We use i as a symbol for the complex unit (=
√
−1) and i as an index.

2. Iterative solution of an algebraic system of linear equations

We want to solve a linear algebraic system of the type

Au = b (1)

where A ∈ Rp×p;u, b ∈ Rp×1, which typically results from the discretization of a linear ordinary (or partial) differential
equation; we will go into more detail in Section 5. If the dimension of the above system becomes too large, the solution
is often found in an iterative way. The subclass of iterative solvers that we consider here starts from a regular splitting of
A : A = M − N whereM is regular. This results in

un+1 = M−1Nun +M−1b (2)

starting from an initial guess uo, or, after rearranging the terms,

un+1 = un −M−1rn (3)

where we call rn = Aun − b the residual at iteration n. The splitting that will concern us most in this paper is that with

M =
1
τ
Ip (4)

where Ip ∈ Rp×p is the identity matrix and τ is an iteration parameter. With a fixed value of τ this scheme is called the
stationary Richardson iteration. It is obvious that it corresponds to

un+1 = un − τ (Aun − b) (5)

which can be interpreted as stemming from a time discretization, with a (pseudo-) time-step τ ):

un+1 − un
τ

+ Aun = b (6)

where we assume that we are only interested in the steady state solution. In the following paragraphs we build upon this
single-stage iterative scheme to construct the various multi-stage schemes. In Section 6 we will consider yet other ways to
split A.

3. The Runge–Kutta time-stepping scheme

The Runga–Kutta (R–K) scheme can be implemented for a scalar time-stepping scheme. In a commonly usedmatrix form
it is given by

U(o) = un
U(1) = U(o) − α1M−1r(o)
...

U(l+1) = U(o) − αl+1M−1r(l)
...

U(m) = U(o) − αmM−1r(m−1)
un+1 = U(m)

(7)
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where α1, . . . , αm are the iteration parameters. We can write un = uexact + en, where en is the error of un with respect to
the exact solution uexact = A−1b.
After some algebra we find

en+1 = Pm(−M−1A)en (8)

where the transmittance function Pm is given by the polynomial

Pm(z) = 1+
m∑
l=1

(
m∏

i=m−l+1

αi

)
z l (9)

= 1+
m∑
l=1

βlz l (10)

with βl =
∏m
i=m−l+1 αi.

Let σ(M−1A) = {λ1, . . . , λp} denote the spectrum of M−1A. We assume that M−1A has p distinct orthonormal
eigenvectors Ei, corresponding to eigenvalues λi (i = 1, . . . , p), so that every error en can be written as a linear combination
of these eigenvectors (en =

∑p
i=1(en)i =

∑p
i=1(an)iEi). Due to the linear nature of the equations we only need to consider

one component at a time and write

(en+1)i = Pm(−λi)(en)i. (11)

In order to have a stable scheme we require that

|Pm(−λi)| ≤ 1 (∀i ∈ {1, . . . , p}). (12)

The main limitation of the Runge–Kutta solver in this formulation is that the following statement holds

∃l < m : βl = 0⇒ ∀k ∈ {l+ 1, l+ 2, . . . ,m} : βk = 0. (13)

Remark. Other formulations exist, e.g. in [2], but these usem+ (m− 1)! coefficients to form a polynomial of degreem and
require more storage.

4. An alternative Runge–Kutta formulation

To avoid the limitation (13) of the Runge–Kutta schemewe propose the following formulation, which can be interpreted
as a periodic non-stationary method [12].

U(o) = un
V(o) = M−1r(o)
U(1) = U(o) − γ1V(o)
V(1) = −M−1AV(o)
U(2) = U(1) − γ2V(1)
V(2) = −M−1AV(1)
...

V(l) = −M−1AV(l−1)
U(l+1) = U(l) − γl+1V(l)
...

V(m−1) = −M−1AV(m−2)
U(m) = U(m−1) − γmV(m−1)
un+1 = U(m)

(14)

where γ1, . . . , γm are the iteration parameters. This results in

en+1 = P ′m(−M
−1A)en (15)

(en+1)i = P ′m(−λi)(en)i (i = 1, . . . , p) (16)
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where

P ′m(z) = 1+
m∑
l=1

γlz l. (17)

It is easy to see that any real m-th degree polynomial respecting P ′m(0) = 1 can be constructed in this way, thus avoiding
the limitation in (13).
If ∀λi ∈ σ(M−1A) : Pm(λi) = P ′m(λi) Eqs. (9) and (17) then the coefficients αl and γl(l = 1, . . . ,m) are related by the

following expression
m∏

m−l+1

αi = γl (l = 1, . . . ,m). (18)

We see that in this new formulation intermediate results need not be stored which reduces storage cost. Another added
benefit of the scheme is that it uses the coefficients of the transmittance polynomial directly which will result in fewer
rounding errors when finite precision coefficients are used, whereas for (9) it is obtained by multiplication. From Eq. (17)
we also see that

P ′m(−M
−1A) = Ip +

(
m∑
l=1

γl(−M−1A)l−1
)
(−M−1A). (19)

We can thus interpret the above equation as a preconditioned form of (3), where the polynomial preconditioner is given by∑m
l=1 γl(−M

−1A)l−1.

