
Accepted Manuscript

A modified two steps Levenberg-Marquardt method for nonlinear
equations

Keyvan Amini, Faramarz Rostami

PII: S0377-0427(15)00266-6
DOI: http://dx.doi.org/10.1016/j.cam.2015.04.040
Reference: CAM 10154

To appear in: Journal of Computational and Applied
Mathematics

Received date: 11 February 2015
Revised date: 24 April 2015

Please cite this article as: K. Amini, F. Rostami, A modified two steps Levenberg-Marquardt
method for nonlinear equations, Journal of Computational and Applied Mathematics (2015),
http://dx.doi.org/10.1016/j.cam.2015.04.040

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.cam.2015.04.040


A MODIFIED TWO STEPS LEVENBERG-MARQUARDT METHOD
FOR NONLINEAR EQUATIONS

Keyvan Amini∗ , Faramarz Rostami

Department of Mathematics, Faculty of Science, Razi University, Kermanshah, Iran

Abstract

The modified Levenberg-Marquardt (MLM) method to solve nonlinear equations was introduced by Fan in
[4]. This method uses an addition of the Levenberg-Marquardt step and an approximate LM step as the
trial step at every iteration. Using a trust region technique, the global and cubic convergence of the MLM
method under the local error bound condition is proved [4]. Recently, Fan proposed an accelerated MLM
algorithm by using a line search strategy to generate a modified LM step and showed that the convergence
rate of the algorithm is min{1 + 2δ, 3} which results the cubic convergence for δ ≥ 1 [5]. In this paper, by
introducing an adaptive LM parameter for AMLM algorithm, we propose an efficient AMLM algorithm. The
cubic convergence of the new algorithm is presented while numerical experiments show the new algorithm
is promising.

Keywords: Nonlinear equations, Levenberg-Marquardt method, Local error bound condition, Line search.

1. Introduction

Consider the nonlinear system of equations

F (x) = 0, (1)

where F (x) : Rn → Rn is a continuously differentiable function. We denote F = (f1, ..., fn)T and J(x) =
F ′(x) for all x ∈ Rn. This problem is one of the cornerstones in computation mathematics and often
arise in the applied science such as physics, engineering, chemistry, technology and industry. Due to the
nonlinearity of F (x), (1) may have no solution. Throughout the paper, we assume that the solution set of
(1) is nonempty and denote it by X∗. Many algorithms have been presented for solving the problem (1),
for example, Gauss-Newton method, Newton’s method, trust region methods, quasi-Newton methods and
etc. ([2-7], [11], [21]). The most common method to solve (1) is Newton method which uses the trial step

dN
k = −J−1

k Fk,

in every iteration, where Fk = F (xk) and Jk = F ′(xk) is the Jacobian of F at xk. Although, it is known that
if J(x) is Lipschitz continuous and nonsingular at the solution then Newton method has quadratic conver-
gence, but it has some disadvantages, especially when the Jacobian matrix is singular or near singular. The
Levenberg-Marquardt (LM) family is one of the famous methods to overcome some of these disadvantages.
This family computes the trial step by solving the linear system

(JT
k Jk + λkI)d = −JT

k Fk, (2)

∗Corresponding author
Email addresses: kamini@razi.ac.ir (Keyvan Amini∗), fara.rostami58@gmail.com (Faramarz Rostami)

Preprint submitted to Elsevier April 24, 2015

Manuscript
Click here to view linked References



where λk is the LM parameter that is updated in every iteration. It is well-known that the LM method has
quadratic convergence as the Newton method, if Jacobian matrix is nonsingular and Lipschitz continuous
in the solution. But the nonsingularity is too strong condition. In [22], Yamashita and Fukushima used
the local error bound condition, which is weaker than the nonsingularity of the Jacobian and proved that
if the LM parameter is chosen as λk = ‖F (xk)‖2, the algorithm has quadratic convergence. Fan and Yuan
obtained a similar result when λk = ‖F (xk)‖ [7]. The numerical experiments are showed this choice is
preferable. In [6], Fan and Pan under the local error bound condition, proved that if the LM parameter is
chosen as λk = ‖F (xk)‖δ for δ ∈ (0, 2] then the convergence order of the LM algorithm is min{1 + δ, 2}. In
[4], Fan introduced a modified Levenberg-Marquardt method (MLM) with cubic convergence. The MLM
method, at each iteration, first obtains dk by solving (2), then with setting yk = xk + dk solves the linear
system

