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1. Introduction

We herein consider the following preconditioned linear system:
PAx = Pb, (1.1)

where A = (a;) € R™" is a nonsingular M-matrix, P € R™" is a preconditioner, and x, b € R" are vectors. Without loss of
generality, we assume that A has a splitting of the form A = I — L — U, where I denotes the n x n identity, and —L and —U
are the strictly lower, and upper triangular parts of A, respectively.

In 1991, Gunawardena et al. [1] proposed the modified Gauss-Seidel method in which P = (I 4 S), with

fori=1,2,...,n—1,j=i+1,

e TG
§S=(sy) = {o otherwise.

These authors proved that if 0 < a;;11a;+1; < 1 then the inequality:

p(Ts) < p(T) <1,

is satisfied, where p(Ts) and p(T) denote the spectral radius of the GaussSeidel iterative matrices Ts and T associated with
As = (I + S)A and A, respectively.
In 2002, Kotakemori et al. [2] proposed to use P, = (I 4+ Sp,), where S, is defined by

S —(s(m))— —ay, forl<i<ni+1<j=<n,
meME 2 T0 otherwise,

where k; = minl;, I; = {j : |aj| is maximalfori+ 1 <j<n},for1 <i<n.
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Then A, = (I + S;;)A can be written as follows:
An=1—L—U~+Sy — SpL — SpU = My, — N,

where M, = (I — Dy,) — (L + E;) and Ny, = U — Sy, + Fy, 4+ SpU and Dy, E;, and Fy, are the diagonal and strictly lower
and strictly upper triangular parts of S;,L, respectively. Under the condition 0 < ay,ax; < 1, Kotakemori et al. derived the
following result.

Lemma 1 (Kotakemori et al. [2], Lemma 3.4). Let A be an M-matrix. Suppose that
Qi 10ip1j < Qi A, 1<i<n—2,j<i
Then the following inequality holds:
Mt > M

m

Theorem 2 (Kotakemori et al. [2], Theorem 3.5). Let A be an M-matrix. Then the Gauss-Seidel splittings A = M — Nand A; =
M; — N; are convergent and the following inequality holds:

p(Ts) < p(T) < 1. (1.3)

Proof. It easily follows from the assumption of the present theorem together with Theorem of [4] that p(M~'N) < 1.
Since As is also an M-matrix, As admits the convergent splitting A; = Ms — Ns. By putting A = P;l(MS — Ns), we have
A=M-—-N = P_;‘(MS — Ns). Since A = M — N is the Gauss-Seidel convergent splitting, there exists a positive vector X
satisfing p(M~'N)x = M~'Nx. We then have the following relation:

_1 1—p(M~'N)
AA=M-N)=MJI—-M'N)x=—"—__"Nx>0.
p(M~IN)
Since Ms_l > 0 and Ps > 0O, then we further have that Ms_ng > MS_1 > M. 1t follows that
(Mg 'Ps — M~1)Ax = M 'Ps{P; ' (Ms — Ns)}x — (I — M~ 'N)x
= (I — M 'Ns)x — (I — M~ 'N)x
= M~ 'Nx — M 'Nsx = p(M~'N)x — M; 'Nsx > O,
which by Theorem (2.2) of [1] implies (1.3). W

Theorem 3. Let A be an M-matrix. Let As = Ms — Ns and A,;, = M, — N,;, be Gauss-Seidel convergent splittings of As and A,
respectively. Assume that only one of the inequalities A, > Asx or Ay > Asy, where X and y are positive eigenvectors associated
with Ts and Ty, respectively. Under the assumptions in Lemma 1, the following inequality holds:

p(Tm) < p(Ts).
Proof. By putting A = As and A; = Ap,, the proof follows in a similar manner to that of Theorem 2. W
2. The case p(Ts) < p(T,») for M;;* > M;!

In 2005, Wen Li showed the following counter example [5]:

1.0 -0.1 -01 -0.1 -0.2
—0.1 1 —-0.1 —-0.1 -0.2
A=]-01 -0.1 1 —-0.1 —-0.2
-0.1 -0.1 -0.1 1 —0.2
-0.1 -0.1 -0.1 -0.1 1
For this matrix, we have the following results:
0.99 0 —-0.11 -0.11 -0.22
—0.11 0.99 0 —0.11 —-0.22
As=1]-0.11 —-0.11 0.99 0 —-0.22 |,
—-0.12 -0.12 -0.12 0.98 0
—0.1 —-0.1 —0.1 —0.1 1
1.010 0 0 0 0 0 0 0.111 0.111 0.111
0.112 1.010 0 0 0 0 0 0.012 0.123 0.247
M5_1= 0.125 0.112 1.010 0 0], T 0 0 0.014 0.026 0.274
0.153 0.137 0.124 1.020 0 0 0 0.017 0.032 0.091
0.140 0.126 0.113 0.102 1 0 0 0.015 0.029 0.083
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and p(Ts) = 0.1497. On the other hand, for P,, we have:

098 —-0.12 -0.12 -0.12 0
—-0.12 098 —-0.12 —-0.12 O
An=1]-0.12 —-0.12 098 —-0.12 0],
—-0.12 -0.12 —-0.12 098 O
-01 -01 —-0.1 -0.1 1
1.020 0 0 0 0 0 0.122 0.122 0.122 0
0.125 1.020 0 0 0 0 0.015 0.137 0.137 0
M,;lz 0.140 0.125 1.020 0 o], T,=]0 0.017 0.032 0.154 0],
0.157 0.140 0.125 1.020 0 0 0.019 0.036 0.051 0
0.144 0.129 0.115 0.102 1 0 0.017 0.033 0.046 O
and p(T,,) = 0.1555. While this matrix satisfies condition equation (1.2), the inequality p(T,;;) < p(Ts) does not hold. We

test the following matrix:

1.0 -01 -0.1 -0.1 -0.3
—0.1 1 -0.1 -0.1 -0.3
B=1]-0.1 -0.1 —-0.1 —-0.3
—-0.1 -0.1 -0.1 1 —0.1
-0.1 -0.1 -0.1 -0.1 1
For this matrix, we have the following results:
1.010 0 0 0 0 0 0 0.111 0.111 0.333
0.112 1.010 0 0 0 0 0 0.012 0.123 0.370
M5‘1= 0.125 0.112 1.010 0 ofl, Ts=|0 0 0.014 0.026 0.391],
0.139 0.125 0.112 1.010 0 0 0 0.015 0.029 0.122
0.139 0.125 0.112 0.101 1 0 0 0.015 0.029 0.122
and p(Ts) = 0.1873. On the other hand, for P,, we have:
1.031 0 0 0 0 0 0.134 0.134 0.134 0
0.138 1.031 0 0 0 0 0.018 0.152 0.152 0
M,;lz 0.157 0.138 1.031 0 of, T,=]0 0.020 0.038 0.172 0
0.147 0.130 0.115 1.010 O 0 0.019 0.036 0.051 0
0.147 0.130 0.115 0.101 1 0 0.019 0.036 0.051 0

Then p(T,) = 0.1682

. Thus for this case the inequality p(T,;) < p(Ts) holds. From the results above, we know that there

exist |a;,| (1 < i < n — 2) such that p(Ts) > p(Ty). It is, however, in general difficut to determine |a;,| such that the
relation p(Ts) > p(Ty,) holds a proori. Motivated by this problem, in next section we propose a preconditioner that satisfies
p(Ts) > p(Ty) unconditionaly.

3. A preconditioner satisfying o(Ts) > po(T,)

Method 1. We propose the preconditioner P;,;; = (I 4+ Siu1), where Sp,,; is defined by

1
Smi = (") =

—a12
_aiki
0

for2 <i<n,i<j<n,
otherwise,

where k; = minl;, I; = {j : |a;| is maximal fori <j <n},for2 <i <n.
By using this preconditioner Pp,; for A, we obtain

.97 0 —011 -0.11 -022
-0.12 .98 -0.12 —012 0
Am=|-012 -012 98 -012 0
—0.12 -0.12 -0.12 .98 0
-01 -01 -0.1 —0.1 1

Then p(Tm1) = 0.1376 < p(Ts).

Method 2. We propose the precondioner Py,;; = (I 4 Sp2), where Sy, is defined by

—a12
Sy = (™) = —ay, forl<j<n,
m2 i —ay, for2 <i<n,i<j<n,

where k; = minl;, I; =

0

otherwise,

{j : lag| ismaximalfori+ 1 <j<n},for1 <i<n.
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By using this preconditioner Py, for A, we obtain

97  —0.02 -0.13 —0.13 —0.02
—0.12 .98 —0.12 -0.12 0O
Am=|-012 -012 98 -012 o0 |,
—0.12 -0.12 -0.12 .98 0
-01 -01 -01 —0.1 1

and p(T;) = 0.1235. As descrived in the next section, since |a§'1"2)| < 0.073, p(Tp2) < p(Tyy) holds

Remark 4. For the preconditioner P,;; = (I 4+ Sp1), Eq. (1.2) is weakened as follows:

Qjit10ip1j < Qg A, 2 =<i<n—2,j<Ii

Method 3. To ensure the inequality p(Ts) > p(Ty,) is satisfied, condition Eq. (1.2) must be satisfied. In order to overcome
with this drawback, Morimoto et al. [3] proposed the preconditioner Ps,, = (I + S + S;,). For this preconditione, Sy, is

fori<i<n,j>n-—1,
otherwise,

—aj.
Sm — (Sfjm)) — {0 il

where ; = minl;, I; = {j : |a;| is maximalfori4+2 <j<n}, for1 <i<n—1.
By using this preconditioner to A, we have the following results:

0979 -0.02 -0.13 -0.13 -0.021
-0.13 097 -0.02 -0.13 —0.02
Agmn=1]-013 -0.13 097 -0.02 -0.02 |,
-0.12 -0.12 -0.12 0.98 0
-01 -0.1 -0.1 —-0.1 1
0 0.021 0.134 0.134 0.021
0 0.003 0.039 0.152 0.023
Tsn =] 0 0.003 0.023 0.059 0.027 |,
0 0.003 0.024 0.042 0.009
0 0003 0.022 0.039 0.008

and so p(Tsy) = 0.0908 < p(Ti2).

. Concluding remarks

1. For matrix A, if |a;2] < 0.073, the preconditioning effect of Ps is insufficent, and so p(Ts) < p(Ty). In cotrast, for
lais| > 0.296, the preconditioning effect of Py, is sufficent, hence p(Ts) > p(T) holds. If |as;| > 0.2, then a sufficiently
large value ofM;1 is obtained such that p(Ts) > p(T;;) holds.

2. Assume that LT > U and in particular that lai;| < lakil (1 <i<n—2),then p(Ts) > p(T;) holds.

3. For a matrix with structuer of example A, either of the inequalities p(Ts) > p(Ty) or p(Ts) < p(T,;) may be satisfied. To
ensure that p(Ts) > po(T,) holds, A must satisfy an appropriate condition. However, the form of this condition remains
an open question.

4. We have shown that the preconditioner P;,, is an effective precondioner.
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