5. Optimization of parameters

5.1. The equations under consideration

We now try to find the optimal parameters γl (l = 1, . . . ,m) for the one-dimensional advection equation

∂u
∂t
+ a

∂u
∂x
= 0 (20)

(a ∈ R+o ) with suitable boundary conditions. We are only interested in the steady-state solution of Eq. (20). The spatial
derivative is discretized with a first or second order upwind scheme (resp. U1 and U2) or a K3 upwind biased scheme.
With the mesh size given by∆x, the discretization of the space operator ∂u

∂x (on a regular mesh) gives
• U1

uj − uj−1
∆x

(21)

• U2
3uj − 4uj−1 + uj−2

2∆x
(22)

• K3
2uj+1 + 3uj − 6uj−1 + uj−2

6∆x
. (23)

To study the behavior of the iterative scheme when using the resulting discretization matrix, we pass from the discrete
representation of the p eigenvalues to the continuous representation given by the Fourier symbol λ(θ), (θ ∈ [−π, π]). Von
Neumann analysis then shows that it is given by
• U1

λ(θ) =
1− e−iθ

∆x
(24)

• U2

λ(θ) =
3− 4e−iθ + e−2iθ

2∆x
(25)

• K3

λ(θ) =
3+ 2eiθ − 6e−iθ + e−2iθ

6∆x
. (26)
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5.2. Objective functions

With every θ ∈ [−π, π] we associate an eigenvalue λ(θ) and an eigenvector Eθ . We use (en)θ for the corresponding
component of en. This allows us to write

(en+1)θ = P ′m(−λ(θ))(en)θ . (27)

The eigenvector corresponding to the eigenvalue 0 is the ‘‘constant vector’’ (= [1 1 . . . 1]T), which we assume to be
eliminated due to the presence of boundary conditions.
While it is possible to find coefficients that allow this equation to be solved with (14) it will always suffer from very slow

convergence, as for values of θ for which λ(θ) ≈ 0 we will have P ′m(−λ(θ)) ≈ 1. For that reason we turn our attention to
multi-grid schemes, and use (14) as a smoother.
We recall that there are two ways to define ‘‘smooth’’ errors. In geometrical multi-grid, these are the errors that vary

slowly over the grid, i.e. those with θ ∈ ΦLF = [−π
2 ,

π
2 ]. In algebraic multi-grid, ‘‘smooth’’ denotes the errors that cannot

easily be reduced by the smoother, i.e. those with λ(θ) ≈ 0. In this paper we will limit ourselves to geometrical multi-grid;
as for the equations under considerations both approaches are similar.
When looking for good coefficients in this contextwewant a scheme that adequately reduces errors forwhich θ ∈ ΦHF =

[−π, π] \ ΦLF . We define the smoothing factor ρHF as

ρHF = sup
θ∈ΦHF

|P ′m(−λ(θ))|. (28)

A first objective function to minimize would simply be

I1 = ρHF (29)

which depends on the coefficients γ1, . . . , γm. We add the stability constraint

sup
θ∈[−π,π ]

|P ′m(−λ(θ))| ≤ 1. (30)

This objective function is the one used in most previous studies (e.g. [1,11]) and means that we ignore the effect of the
remainder of the multi-grid cycle. Additionally, [11] required that the polynomial had a number of zeroes in the high
frequency domain.
We could refine this objective function by adding the effect of the defect correction. We consider a two-grid V -cycle,

where we assume that the solution on the coarser grid (defect correction) is exact (ideal two-grid cycle). This does not
necessarily mean that all errors corresponding to θ ∈ ΦLF will be completely annihilated, as due to the restriction and
prolongation process (which act as non-ideal low-pass filters) some high frequencies will be passed to the coarse grid
(aliasing), while the low frequencies will be attenuated. Wewill only quantify the latter effect, ignoring aliasing. We use full
weighting for the restriction and linear interpolation for the prolongation. Their effect can be quantified by the following
transmittance functions (resp. for the restriction and prolongation) that act on the residual [3]

µR =
1
4

(
eiθ + 2+ e−iθ

)
(31)

=

(
cos

θ

2

)2
(32)

µP = µR. (33)

Thismeans that even the best defect correctionwill only be able to reduce a fraction of the low frequency part of the residual,
which is given by

rn = Aen (34)
(rn)θ = A(en)θ = λ(θ)(en)θ . (35)

The resulting objective function then becomes

I2 = sup
θ∈[−π,π ]

∣∣µV ,1(θ)∣∣ (36)

where

µV ,1(θ) =

(
1−

(
cos

θ

2

)4) (
P ′m(−λ(θ))

)2 for θ ∈ ΦLF (37)

(
P ′m(−λ(θ))

)2 for θ ∈ ΦHF . (38)

(Minimizing I2 will automatically take into account the stability constraint I2(θ) ≤ 1,∀θ ∈ [−π, π].)
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Fig. 1.
∣∣∣ 2λ(θ)λ(2θ)

∣∣∣ for the advection equation; different discretization schemes.
Using this objective function means that we take a pre-smoothing step followed by an idealized defect correction, that is

only limited by the filtering done by restriction and prolongation, and finally a post-smoothing step. Using the coefficients
that minimize this function will lead to a smoother that will sacrifice damping of the high frequencies for a better resolution
of the somewhat lower frequencies. Due to the fact that the stability constraint is now taken over the whole V -cycle, it is
also quite possible that the smoother itself is not stable.
A last refinement with a respect to the previous objective function takes into account the limitations of the defect

correction itself. Even if we consider a direct solver on the coarsest grid, which is the ideal situation, it is limited by its ability
to eliminate the low frequency errors if we use a similar discretization scheme on the coarsest grid. If we use a coarse grid
spacing of 2∆x, this can be quantified by the Fourier symbol on the coarsest grid which is given by λ(2θ)2 (θ ∈ [−π

2 ,
π
2 ]) [3].

The solution process on the coarsest grid then computes

λ(2θ)
2

(vθ )coarse = (rθ )coarse = λ(θ) (eθ )coarse
(
θ ∈

[
−
π

2
,
π

2

])
(39)

where (vθ )coarse stands for the defect correction on the coarse grid, and (rθ )coarse ((eθ )coarse) for the value of the residual
(error) on the coarse grid, after restriction. 2λ(θ)

λ(2θ) is then a measure of how well the coarse grid operator can resolve the low
frequencies. We finally propose our third objective function

I3 = sup
θ∈[−π,π ]

∣∣µV ,2(θ)∣∣ (40)

where

µV ,2(θ) =

(
1−

(
cos

θ

2

)4 2λ(θ)
λ(2θ)

) (
P ′m(−λ(θ))

)2 for θ ∈ ΦLF (41)

(
P ′m(−λ(θ))

)2 for θ ∈ ΦHF . (42)

Again the minimization procedure will result in I3(θ) ≤ 1,∀θ ∈ [−π, π] if an optimum exists.
The last two objective functions (I2 andI3)will generally result inmulti-stage schemes that are not as good as smoothers,

but give a better overall performance after one complete V -cycle. Also note thatwe are in effectminimizing a spectral radius,
which means that we are optimizing the asymptotic rate of convergence [12].
To illustrate the effect of 2λ(θ)

λ(2θ) for the advection equation, we plot this ratio for U1,U2 and K3 in Fig. 1. We see that this
results in a slight over-correction for U1 and amore pronounced over-correction for K3. For U2 the ratio approximates unity
quite closely over a wide range of values of θ , but with a slight under-correction.
In itself, over-correction is not necessarily a bad thing, as it compensates for the filtering done by the restriction and the

prolongation. For that reason we also look at
(
1−

(
cos θ2

)4 2λ(θ)
λ(2θ)

)
for the three schemes and see (Fig. 2) that all three have

difficulties reducing errors around θ = π
2 , which is most pronounced for K3. However, K3 manages to reduce errors close

to θ = 0 best.

5.3. Results

To find the optimal parameters for the different objective functions a routine was written in Matlab 7 that creates a
large number of random seed vectors, containing initial guesses for the various parameters. These are then fed to another
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Fig. 2.
∣∣∣1− (cos θ2 )4 2λ(θ)λ(2θ)

∣∣∣ for the advection equation; different discretization schemes.
Table 1
Optimalm-stage coefficients for I1

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

γ1 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000
γ2 0.3333 0.9000 1.7060 2.7588 4.0608
γ3 0.2000 0.7059 1.6380 3.1211
γ4 0.1176 0.5172 1.4242
γ5 0.0689 0.3636
γ6 0.0404
m
√

I1 0.7078 0.5786 0.5226 0.4941 0.4780 0.4785
2m
√

I2 0.7056 0.6651 0.7179 0.7566 0.7849 0.8066
2m
√

I3 0.7056 0.7159 0.7703 0.8071 0.8329 0.8521
2m
√

IE 0.6267 0.7171 0.7702 0.8075 0.8333 0.8525

Advection equation using U1 after conversion from [11].

Table 2
Optimalm-stage coefficients for I1

m = 2 m = 3 m = 4 m = 5 m = 6

γ1 0.4693 0.6936 0.9214 1.1508 1.3805
γ2 0.0934 0.2371 0.4289 0.6701 0.9649
γ3 0.0315 0.1028 0.2235 0.4063
γ4 0.0103 0.0412 0.1057
γ5 0.0033 0.0158
γ6 0.0011
m
√

I1 0.7872 0.7260 0.6958 0.6690 0.6590
2m
√

I2 0.7909 0.8208 0.8470 0.8667 0.8814
2m
√

I3 0.8655 0.8839 0.9000 0.9127 0.9222
2m
√

IE 0.8656 0.8840 0.8990 0.9128 0.9222

Advection equation using U2 after conversion from [11].

routine that computes the value of the chosen objective function for these seed vectors and starts an optimization procedure
based on theNelder–Mead simplexmethod that is implemented inMatlab’s fminsearch function. The stability constraintwas
implemented as a penalty function on the objective function.
The optimal coefficients for the U1, U2 and K3 scheme, when considered as a smoother for multi-grid and using I1 are

taken from [11] and converted to corresponding γ -values. These can be found in Tables 1–3.
All schemes under consideration tacitly assume ∆x = 1, and use no preconditioner (M = Ip). If different values of ∆x

are needed the following re-scaling can be used

γk → (∆x)kγk. (43)

This is a similar relationship that is obtained when the CFL-number is explicitly retained as an iteration parameter
(e.g. [1,11]).
For each optimum set of coefficients we also give the values of the other objective functions in Tables 4–9. To be able to

compare the merit of schemes with different number of stages we give the values of m
√

I1, 2m
√

I2 and 2m
√

I3.
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Table 3
Optimalm-stage coefficients for I1

m = 2 m = 3 m = 4 m = 5 m = 6

γ1 0.8276 1.3254 1.7320 2.1668 2.5975
γ2 0.4535 0.8801 1.5824 2.4419 3.4956
γ3 0.3364 0.8296 1.7101 2.9982
γ4 0.2394 0.7333 1.7118
γ5 0.1695 0.6194
γ6 0.1194
m
√

I1 0.8383 0.7769 0.7385 0.7150 0.7018
2m
√

I2 0.8383 0.8290 0.8492 0.8664 0.8799
2m
√

I3 0.8491 0.8426 0.8531 0.8668 0.8788
2m
√

IE 0.8585 0.8423 0.8575 0.8646 0.8786

Advection equation using K3 after conversion from [11].

Table 4
Optimalm-stage coefficients for I2

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

γ1 0.5000 1.0000 1.5000 2.0015 2.4049 2.8864
γ2 0.3573 1.0422 2.0510 3.1960 4.6695
γ3 0.2711 1.0496 2.4078 4.3522
γ4 0.2166 0.9788 2.3736
γ5 0.1681 0.6978
γ6 0.0851
m
√

I1 0.7078 0.6551 0.6913 0.7208 0.7450 0.7661
2m
√

I2 0.7056 0.6551 0.6912 0.7207 0.7441 0.7661
2m
√

I3 0.7056 0.7091 0.7536 0.7855 0.8092 0.8291
2m
√

IE 0.6267 0.7117 0.7519 0.7864 0.8094 0.8293

Advection equation using U1.

Table 5
Optimalm-stage coefficients for I3

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

γ1 0.5000 1.0000 1.5000 1.9951 2.4560 2.8638
γ2 0.3741 1.1043 2.1789 3.5724 5.1645
γ3 0.3021 1.1811 2.9506 5.4415
γ4 0.2557 1.2980 3.3859
γ5 0.2357 1.1624
γ6 0.1708
m
√

I1 0.7078 0.7046 0.7475 0.7791 0.8032 0.8202
2m
√

I2 0.7056 0.7046 0.7475 0.7791 0.8011 0.8202
2m
√

I3 0.7056 0.7046 0.7475 0.7790 0.8011 0.8201
2m
√

IE 0.6267 0.7082 0.7452 0.7798 0.7966 0.8173

Advection equation using U1.

Table 6
Optimalm-stage coefficients for I2

m = 2 m = 3 m = 4 m = 5 m = 6

γ1 0.4067 0.6095 0.8113 1.0163 1.2324
γ2 0.0780 0.2202 0.4217 0.6834 1.0135
γ3 0.0303 0.1117 0.2639 0.5145
γ4 0.0121 0.0557 0.1613
γ5 0.0050 0.00286
γ6 0.0022
m
√

I1 0.7878 0.8062 0.8220 0.8349 0.8481
2m
√

I2 0.7879 0.8062 0.8219 0.8349 0.8459
2m
√

I3 0.8623 0.8714 0.8799 0.8872 0.8935
2m
√

IE 0.8611 0.8741 0.8746 0.8858 0.8900

Advection equation using U2.
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Table 7
Optimalm-stage coefficients for I3

m = 2 m = 3 m = 4 m = 5 m = 6

γ1 0.3881 0.5893 0.7901 0.9863 1.1651
γ2 0.0803 0.2294 0.4414 0.7090 1.0130
γ3 0.0331 0.1230 0.2875 0.5320
γ4 0.0139 0.0630 0.1703
γ5 0.0058 0.0307
γ6 0.0024
m
√

I1 0.8557 0.8636 0.8721 0.8801 0.8863
2m
√

I2 0.8558 0.8636 0.8721 0.8801 0.8863
2m
√

I3 0.8557 0.8636 0.8721 0.8797 0.8863
2m
√

IE 0.8555 0.8664 0.8688 0.8800 0.8809

Advection equation using U2.

Table 8
Optimalm-stage coefficients for I2

m = 2 m = 3 m = 4 m = 5 m = 6

γ1 0.6683 1.0707 1.3979 1.7340 2.1202
γ2 0.3118 0.7810 1.3395 2.0442 3.0050
γ3 0.2454 0.7033 1.4717 2.7662
γ4 0.1719 0.6468 1.7201
γ5 0.1431 0.6843
γ6 0.1398
m
√

I1 0.8167 0.7829 0.7921 0.8054 0.8165
2m
√

I2 0.8144 0.7829 0.7921 0.8054 0.8165
2m
√

I3 0.8309 0.7888 0.7921 0.8054 0.8165
2m
√

IE 0.8880 0.7903 0.7986 0.8040 0.8163

Advection equation using K3.

Table 9
Optimalm-stage coefficients for I3

m = 2 m = 3 m = 4 m = 5 m = 6

γ1 0.6499 1.0537 1.3982 1.7255 2.1893
γ2 0.3070 0.7632 1.3316 2.0143 3.1388
γ3 0.2417 0.6985 1.4457 2.9109
γ4 0.1712 0.6372 1.8290
γ5 0.1412 0.7359
γ6 0.1512
m
√

I1 0.8241 0.7861 0.7894 0.8018 0.8137
2m
√

I2 0.8241 0.7861 0.7933 0.8068 0.8183
2m
√

I3 0.8241 0.7861 0.7894 0.8018 0.8137
2m
√

IE 0.8692 0.7871 0.7960 0.8005 0.8131

Advection equation using K3.

Itwas found that the frequencies that convergedmost slowlywere those around θ = π
2 , which is not entirely unexpected.

To validate the results obtained by the model an actual solver using 2000 nodes was used and its asymptotic convergence
rate measured in the L2-norm. This is given by IE . The agreement between this value and I3 was in general very good, thus
proving that the latter serves as an adequate model, except form = 1 when aliasing was to prominent.
We can see that an increase inm will lead to a net computational gain in the value of I1. For that reason a high number

of stages has been advocated in the past. However, looking at the complete picture ( 2m
√

I2 and 2m
√

I3), including the defect
correction, the interpretation is markedly different, and the improvement is absent. (We use 2m

√ because we apply the same
smoother twice in the cycle.) We recall that in our study the resolution of the low frequency has been idealized. This means
that we assume to have obtained the best defect correction theoretically possible within the framework of the study and
have ignored aliasing. Real multi-grid solvers that use iterative solvers on (a) coarser grid(s) will always give somewhat less
efficient defect corrections.
When we now optimize our solver for I2 and I3 we get better asymptotic convergence rates (over the whole cycle)

than when optimizing for I1. However, when we look at the reduction per stage ( 2m
√) we see that using a higher number

of stages – while resulting in a better smoother – does not necessarily result in a better V -cycle. The reason is the limited
ability to resolve modes slightly below π

2 (Fig. 2), even though we are using an idealized coarse grid solution. Judging from
the model, the optimal number of stages to use would be 1 or 2 for U1, 2 for U2, 3 for K3 and 1 for the Poisson equation.
Experiments on real solvers confirmed these results, and showed that the optimal value of m was 1 for the U1 scheme. In
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Fig. 3. Optimal U1 scheme (m = 1; γ1 = 0.5). Figure left: Stability region and Fourier symbol. Figure right: Amplification curves |P ′m(λ(θ))| (dotted line)
and |µV ,2(λ(θ))| (solid line).

Fig. 4. Optimal U2 scheme (m = 2; γ1 = 0.3881, γ2 = 0.0803). Figure left: Stability region and Fourier symbol. Figure right: Amplification curves
|P ′m(λ(θ))| (dotted line) and |µV ,2(λ(θ))| (solid line).

general the experimental convergence rates again differed only within 0.5%–5% of the values of the theoretical model (based
on I3), except form = 1 in the U1 scheme, andm = 2 for the K3 scheme, which is believed to be due to the effect of aliasing
(neglected in themodel). The integrated optimization approach (I3) yielded an improvement over the old coefficients,which
for the optimal number of stages amounted to 33% for the K3 scheme (m = 3), 5% for the U2 (m = 2) scheme and equal
performance for U1 (m = 1). For higher values ofm the optimization of I3 steadily outperformed that of I1.
We illustrate the results for the different optimal schemes by drawing the stability region S = {z ∈ C; |P ′m(z)| ≤

1} on which we superpose (−λ(θ)) and also give |P ′m(λ(θ))| (the amplification of the smoother) and |µV ,2(λ(θ))| (the
amplification of the V -cycle). We point out that, due to rounding errors in the actual computation of Eq. (39), |µV ,2(λ(θ))|
sometimes tended to 1 in the neighborhood of θ = 0 (see Figs. 3–5).
It is clear that the new optimization procedure results in an amplification curve that respects the equal excursion

principle, but now taken over the complete V -cycle and that smoothing has been sacrificed to some extent.

6. Iterative scheme using a splitting of the discretization matrix

6.1. Formulation

In analogy to the Modified-Runge Kutta scheme [5] we propose a scheme that splits A in two parts

A = B+ C . (44)
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Fig. 5. Optimal K3 scheme (m = 3; γ1 = 1.0537, γ2 = 0.7632, γ3 = 0.2417). Figure left: Stability region and Fourier symbol. Figure right: Amplification
curves |P ′m(λ(θ))| (dotted line) and |µV ,2(λ(θ))| (solid line).

The scheme is given by

U(o) = un
V(o) = M−1r(o)
U(1) = U(o) − γ1V(o)
VB(1) = −M−1BV(o)
VC (1) = −M−1CV(o)
U(2) = U(1) − γB,2VB(1) − γC,2VC (1)
VB(2) = −M−1BVB(1)
VC (2) = −M−1CVC (1)
...

VB(l) = −M−1BVB(l−1)
VC (l) = −M−1CVC (l−1)
U(l+1) = U(l) − γB,l+1VB(l) − γC,l+1VC (l)
...

VB(m−1) = −M−1BVB(m−2)
VC (m−1) = −M−1CVC (m−2)
U(m) = U(m−1) − γB,mVB(m−1) − γC,mVC (m−1)
un+1 = U(m)

(45)

which results in

en+1 = P ′′m(−M
−1B,−M−1C)en (46)

where

P ′′m(z1, z2) = 1+

(
γ1 +

m∑
l=2

(
γB,lz l−11 + γC,lz

l−1
2

))
(z1 + z2). (47)

Again we note that it is not necessary to store intermediate results and that VB and VC can be computed in parallel.
We limit ourselves to splittings where M−1B and M−1C have the same eigenvectors as M−1A, which is straightforward

if A results from a differencing scheme, as illustrated in Section 5. We number the eigenvalues λB,i and λC,i (i = 1, . . . , p) of
M−1B andM−1C respectively in such a way that

λB,i + λC,i = λi (i = 1, . . . , p). (48)
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Table 10
Optimal coefficients for I3 when using the split scheme

U1 U2 K3

γ1 0.5000 0.2071 0.4580
γB,2 0.0000 0.0000 0.0000
γC,2 0.6043 0.1703 0.5471
4
√

I3 0.6462 0.7779 0.6240
4
√

IE 0.6413 0.7762 0.6391

Advection equation using different discretizations.

In this case, according to a well-known theorem in [10], (M−1B) and (M−1C) commute, which avoids problems with the
commutative property of the scalars in expression (47) and we can write

en+1i = P ′′m(−λB,i,−λC,i)e
n
i . (49)

Wewill now propose splits such that λB is the real part and λC the imaginary part of λi. In other words where B = 1
2 (A+A

T)

and C = 1
2 (A− A

T).

6.1.1. Advection equation with U1
We propose to split the differencing scheme (and hence A) as

1
∆x

((
−uj+1 + 2uj − uj−1

2

)
+

(
uj+1 − uj−1

2

))
(50)

which will result in

λ(θ) =
1
∆x

(1− cos θ)︸ ︷︷ ︸
λB(θ)

+
1
∆x

(i sin θ)︸ ︷︷ ︸
λC (θ)

. (51)

This splitting is a very logical one as it writes the upwind discretization as the sum of a central discretization (imaginary
part) and a first order diffusion term (real part).

6.1.2. Advection equation with U2

( 1
2uj+2 − 2uj+1 + 3uj − 2uj−1 +

1
2uj−2

)
+
(
−
1
2uj+2 + 2uj+1 − 2uj−1 +

1
2uj−2

)
2∆x

(52)

λ(θ) =
1
2∆x

(3− 4 cos θ + cos(2θ))︸ ︷︷ ︸
λB(θ)

+
i
2∆x

(4 sin θ − sin(2θ))︸ ︷︷ ︸
λC (θ)

. (53)

Again the real part corresponds to a diffusion term, this time of third order.

6.1.3. Advection equation with K3

( 1
2uj+2 − 2uj+1 + 3uj − 2uj−1 +

1
2uj−2

)
+
(
−
1
2uj+2 + 4uj+1 − 4uj−1 +

1
2uj−2

)
6∆x

(54)

λ(θ) =
1
6∆x

(3− 4 cos θ + cos(2θ))︸ ︷︷ ︸
λB(θ)

+
i
6∆x

(8 sin θ − sin(2θ))︸ ︷︷ ︸
λC (θ)

. (55)

6.2. Results

The optimal coefficients obtained with this approach can be found in Table 10. It was found thatm = 2 gave the optimal
efficiency for the three discretizations. Using more coefficients only improved the performance slightly but not enough to
compensate for the extra numerical work. It was also found that setting γB,2 (corresponding to the diffusive part) to zero
did not degrade performance too much. As this allowed us to reduce the number of coefficients (and hence matrix-vector
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Fig. 6. Figure left: stability region and Fourier symbol. Figure right: amplification curves |P ′′m(λ(θ))| (dotted line) and |µV ,2(λ(θ))| (solid line) for the
optimal split U1 scheme (m = 2; γ1 = 0.5000, γB,2 = 0.0000, γC,2 = 0.6043).

Fig. 7. Figure left: stability region and Fourier symbol. Figure right: amplification curves |P ′′m(λ(θ))| (dotted line) and |µV ,2(λ(θ))| (solid line) for the
optimal split U2 scheme (m = 2; γ1 = 0.2071, γB,2 = 0.0000, γC,2 = 0.1703).

multiplications) from 3 to 2 it was found that a higher efficiency was attained. The schemes were optimized for I3 and
compared with IE .
Again, agreement between the theoretical model and the experimental results was very good. From the data it is clear

that this split approach withm = 2 and γB,2 = 0 can lead to improvements in the order of 10% for U1 and U2 and 20% for K3
with respect to our optimal results in Section 5. We illustrate the results for the different optimal split schemes by drawing
the stability region S = {z ∈ C; |P ′′m(z)| ≤ 1} on which we superpose (−λ(θ)) and also give |P

′′
m(λ(θ))| and |µV ,2(λ(θ))|

(see Figs. 6–8).

7. Advection–diffusion equation

Often a certain amount of artificial diffusion is added to the advection Eq. (20) to stabilize it when the advection term is
discretized with a central discretization. If we choose a third order dissipative term this becomes

∂u
∂t
+ a

∂u
∂x
+ µ∆x3

∂4u
∂x4
= 0 (56)

where a, µ ∈ R+o . Again we are only interested in the steady-state solution and take a = 1 for the sake of simplicity.
Discretization of the space operators gives

1
2∆x

(
uj+1 − uj−1

)
+
µ

∆x

(
uj+2 − 4uj+1 + 6uj − 4uj−1 + uj−2

)
. (57)
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Fig. 8. Figure left: stability region and Fourier symbol. Figure right: amplification curves |P ′′m(λ(θ))| (dotted line) and |µV ,2(λ(θ))| (solid line) for the
optimal split K3 scheme (m = 2; γ1 = 0.4580, γB,2 = 0.0000, γC,2 = 0.5471).

This is quite similar to the discretizations of the previous section with a natural splitting between the Hermitian (diffusive)
and anti-Hermitian (convective) part.
The resulting Fourier symbol is

λ(θ) =
2µ
∆x

(3− 4 cos θ + cos(2θ))︸ ︷︷ ︸
λB(θ)

+
i
∆x

(sin θ)︸ ︷︷ ︸
λC (θ)

. (58)

The iterative solution of this equation has been studied in [6,7,9], which led to the so called modified Runge–Kutta scheme
and the Martinelli–Jameson coefficients, which were obtained by trial and error. Later Hosseini [5] analytically confirmed
the results of Martinelli and Jameson. The Modified Runge–Kutta scheme treats the convective and diffusive parts of the
residual differently. We use the formulation given in [8], adapting it to the conventions and notations used in this paper.

U(o) = un

U(1) = U(o) − α1h
(
r(o)C + r

(o)
B

)
...

U(l) = U(o) − αlh

(
r(l−1)C +

l−1∑
k=0

Γl,kr
(k)
B

)
un+1 = U(m).

(59)

Here r(l)C stands for the convective, and r
(l)
B for the dissipative part of the residual at stage l and

Γl,k =

{
βl if k = l− 1
(1− βl)Γl−1,k if k 6= l− 1. (60)

The Martinelli–Jameson coefficients are given by:

α1 =
1
4

β1 = 1

α2 =
1
6

β2 = 0

α3 =
3
8

β3 =
14
25

α4 =
1
2

β4 = 0

α5 = 1 β5 =
11
25

and h = 3.93, µ = 1/32. The resulting stability region, Fourier symbol and amplification curves are given in Fig. 9.
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Fig. 9. Advection–diffusion equation with 5-stage Martinelli–Jameson coefficients and h = 3.8058. Figure left: stability region and Fourier symbol. Figure
right: amplification curves |P ′′m(λ(θ))| (dotted line) and |µV ,2(λ(θ))| (solid line).

Fig. 10. Advection–diffusion equation with split scheme (m = 3; γ1 = 1.4226, γB,2 = 0, γC,2 = 1.2826, γB,3 = 0, γC,3 = 1.3000). Figure left: Stability
region and Fourier symbol. Figure right: Amplification curves |P ′′m(λ(θ))| (dotted line) and |µV ,2(λ(θ))| (solid line).

Testing our objective functions on this scheme, keeping the α and β coefficients andµ but optimizing h for I1 and I3 we
found

• I1 = 0.5831 for h = 3.8231
• I3 = 0.3407 for h = 3.8058

which is not that different from the value found in [5]. We illustrate these results by drawing the stability region
S = {z ∈ C; |P ′′m(z)| ≤ 1} on which we superpose (−λ(θ)) and also give |P

′′
m(λ(θ))| and |µV ,2(λ(θ))|. We only do this

for h = 3.8058 as both results are qualitatively similar.
This scheme uses 5 stages, with 5 evaluations of the advective and 3 evaluations of the diffusive residual, which is quite

costly. We like to point out that the spike in the amplification curve around θ = π
2 is due to the way we model the low

and high frequencies separately. It seems reasonable that a better model would smoothen this curve and that therefore the
optimal value of I3 will be slightly lower.
We now try to find a split scheme, according to our own formulation in Section 6 for this equation, minimizing I3 and

using a low number of stages. It was found that a scheme with m = 3 gave the best result, keeping µ = 1/32. Setting γB,2
and γB,3 to zero again did not degrade performance too much and offered a computational saving of 40%. With this in mind
the optimal scheme was given by (γ1, γB,2, γC,2, γB,3, γC,3) = (1.4226, 0, 1.2826, 0, 1.3000), which gave an optimal value
I3 = 0.1190 ( 3

√
I3 = 0.4919), which only differed by less than 1% from values measured on the real solver.

We note that these values are substantially lower than the optimal values found for the Martinelli–Jameson scheme and
effectively use only 3 coefficients. We illustrate this schemes in Fig. 10.
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8. Conclusions

Previous studies [1,4,5,11], that optimized the Runge–Kutta parameters for the high frequency domain, showed that a
better smoother can be obtainedwhen using a high number of stages.While this is true, we discovered that for the complete
2-grid cycle the gain from a higher number of stages does not outweigh the extra computational cost, due to the limitations
of the defect correction. It actually appears that using a low number of stages gives the best results. We optimized the
coefficients for a complete V -cycle and obtained improvements up to 20% for higher order discretizations (measured per
stage). When we choose to treat the Hermitian part of the discretization separately from the anti-Hermitian part, further
gains could be obtained; these were of the order of 30%–50% using a low number of stages (measured per stage).
We compared the latter with the Martinelli–Jameson scheme for the advection–diffusion equation and found an

asymptotic convergence rate that was 66% better (over a whole V -cycle) but using 3, instead of 8, matrix-vector
multiplications in the smoother.
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