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a b s t r a c t

The modified mapping-collocation (MMC) method was applied to the boundary value
problem (BVP) of a circumferential crack in an isotropic elastic curved beam subjected to
pure bending moment loading. The stress correlation technique is then used to determine
opening and sliding mode stress intensity factor (SIF) values based on the computed
stress field near the crack tip. The MMC method aims at solving two-dimensional BVP
of linear elastic fracture mechanics (LEFM) circumventing the need for direct treatment
of the biharmonic equation by combining the power of analytic tools of complex
analysis (Muskhelishvili formulation, conformal mapping, and continuation arguments)
with simplicity of applying the boundary collocation method as a numerical solution
approach. A good qualitative agreement between the computed stress contours and the
fringe shapes obtained from the photoelastic experiment on a plexiglass specimen is
observed. A quantitative comparisonwith FEM results is alsomade using ANSYS. The effect
of crack size, crack position and beam thickness variation on SIF values and mode-mixity
is investigated.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In metal components with a curved geometry, cracks initiate in the radial direction. However, in heterogeneous
structures such as curved laminated composites, cracks occur circumferentially [1]. Even though significant amount of work
has been carried out on radial cracks in the literature, sufficient attention has not been paid to the analysis of circumferential
cracks. In contrast to radial cracks, the curved crack geometry, independent of applied loading, leads tomixed-mode fracture
consisting of opening mode (mode-I) and sliding mode (mode-II).

The modified mapping–collocation (MMC) method [2] was introduced in 1970 to treat two-dimensional fracture
mechanics problems for isotropic problems and later developed further for orthotropic cases [3]. In the 1970s the method
was applied to a range of two-dimensional problems, all with radial (and therefore straight) cracks; a radial crack in a circular
ring [4], a radial crack in a segment of a circular ring [5] and radial cracks emanating from both the inner and outer surfaces
of a circular ring [6]. In all these cases mode-I fracture of radial cracks were investigated.

In the present study, the MMC method is applied in order to compute the stress field in an isotropic curved beam
with a circumferential crack subjected to pure bending moment (Fig. 1). Thereafter, the stress correlation [7] technique
is incorporated in the MMC method to calculate the SIF values for both the opening and sliding modes from the stresses
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Fig. 1. Curved beam with circumferential crack.

obtained at the vicinity of the crack tip. A parametric study of the effect of crack size, crack position and beam thickness on
SIFs and their fraction (mode-mixity) is presented.

2. Theory

The analytic basis of theMMCmethod is mainly the comprehensive work of N.I. Muskhelishvili [8], in which his complex
representations for boundary condition equations besides conformal mapping and continuation (or extension) arguments
of both Muskhelishvili and Kartzivadze are introduced and applied to various two-dimensional linear elastic fracture
mechanics (LEFM) problems. The numerical part uses the boundary collocation method to solve the overdetermined linear
system of equations supplied by the analytic part in a least-square sense.

2.1. Muskhelishvili’s complex formulation

According to G.V. Kolosov’s formulation [8], only two complex analytic functions (e.g. φ(z) andψ(z)) are needed in order
to describe the stress field in a two-dimensional elastic body:

σy + σx = 4ℜ{φ′(z)} (1)

σy − σx + 2iσxy = 2[z̄φ′′(z)+ ψ ′(z)]. (2)

Further, Muskhelishvili [8] states the boundary condition equations in terms of φ(z) andψ(z). His complex formulation for
the stress boundary condition equations is:

N − iT = φ′(z)+ φ′(z)− [z̄φ′′(z)+ ψ ′(z)]e2iθ (3)

where N is the normal stress component of boundary traction and T is the tangential component. Also the local force
boundary condition equation is given [8] by:

(Fx + iFy)on AB = b.i[φ(z)+ zφ′(z)+ ψ(z)]zBzA (4)

where Fx and Fy are the local force vector components on segment AB on the boundary and b is the beam depth in the
direction perpendicular to the complex z-plane. However A and B do not refer to any particular point on the boundary, once
point A is selected on the boundary, point B is chosen such that when moving from A to B, the body appears on the left side
of the segment AB.