(JT
k Jk + λkI)d = −JT

k F (yk), (3)

to obtain d̂k. So, at every iteration the trial step is set as

sk = dk + d̂k.

It is noticeable that in the k-iteration, the method doesn’t need to compute J(yk) and uses Jk in (3) that
is useful when F (x) is complication or n is large. Fan showed, with choosing

λk = µk‖Fk‖δ,

with δ ∈ [1, 2] and µk > 0, the MLM method has cubic convergence under the local error bound condition.
Notice, if d̂k is a descent direction of the merit function φ(x) = ‖F (x)‖2 at yk, then more reduction of φ at
yk can be expected. Hence Fan in [5] proposed a line search in yk along d̂k by solving the problem

min
α>0

‖F (yk + αd̂k)‖2,

which can be approximated by

max
α>0

Ψ(α) = ‖F (yk)‖2 − ‖F (yk) + αJk d̂k‖2. (4)

It is clear that Ψ(α) is a quadratic function that its solution is attained at

α̃k = 1 +
λkd̂T

k d̂k

d̂T
k JT

k Jkd̂k

> 1.

Because α̃k may be very large when Jkd̂k be close to 0, by using an upper bound for the step size αk and
setting

αk = min{α̃k , α̂}. (5)

where α̂ > 1 is a positive constant, Fan modified the trial step as follows

sk = dk + αkd̂k,

and proved that the convergence order of this method is c(δ) = min{1+2δ, 3}. It is easily seen that c(δ) < 3
when δ < 1. In order to generate an algorithm with cubic convergence, one must focus on δ ≥ 1. It is
noticeable when the sequence is far away from the solution set and δ ≥ 1 then λk = µk‖Fk‖δ may be very
large which makes the LM step small and prevents the iterates from moving fast to the solution set. So it is
seem, for δ ≥ 1, the AMLM method with λk = µk‖Fk‖δ takes backfire on the result of initial steps that are
far away from of the solution set. In this paper, to overcome this disadvantage, we introduce a new adaptive
choice for δk as follows

δk =





1
‖Fk‖ if ‖Fk‖ ≥ 1,

1 + 1
k otherwise,

(6)

2



and set
λk = µk‖Fk‖δk . (7)

It is noticeable that even if ‖Fk‖ is very large, λk = µk‖Fk‖1/‖Fk‖ isn’t large and so the LM step isn’t
small too. This causes that the algorithm moves fast to the solution set. The numerical results on a famous
family of test problems show the new choice is promising while we show the convergence rate of the new
algorithm is cubic. The paper is organized as follows: In Section 2, we describe the method in more details.
In Section 3, we show that the new algorithm preserves the same global convergence as the existing MLM
algorithms under suitable conditions. In Section 4, we derive the convergence order of the new algorithm
under the local error bound condition. Finally, in Section 5, we report some numerical results to compare
the new algorithm along with the other algorithms.

2. The algorithm

We take
φ(x) = ‖F (x)‖2, (8)

as the merit function for (1). In AMLM method [5], the trial step is defined by

sk = dk + αkd̂k. (9)

where dk and d̂k are computed by (2) and (3) respectively and αk is computed by (5). It is clear that the
actual reduction of φ(x) at the kth iteration is as follows

Aredk = ‖Fk‖2 − ‖F (xk + dk + αkd̂k)‖2. (10)

Note that the predicted reduction can not be defined as usual definition

Apredk = ‖Fk‖2 − ‖Fk + Jk(dk + αkd̂k)‖2, (11)

because it can not be proven to be nonnegative that is required for the global convergence in the trust region
methods. Hence similar to [5], we use the modified predicted reduction as follows

Predk = ‖Fk‖2 − ‖Fk + Jkdk‖2 + ‖F (yk)‖2 − ‖F (yk) + αkJkd̂k‖2, (12)

this definition has some appropriate properties. An important property is described in the following lemma.
The details of proof can be seen in [5].

Lemma 2.1. Let the predicted reduction is defined by (12) then

Predk ≥ ‖JT
k Fk‖min{‖dk‖,

‖JT
k Fk‖

‖JT
k Jk‖

}+ ‖JT
k F (yk)‖min{‖d̂k‖,

‖JT
k F (yk)‖
‖JT

k Jk‖
}. (13)

Remark 2.1. Using (11), (12) and some simple calculations, it is concluded that

Apredk − Predk = ‖Fk + Jkdk‖2 − ‖F (yk)‖2 + ‖F (yk) + αkJkd̂k‖2 − ‖Fk + Jk(dk + αkd̂k)‖2

= 2αkd̂T
k JT

k (F (yk)− Fk − Jkdk),

which means
Apredk = Predk + ‖d̂k‖O(‖dk‖2) = O(Predk). (14)

So, in practice we can use either Apredk or Predk in our algorithm. In this paper, we use Predk that is
described in (12).

3



In [4-7], [25] and etc, the LM parameter λk = µk‖(Fk)‖δ is used where δ = 1 is generally chosen in numerical
results. They believe that numerical results with δ = 1 are more stable and preferable. But there are some
drawbacks, for example when the sequence is far away from the solution set, ‖Fk‖ and so λk may be very
large which makes the LM step small and hence prevents the iterates from moving fast to the solution set.
Therefore we introduce δk as (6) that causes the LM parameter λk = µk‖Fk‖δk be neither very large nor
very small, so the algorithm moves fast to the solution set, particularly in the initial iterations that the
sequence is generally far away from the solution set.

Now, it is convenient to present the complete algorithm as follows.

Algorithm 2.1 (The new adaptive two-steps LM algorithm)

Input: x0 ∈ Rn, µ1 > m > 0, 0 < p0 ≤ p1 ≤ p2 < 1, α̂ > 1 and ǫ > 0.
Step 0. Set k := 0.
Step 1. Compute Fk = F (xk) and Jk = J(xk).
Step 2. If ‖JT

k Fk‖ < ǫ, stop. Otherwise set λk = µk‖Fk‖δk where

δk =





1
‖Fk‖ if ‖Fk‖ ≥ 1,

1 + 1
k otherwise.

(15)

Step 3. Solve the linear system
(JT

k Jk + λkI)d = −JT
k Fk, (16)

to compute dk. Set yk = xk + dk.
Step 4. Solve the linear system

(JT
k Jk + λkI)d = −JT

k F (yk), (17)

to obtain d̂k.
Step 5. Calculate αk by (5) and set

sk = dk + αkd̂k. (18)

Step 6. Compute rk = Aredk/Predk where Aredk and Predk are defined by (10) and (12), respectively.
Step 7. Set

xk+1 =





xk + sk if rk ≥ p0,

xk otherwise.
(19)

Step 8. Choose µk+1 as

µk+1 =





4µk if rk < p1,

µk if rk ∈ [p1, p2],

max{µk

4 , m} otherwise.

(20)

Step 9. Set k=k+1 and go to step 1.

To prevent the steps from being too large when the sequence is near the solution, we require

µk ≥ m, ∀ k ∈ N, (21)

where m is a positive constant.

4



Lemma 2.2. Let the sequence {xk} is generated by Algorithm 2.1, then the sequence {‖Fk‖} is decreasing.

Proof. If rk < p0, (19) implies xk+1 = xk and so ‖F (xk+1)‖ = ‖F (xk)‖. So, we can let rk ≥ p0 > 0.
Because lemma 2.1 implies Predk ≥ 0, it is concluded that Aredk > 0. Therefore by (10), we have
‖Fk‖ > ‖F (xk + dk + αkd̂k)‖. So, in any case the sequence {‖Fk‖} is a decreasing sequence. �

3. The global convergence

In this section, we study the global convergence of the new algorithm. In order to, we need the following
assumption.

Assumption 3.1
F (x) and J(x) are both Lipschitz continuous, that is, there exists a positive constant L such that

‖J(y)− J(x)‖ ≤ L‖y − x‖, ∀x, y ∈ Rn, (22)

and
‖F (y)− F (x)‖ ≤ L‖y − x‖, ∀x, y ∈ Rn. (23)

By (22), it can be easily seen that

‖F (y)− F (x)− J(x)(y − x)‖ ≤ L‖y − x‖2, ∀x, y ∈ Rn. (24)

Theorem 3.1. Let Assumption 3.1 hold. Then Algorithm 2.1 terminates in finite iterations or satisfies

lim
k→∞

‖JT
k Fk‖ = 0. (25)

Proof. It is clear that if ‖Fk‖ ≥ 1 then δk = 1
‖Fk‖ ∈ (0, 1] and if ‖Fk‖ < 1 then δk = 1 + 1

k ∈ (1, 2]. So, for
any k, δk ∈ (0, 2], thus the proof is similar to Theorem 2.3 in [4]. �

Lemma 2.2 along with Theorem 3.1 show that the sequence generated by Algorithm 2.1 converges to a
stationary point of the merit function φ(x).

The following lemma shows, for sufficiently large k, δk = 1 + 1
k .

Lemma 3.2. Let Assumption 3.1 hold and the sequence {xk} is generated by Algorithm 2.1, then the set
D = {k ∈ N : ‖Fk‖ ≥ 1} is finite.

Proof. By contradiction, suppose the set D is infinite. This along with lemma 2.2 imply that

‖Fk‖ ≥ 1, ∀ k ∈ N. (26)

By theorem 3.1, the sequence {xk} is converge to x∗. Because F is Lipschitz continuous, by (23), there
exists a constant L so that

‖F (xk)‖ = ‖F (xk)− F (x∗)‖ ≤ L‖xk − x∗‖, (27)

this inequality along with (26) conclude that

‖xk − x∗‖ ≥
1
L

, ∀ k ∈ N,

which is a contradiction to the fact that xk → x∗. This shows the assumption is incorrect and the proof is
completed. �

5



4. Local convergence rate of Algorithm 2.1

In this section, we study the local convergence properties of the new MLM algorithm. In a similar
manner with [4], we show the sequence generated by algorithm converges cubically to the solution if ‖Fk‖
provides a local error bound near some x∗ ∈ X∗. we need some assumptions.

Definition 4.1. Let N be a subset of Rn such that N ∩X∗ 6= φ, we say that ‖F (x)‖ provides a local error
bound on N for (1), if there exists a positive constant c > 0 such that

‖F (x)‖ ≥ c dist(x, X∗), ∀x ∈ N, (28)

where dist(x, X) = infy∈X‖y − x‖.
In the sequel, we denote x̄k, the vector in X∗ satisfying

‖x̄k − xk‖ = dist(xk, X∗). (29)

Assumption 4.1
(a) There exists a solution x∗ ∈ X∗ of (1).
(b) F (x) and J(x) are both Lipschitz continuous on N(x∗, b), i.e., there exists a positive constant L > 0
such that

‖J(y)− J(x)‖ ≤ L‖y − x‖, ∀x, y ∈ N(x∗, b), (30)

and
‖F (y)− F (x)‖ ≤ L‖y − x‖, ∀x, y ∈ N(x∗, b). (31)

where
0 < b < 1 , N(x∗, b) = {x ∈ Rn | ‖x− x∗‖ ≤ b}.

(c) F (x) is continuously differentiable and ‖F (x)‖ provides a local error bound on N(x∗, b) for (1).

Due to the Lipschitzness of the Jacobian, we have

‖F (y)− F (x)− J(x)(y − x)‖ ≤ L‖y − x‖2, ∀x, y ∈ N(x∗, b). (32)

The following lemma describes an important property for the directions dk, d̂k.

Lemma 4.1. Under Assumption 4.1, if xk, yk ∈ N(x∗, b
2 ), for sufficiently large k, we have

(a) ‖dk‖ ≤ c1 dist(xk, X∗),

(b) ‖d̂k‖ ≤ c2 dist(xk, X∗),

(c) ‖sk‖ ≤ c3 dist(xk, X∗),

where c1, c2 and c3 are positive constants.

Proof. The proof is similar to Lemma 3.2 in [5]. �

In the sequel, we show that {µk} is bounded above that plays an important role to estimate ‖Fk + Jkdk‖
and ‖F (yk) + αkJkd̂k‖.

Lemma 4.2. Under Assumption 4.1, if xk, yk ∈ N(x∗, b
2 ), then

(a) There exists a positive constant M > m such that for all sufficiently large k,

µk ≤ M, (33)
holds.

(b) λk = O(‖x̄k − xk‖1+ 1
k ), for all sufficiently large k.

6



Proof. If we note that δk = 1 + 1
k ∈ (1, 2) for sufficiently large k, The proof of (a) is similar to Lemma

3.3. in [5]. The relations (29), (31), (33) and Lemma 3.2 indicate that the LM parameter, for all sufficiently
large k, satisfies

λk = µk‖Fk‖1+ 1
k ≤ L1+ 1

k M‖x̄k − xk‖1+ 1
k . (34)

On the other hand, (29) along with xk ∈ N(x∗, b
2 ), result that

‖x̄k − x∗‖ ≤ ‖x̄k − xk‖+ ‖xk − x∗‖ ≤ 2‖xk − x∗‖ ≤ b,

so, x̄k ∈ N(x∗, b). Therefore by (21), (28) and (29), the LM parameter satisfies

λk ≥ mc1+ 1
k ‖x̄k − xk‖1+ 1

k . (35)

This inequality together with (34) complete the proof of (b). �
According to the result given by Behling and Iusem in ([1], Theorem 1) and without loss of generality,

we assume rank(J(x̄)) = r for all x̄ ∈ N(x∗, b)
⋂

X∗. Suppose the singular value decomposition (SVD) of
J(x̄) is

J(x̄) = [Ū1, Ū2]
[

Σ̄1 0
0 0

] [
V̄ T

1

V̄ T
2

]
= Ū1Σ̄1V̄

T
1 ,

where Ū = [Ū1, Ū2] and V̄ = [V̄1, V̄2] are two orthogonal matrixes and Σ̄1 is a positive diagonal matrix.
Correspondingly, we consider the SVD of J(x) by

J(x) = [U1, U2, U3]




Σ1 0 0
0 Σ2 0
0 0 0







V T
1

V T
2

V T
3


 = U1Σ1V

T
1 + U2Σ2V

T
2 , (36)

where U = [U1, U2, U3] and V = [V1, V2, V3] are two orthogonal matrixes and Σ1 = diag(σ1, σ2, ..., σr)
with σ1 ≥ σ2 ≥ ... ≥ σr > 0, and Σ2 = diag(σr+1, σr+2, ..., σr+q) with σr+1 ≥ σr+2 ≥ ... ≥ σr+q > 0.
In the following, for clearness, we also neglect the subscription k in the decomposition of J(xk) and still
write Jk as same as (36)

Jk = U1Σ1V
T
1 + U2Σ2V

T
2 . (37)

By the theory of matrix perturbation [19] and the Lipschitzness of Jk, we have

‖diag(Σ1 − Σ̄1, Σ2, 0)‖ ≤ ‖Jk − J̄k‖ ≤ L‖x̄k − xk‖,

which yields
‖Σ1 − Σ̄1‖ ≤ L‖x̄k − xk‖ and ‖Σ2‖ ≤ L‖x̄k − xk‖. (38)

Since {xk} converges to the solution set X∗, we assume that L‖x̄k − xk‖ ