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a b s t r a c t

Kotakemori et al. [H. Kotakemori, K. Harada, M. Morimoto, H. Niki, A comparison theorem
for the iterative method with the preconditioner (I + Smax), Journal of Computational and
Applied Mathematics 145 (2002) 373–378] have reported that the convergence rate of the
iterative method with a preconditioner Pm = (I + Sm)was superior to one of the modified
Gauss–Seidel method under the condition. These authors derived a theorem comparing
the Gauss–Seidel method with the proposed method. However, through application of a
counter example, Wen Li [Wen Li, A note on the preconditioned GaussSeidel (GS) method
for linear systems, Journal of Computational and Applied Mathematics 182 (2005) 81–91]
pointed out that there exists a specialmatrix that does not satisfy this comparison theorem.
In this note, we analyze the reason why such a to counter example may be produced, and
propose a preconditioner to overcome this problem.

© 2009 Published by Elsevier B.V.

1. Introduction

We herein consider the following preconditioned linear system:

PAx = Pb, (1.1)

where A = (aij) ∈ Rn×n is a nonsingularM-matrix, P ∈ Rn×n is a preconditioner, and x, b ∈ Rn are vectors. Without loss of
generality, we assume that A has a splitting of the form A = I − L− U , where I denotes the n× n identity, and−L and−U
are the strictly lower, and upper triangular parts of A, respectively.
In 1991, Gunawardena et al. [1] proposed the modified Gauss–Seidel method in which P = (I + S), with

S = (sij) =
{
−aii+1 for i = 1, 2, . . . , n− 1, j = i+ 1,
0 otherwise.

These authors proved that if 0 < aii+1ai+1i < 1 then the inequality:

ρ(TS) ≤ ρ(T ) < 1,

is satisfied, where ρ(TS) and ρ(T ) denote the spectral radius of the GaussSeidel iterative matrices TS and T associated with
AS = (I + S)A and A, respectively.
In 2002, Kotakemori et al. [2] proposed to use Pm = (I + Sm), where Sm is defined by

Sm = (s
(m)
ij ) =

{
−aiki for 1 ≤ i < n, i+ 1 < j ≤ n,
0 otherwise,

where ki = minIi, Ii = {j : |aij| is maximal for i+ 1 ≤ j ≤ n}, for 1 ≤ i < n.
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Then Am = (I + Sm)A can be written as follows:
Am = I − L− U + Sm − SmL− SmU = Mm − Nm,

where Mm = (I − Dm) − (L + Em) and Nm = U − Sm + Fm + SmU and Dm, Em and Fm are the diagonal and strictly lower
and strictly upper triangular parts of SmL, respectively. Under the condition 0 < aikiakii < 1, Kotakemori et al. derived the
following result.

Lemma 1 (Kotakemori et al. [2], Lemma 3.4). Let A be anM-matrix. Suppose that

aii+1ai+1j ≤ aikiakij, 1 ≤ i ≤ n− 2, j ≤ i. (1.2)

Then the following inequality holds:

M−1m ≥ M
−1
s .

Theorem 2 (Kotakemori et al. [2], Theorem 3.5). Let A be an M-matrix. Then the Gauss–Seidel splittings A = M − Nand As =
Ms − Ns are convergent and the following inequality holds:

ρ(TS) ≤ ρ(T ) < 1. (1.3)

Proof. It easily follows from the assumption of the present theorem together with Theorem of [4] that ρ(M−1N) < 1.
Since AS is also an M-matrix, AS admits the convergent splitting AS = MS − NS . By putting A = P−1S (MS − NS), we have
A = M − N = P−1S (MS − NS). Since A = M − N is the Gauss–Seidel convergent splitting, there exists a positive vector x
satisfing ρ(M−1N)x = M−1Nx. We then have the following relation:

Ax = (M − N) = M(I −M−1N)x =
1− ρ(M−1N)
ρ(M−1N)

Nx ≥ O.

SinceM−1S ≥ O and PS ≥ O, then we further have thatM
−1
S PS ≥ M

−1
S ≥ M

−1. It follows that

(M−1S PS −M
−1)Ax = M−1s PS{P

−1
S (MS − NS)}x− (I −M

−1N)x

= (I −M−1S NS)x− (I −M
−1N)x

= M−1Nx−M−1S NSx = ρ(M
−1N)x−M−1S NSx ≥ O,

which by Theorem (2.2) of [1] implies (1.3). �

Theorem 3. Let A be anM-matrix. Let AS = MS − NS and Am = Mm − Nm be Gauss–Seidel convergent splittings of AS and Am,
respectively. Assume that only one of the inequalities Amx ≥ ASx or Amy ≥ Asy , where x and y are positive eigenvectors associated
with TS and Tm, respectively. Under the assumptions in Lemma 1, the following inequality holds:

ρ(Tm) ≤ ρ(TS).

Proof. By putting A = AS and AS = Am, the proof follows in a similar manner to that of Theorem 2. �

2. The case ρ(TS) ≤ ρ(Tm) forM−1
m ≥ M−1

S

In 2005, Wen Li showed the following counter example [5]:

A =


1.0 −0.1 −0.1 −0.1 −0.2
−0.1 1 −0.1 −0.1 −0.2
−0.1 −0.1 1 −0.1 −0.2
−0.1 −0.1 −0.1 1 −0.2
−0.1 −0.1 −0.1 −0.1 1

 .
For this matrix, we have the following results:

AS =


0.99 0 −0.11 −0.11 −0.22
−0.11 0.99 0 −0.11 −0.22
−0.11 −0.11 0.99 0 −0.22
−0.12 −0.12 −0.12 0.98 0
−0.1 −0.1 −0.1 −0.1 1

 ,

M−1S =


1.010 0 0 0 0
0.112 1.010 0 0 0
0.125 0.112 1.010 0 0
0.153 0.137 0.124 1.020 0
0.140 0.126 0.113 0.102 1

 , TS =


0 0 0.111 0.111 0.111
0 0 0.012 0.123 0.247
0 0 0.014 0.026 0.274
0 0 0.017 0.032 0.091
0 0 0.015 0.029 0.083

 ,
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and ρ(TS) = 0.1497. On the other hand, for Pm we have:

Am =


0.98 −0.12 −0.12 −0.12 0
−0.12 0.98 −0.12 −0.12 0
−0.12 −0.12 0.98 −0.12 0
−0.12 −0.12 −0.12 0.98 0
−0.1 −0.1 −0.1 −0.1 1

 ,

M−1m =


1.020 0 0 0 0
0.125 1.020 0 0 0
0.140 0.125 1.020 0 0
0.157 0.140 0.125 1.020 0
0.144 0.129 0.115 0.102 1

 , Tm =


0 0.122 0.122 0.122 0
0 0.015 0.137 0.137 0
0 0.017 0.032 0.154 0
0 0.019 0.036 0.051 0
0 0.017 0.033 0.046 0

 ,
and ρ(Tm) = 0.1555. While this matrix satisfies condition equation (1.2), the inequality ρ(Tm) ≤ ρ(TS) does not hold. We
test the following matrix:

B =


1.0 −0.1 −0.1 −0.1 −0.3
−0.1 1 −0.1 −0.1 −0.3
−0.1 −0.1 1 −0.1 −0.3
−0.1 −0.1 −0.1 1 −0.1
−0.1 −0.1 −0.1 −0.1 1

 .
For this matrix, we have the following results:

M−1S =


1.010 0 0 0 0
0.112 1.010 0 0 0
0.125 0.112 1.010 0 0
0.139 0.125 0.112 1.010 0
0.139 0.125 0.112 0.101 1

 , TS =


0 0 0.111 0.111 0.333
0 0 0.012 0.123 0.370
0 0 0.014 0.026 0.391
0 0 0.015 0.029 0.122
0 0 0.015 0.029 0.122

 ,
and ρ(TS) = 0.1873. On the other hand, for Pm we have:

M−1m =


1.031 0 0 0 0
0.138 1.031 0 0 0
0.157 0.138 1.031 0 0
0.147 0.130 0.115 1.010 0
0.147 0.130 0.115 0.101 1

 , Tm =


0 0.134 0.134 0.134 0
0 0.018 0.152 0.152 0
0 0.020 0.038 0.172 0
0 0.019 0.036 0.051 0
0 0.019 0.036 0.051 0

 .
Then ρ(Tm) = 0.1682. Thus for this case the inequality ρ(Tm) ≤ ρ(TS) holds. From the results above, we know that there
exist |ain| (1 ≤ i ≤ n − 2) such that ρ(TS) ≥ ρ(Tm). It is, however, in general difficut to determine |ain| such that the
relation ρ(TS) ≥ ρ(Tm) holds a proori. Motivated by this problem, in next section we propose a preconditioner that satisfies
ρ(TS) ≥ ρ(Tm) unconditionaly.

3. A preconditioner satisfying ρ(TS) ≥ ρ(Tm)

Method 1.We propose the preconditioner Pm1 = (I + Sm1), where Sm1 is defined by

Sm1 = (s
(m1)
ij ) =

{
−a12
−aiki for 2 ≤ i < n, i < j ≤ n,
0 otherwise,

where ki = minIi, Ii = {j : |aij| is maximal for i ≤ j ≤ n}, for 2 ≤ i < n.
By using this preconditioner Pm1 for A, we obtain

Am1 =


.97 0 −0.11 −0.11 −0.22
−0.12 .98 −0.12 −0.12 0
−0.12 −0.12 .98 −0.12 0
−0.12 −0.12 −0.12 .98 0
−0.1 −0.1 −0.1 −0.1 1

 .
Then ρ(Tm1) = 0.1376 < ρ(TS).
Method 2.We propose the precondioner Pm2 = (I + Sm2), where Sm2 is defined by

Sm2 = (s
(m2)
ij ) =


−a12
−a1ki for 1 < j ≤ n,
−aiki for 2 ≤ i < n, i < j ≤ n,
0 otherwise,

where ki = minIi, Ii = {j : |aij| is maximal for i+ 1 ≤ j ≤ n}, for 1 ≤ i < n.
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By using this preconditioner Pm2 for A, we obtain

Am2 =


.97 −0.02 −0.13 −0.13 −0.02
−0.12 .98 −0.12 −0.12 0
−0.12 −0.12 .98 −0.12 0
−0.12 −0.12 −0.12 .98 0
−0.1 −0.1 −0.1 −0.1 1

 ,
and ρ(Tm2) = 0.1235. As descrived in the next section, since |a

(m2)
21 | < 0.073, ρ(Tm2) < ρ(Tm1) holds

Remark 4. For the preconditioner Pm1 = (I + Sm1), Eq. (1.2) is weakened as follows:

aii+1ai+1j ≤ aikiakij, 2 ≤ i ≤ n− 2, j ≤ i.

Method 3. To ensure the inequality ρ(TS) ≥ ρ(Tm) is satisfied, condition Eq. (1.2) must be satisfied. In order to overcome
with this drawback, Morimoto et al. [3] proposed the preconditioner Psm = (I + S + Sm). For this preconditione, Sm is

Sm = (s
(m)
ij ) =

{
−aili for 1 ≤ i < n, j > n− 1,
0 otherwise,

where li = minIi, Ii = {j : |aij| is maximal for i+ 2 ≤ j ≤ n}, for 1 ≤ i < n− 1.
By using this preconditioner to A, we have the following results:

Asm =


0.979 −0.02 −0.13 −0.13 −0.021
−0.13 0.97 −0.02 −0.13 −0.02
−0.13 −0.13 0.97 −0.02 −0.02
−0.12 −0.12 −0.12 0.98 0
−0.1 −0.1 −0.1 −0.1 1

 ,

Tsm =


0 0.021 0.134 0.134 0.021
0 0.003 0.039 0.152 0.023
0 0.003 0.023 0.059 0.027
0 0.003 0.024 0.042 0.009
0 0003 0.022 0.039 0.008

 ,
and so ρ(Tsm) = 0.0908 < ρ(Tm2).

4. Concluding remarks

1. For matrix A, if |a12| < 0.073, the preconditioning effect of PS is insufficent, and so ρ(TS) < ρ(Tm). In cotrast, for
|a15| > 0.296, the preconditioning effect of Pm is sufficent, hence ρ(TS) > ρ(Tm) holds. If |a51| ≥ 0.2, then a sufficiently
large value ofM−1m is obtained such that ρ(TS) > ρ(Tm) holds.

2. Assume that LT ≥ U and in particular that |aiki | < |aki i| (1 ≤ i ≤ n− 2), then ρ(TS) > ρ(Tm) holds.
3. For a matrix with structuer of example A, either of the inequalities ρ(TS) ≥ ρ(Tm) or ρ(TS) ≤ ρ(Tm)may be satisfied. To
ensure that ρ(TS) ≥ ρ(Tm) holds, Amust satisfy an appropriate condition. However, the form of this condition remains
an open question.

4. We have shown that the preconditioner Psm is an effective precondioner.
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