The real power of complex analysis approach to the problem appearswhen investigating cracked bodies. Finding a proper
function which maps the image plane (ζ -plane) into physical plane (z-plane) provides the opportunity of applying the
theorems and tools of complex analysis.

2.2. Laurent theorem and series

According to the Laurent theorem, for any function (e.g. φ(ζ )) that is analytic on an annulus R, centered at ζ = 0, there
exists a unique power series expansion of the form:

φ(ζ ) =

+∞
n=−∞

anζ n (5)

(namely a Laurent series) which converges to that function on the region R.
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Fig. 2. The successive mapping plan.

Although in the case of cracked curved beam, the outermapped boundary (i.e. image of the curved beam in the ζ -plane) is
not circular (Fig. 2), there is no a priori reason to suspect that the region of convergence of the series could not be extended
over to it (i.e. the outer non-circular boundary of the punctured region in the ζ -plane). Hence, it seems still possible to
approximate the φ(ζ ) by a truncated Laurent series on the region. Taking into account the stress symmetry (mirror) with
respect to the imaginary axis, the series form is modified to:

φ(ζ ) =

N
n=−M

[iA2nζ
2n

+ A2n+1ζ
2n+1

] (6)

where A2n and A2n+1 are purely real coefficients and M and N are non-negative integers. It can be shown that the proposed
series form intrinsically induces analytic satisfaction of the zero shear stress and zero horizontal displacement conditions
on the symmetry (imaginary) axis.

2.3. The mapping function

In order to map the unit circle in the image plane to a circumferential crack in the physical plane, one may combine two
successive mappings into one composite function z = h(ζ ):

z = f (g(ζ )) = h(ζ ) = Ra exp

i

β

2
(ζ + ζ−1)−

π

2


(7)

where the function mapping the unit circle in ζ -plane intow-plane is:

w = g(ζ ) =
L
4
(ζ + ζ−1) (8)

(note that L = 2β) and the function mappingw-plane into the z-plane is:

z = f (w) = Ra exp

i

w −

π

2


(9)

and Ra and β are geometrical parameters as shown in Fig. 2.

2.4. The continuation argument

In close relation to application of conformalmapping to cracked body problems, the concept of analytic continuationwas
developed and applied by I.N. Kartzivadze (for the unit circle) and later by N.I. Muskhelishvili (for the real axis) [8].

Forcing the function φ(ζ ) to continue across into the unit circle interior by defining:

φ(ζ ) = −
h(ζ )

h′


1
ζ

φ′


1
ζ


− ψ


1
ζ


, |ζ | < 1 (10)

which is called Kartzivadze’s continuation (or extension) argument. The bar-notation for any complex analytic function F
implies:

F

1
ζ


= F


1

ζ


. (11)
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Consequently [8];

ψ(ζ ) = −φ


1
ζ


−

h


1
ζ


h′(ζ )

φ′(ζ ), |ζ | > 1. (12)

This result is of extreme importance from two aspects; firstly expressing ψ(ζ ) in terms of φ(ζ ) reduces number of the
complex potentials needed to describe the stress field to one (i.e. solely φ(ζ )), and secondly it analytically satisfies traction-
free conditions on the crack boundary (i.e. the unit circle) by making the left hand side expression in the force boundary
conditions zero (see Eq. (13)).

3. Implementation

Transferring boundary condition equations into the image plane (ζ -plane), where they are to be solved, causes the
mapping function and its derivatives (via the chain rule) to enter into the formulations. The local force boundary condition
equation is found to be [8]:

b.i


φ(ζ )− φ


1

ζ


+


h(ζ )− h


1

ζ


φ′(ζ )

h′(ζ )

ζB
ζA

= (Fx + iFy)on AB. (13)

The classical solution for the crack-less curved beam under pure bending, is given by H. Golovin [9]. The right hand side
expression in Eq. (13) for moment-exerted boundary could be obtained by integrating Golovin’s solution for the normal
stress distribution equation as:

(Fx + iFy)on AB = −(cos(α)+ i sin(α))
4M
NG


R2
1r ln


R1

r


+ R2

2r ln


r
R2


+

R2
1R

2
2

r
ln


R2

R1

rB

rA

(14)

where α stands for the half arc beam angle (and in this study is equal to π
4 ),M is the applied moment’s absolute value and:

NG = (R2
2 − R2

1)
2
− 4R2

1R
2
2


ln


R2

R1

2

. (15)

On the other two (upper and lower) boundaries, right hand side of Eq. (13) is obviously zero, since there is no traction.
Substituting expressions according to the φ(ζ ) expansion (6) into the boundary condition equation (13), one may obtain

two linear equations at the mid-point between each two successive points A and B on the boundary, whose unknowns are
the coefficients of the Laurent series. These mid-points are called stations. It can be seen from Eq. (13) that on the unit circle
(crack image), since ζ =

1
ζ
, the left hand side becomes zero, satisfying the traction-free condition automatically.

The overdetermined system of linear (boundary condition) equations is constructed by writing the local force equations
for stations on the boundary. Note that since the stress symmetry is held automatically by Eq. (6), only half of the beam is
considered in the computations. The stations are placed in equal distances to each other, but not at the corners (common
points of the boundaries). For all of the cases, the lower, the moment-exerted and the upper boundaries have 3, 4 and 5
stations, respectively. Number of the equations is found to be 2∗ (3+4+5) = 24. For the series expansion,M and N values
bothwere set to 3. Number of the unknowns can be calculated from2∗(M+N)+1 as 13,whichmeans the series has 13 terms
(and therefore coefficients). Hence the redundancy factor of the overdetermined system of equations (defined as number of
equations divided by number of unknowns) is ≃2. The highest degree of the polynomial given by the expansion is 7 and the
lowest is −6. The system is solved in a least square sense and the solution determines the series expansion coefficients for
the Muskhelishvili potential φ(ζ ). Then the stress at each point of the body is found using Kolosov’s formulae (1) and (2) in
the image region:

σy + σx = 4ℜ

φ′(ζ )

h′(ζ )


(16)

σy − σx + 2iσxy = 2

h(ζ )

h′(ζ )φ′′(ζ )− h′′(ζ )φ′(ζ )

[h′(ζ )]2
+ ψ ′(ζ )

 
h′(ζ ).

Finally using the stress correlation technique, SIFs are obtained by extrapolating the stress values in the vicinity ahead
of the crack tip considering that:

KI = lim
r→0

√
2πrσ22(r, 0) (17)

KII = lim
r→0

√
2πrσ12(r, 0) (18)

where I and II represent opening and slidingmodes respectively and r stands for local radial distance from the crack tip, and
1 and 2 represent local coordinates tangential and perpendicular to the crack at its tip.
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Fig. 3. The maximum shear stress contours for the sample beam according to the: (a) MATLAB code applying the MMC method (b) photoelastic test of
plexiglass specimen.

Fig. 4. Deviation from the classical solution for normal stress distribution on the moment-exerted boundary for the sample beamwith different β values.

4. Results

An opening moment of −10 N m (i.e. M = 10 N m in Fig. 1) is applied to ends of the curved beam and a depth, b, of
0.01 m is considered for all of the beams under investigation. Considering the symmetry of the problem with respect to
the imaginary axis, the MMC method is applied successfully to one of the halves of the beam in order to find the stress
field and thereafter mode-I and mode-II SIFs. Firstly, the calculations are carried out for a sample beam of 30 mm thickness
(R1 = 15mm and R2 = 45mm) containing a crack of 25° half arc angle, β , which is located on its center line (Ra = 30mm).
Later the effect of geometrical parameters variation on mode-I SIF and mode-mixity is studied in general.

The maximum shear stress contours for the sample beam are shown in Fig. 3(a). The asymmetric contour shape around
the crack tip signifies themixed-mode stress field. Uniformly changing contours near the inner radius imitates the rainbow-
shaped fringes predicted by the classical solution i.e. in the absence of a crack [9]. The maximum shear stress contours
obtained from photoelastic 4-point bending test of a plexiglass specimen of the same dimensions is shown in Fig. 3(b).
Note that a classic 4-point bending test does not lead to application of a pure bending moment to the curved part of an L-
shaped beam (because of the straight arm shape, and nomatter how far the point forces are applied). Having this inmind and
consideringmanufacturing imperfections (especially at the crack tips) and also noting deflection of the test specimen (which
is not incorporated in the MMC-generated plot), a good agreement is observed between the numerical and experimental
results in terms of the contour shapes.

The recalculated stress values on the boundaries give a measure of the accuracy of the solution. In Fig. 4 the obtained
normal stress distribution on the moment-exerted boundary is plotted (by the markers) together with the classical
(crackless) solution (the solid line) for the sample beam. Although the same distribution is expected, a deviation from
the classical solution is observed with an increase in the crack half angle (β). The root mean square (RMS) values of the
deviation for β values 10°, 20°, 30° and 40° are calculated as 0.05, 0.25, 0.96 and 2.19 MPa respectively. Dividing by
σ = (σθ )r=R1 = 10.19 MPa, one has 0.5%, 2.5%, 9.4% and 22% as a measure of the deviation from the classical solution. Also
it is observed that all of the stress distributions given by the method in Fig. 4, result in nearly the samemoment value about
the origin (with a maximum of 3.2% deviation from −10 N m at β = 30°, where for the other cases these values are below
0.5%). Producing a somewhat negligible non-zero force resultant in the circumferential direction, these stress distributions
do not produce a pure moment. The ratio of these force values to the resultant of the positive σθ on the moment-exerted
boundary reaches a maximum of 7.6% for β = 40°. The immediate neighbor is 1.36% for β = 30°. The boundary conditions
are satisfied more accurately for smaller cracks.
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Fig. 5. The contours of 2τmax for the sample beam obtained by (a) MMCmethod and (b) FEM, a closer look (1 cm2) to the crack tip is provided for each case
on the right side.

Fig. 6. The stress components on a small arc including the crack tip of the sample beam obtained by MMC method and FEM.

A finite element model of the half-sample beam was analyzed using ANSYS (Mechanical APDL) to verify the solution
quantitatively. PLANE 183 elements were selected. The encircling crack tip singular elements have a radius of 0.1 mm. All
of the nodes on the axis of symmetry are restricted in the horizontal direction with one of the nodes restricted also in the
vertical direction to prevent rigid body motion. The contours of constant 2τmax are shown in the same contour levels in
Fig. 5(a) for the MMC method and in Fig. 5(b) for FEM. A zoomed view of the crack tip for both the MMC method and FEM
are presented on the right. The contour shapes indicate a good agreement in terms of stress values. The stress fringes end at
the crack tip for both the photoelastic test and the MMCmethod (Figs. 3(b) and 5(a)); whereas this behavior is not observed
for the FEM (Fig. 5(b)).

In Fig. 6, the stress components in polar coordinates are shown on an arc that includes the crack plane for the sample
beam. The plot indicates 1/

√
r linear-elastic singularity at the crack tip. Note the abnormal jump in the FEM-calculated

σrθ stress component and also its sudden drop right before reaching the crack tip which makes calculation of mode-II SIF
values problematic. Except for σrθ , the stresses at the crack tip, the stresses are in good agreement between the MMC and
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Fig. 7. (a) Non-dimensionalized mode-I SIF, (b) non-dimensionalized mode-II SIF, (c) mode-mixity, versus crack half arc angle, β , for a central crack
(ha = 0.5) at Ra = 30 mm, in beams of t = 20, 25, 30 mm and 35 mm thickness, for which corresponding non-dimensionalizing stress values are
σ = (σθ )r=R1 = 19.4, 13.4, 10.2 and 8.3 MPa respectively (d) non-dimensionalized mode-I SIF, (e) non-dimensionalized mode-II SIF, (f) mode-mixity,
versus crack half arc angle, β , for different crack positions ha = 0.25, 0.5 and 0.75 for the beam with R1 = 15 mm and R2 = 45 mm for which the
non-dimensionalizing stress value is σ = (σθ )r=R1 = 10.2 MPa.

FE methods. The traction-free boundary conditions on the crack surface (σr = 0, σrθ = 0) are satisfied by the MMC method
to an order of 10−12 MPa (or 10−6 Pa).

It is convenient to define a non-dimensionalized SIF parameter, Hi, as:

Hi =
Ki

σ
√
2πRm

(19)

where σ is the value of the normal stress value in the classical (crack-less) solution at inner radius of the moment-exerted
boundary of the beam, Rm is the center line radius of the beam (Rm = (R1 + R2)/2); and i stands for either opening (i ≡ I)
or sliding (i ≡ II) modes.

The effect of thickness on the SIFs and mode-mixity is shown in Fig. 7(a)–(c) for a central crack at Ra = 30 mm. Non-
dimensional mode-I SIF, HI, (Fig. 7(a)), non-dimensional mode-II SIF, HII, (Fig. 7(b)) and mode-mixity, HII/HI, (Fig. 7(c)) are
plotted against crack-half-arc-angle, β , for beam thicknesses t = 20, 25, 30 and 35 mm. Since the same moment is applied
to all of the cases, the narrower beams are expected to have higher SIF values for the same size cracks. This is not evident
from Fig. 7(a) because of non-dimensionalization done using Eq. (19); which involves the value of σ that decreases with
increase in beam thickness for a fixed moment value. The σ values are given in the figure caption. In Fig. 7(a), the non-
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dimensionalmode-I SIF increasesmonotonicallywith crack size for all thicknesses. Again note that overlapping of the graphs
for t = 30mmand t = 35mmdoes notmean equality of the SIF values. Similar trends are seen for the non-dimensionalized
mode-II SIF (Fig. 7(b)), however, the change with crack length is more pronounced. In Fig. 7(c), mode-mixity increases with
crack size for all thicknesses. For crack half arc angles, β , smaller than 15°, the ratio is the same for all thicknesses (at each β)
and remains below 0.15. Afterwards, the graphs for all thicknesses rise to a mode-mixity ratio of 0.3, following each other
very closely and in an almost linear trend. It can be observed that in the range of crack sizes considered here, mode-I remains
dominant for all thicknesses.

The effect of the crack position along the thickness of the beam (ha = (Ra − R1)/(R2 − R1)) on the SIF and the mode-
mixity is shown in Fig. 7(d)–(f) for a 30 mm thick beam (R1 = 15 mm, R2 = 45 mm). Non-dimensional mode-I SIF, HI, non-
dimensional mode-II SIF, HII, and mode-mixity, HII/HI , are plotted as a function of crack-half-arc-angle, β , in Fig. 7(d)–(f),
respectively, for different crack positions ha = 0.25, 0.5 and 0.75. For all crack positions, the mode-I SIF increases almost
linearly with crack size as shown in Fig. 7(d). It is noted that the mode-I SIF is greater for crack positions closer to the inner
radius. In the case of Fig. 7(e), the highest mode-II SIF values belong to the cracks on the center-line (ha = 0.5) and the
lowest to ha = 0.75. Therefore ha = 0.75 is the less critical crack position for both of the modes. The mode-mixity again
remains below 0.3 (Fig. 7(f)), implying a mode-I dominance for all crack positions along the thickness for the 30 mm thick
beam. The mode-mixity is seen to be independent of crack position along the thickness of the beam for smaller crack sizes,
as indicated by the overlapping parts of the graphs for β < 15°.

5. Conclusions

The stress field of an isotropic curved beam with a circumferential crack under pure bending moment was successfully
computed by the modified mapping-collocation (MMC) method. The stress correlation technique is then used to calculate
opening and slidingmode stress intensity factors for a variety of thicknesses, crack positions and sizes. The solution is found
to lose accuracy for crack half angle values of β < 5° and β > 30°; and for non-dimensional beam thickness values, t/Rm,
smaller than 0.5 due to numerical difficulties.

The effects of the crack position and the beam thickness on mode-I SIF, mode-II SIF and the mode-mixity are presented
as a function of the crack size. As expected, the SIF values for both the modes increase with the crack length. In all cases,
the crack tip fields are found to be mode-I dominated. In addition, mode-I SIF values are found to increase as the crack
position shifts towards the inner radius of the beam. Furthermore, while the mode-mixity increases with increasing β , it is
independent of both the beam thickness and the crack position for small cracks (β < 15°).

As a semi-analytic approach to treat boundary value problems of 2-D elasticity, the MMC method has advantages such
as accuracy and computational efficiency over other purely numerical methods (e.g., finite elements method), especially
in dealing with the crack tip linear-elastic singularity. A possible future study would be to apply the method to analyze a
circumferential crack in a cylindrically orthotropic curved beam.
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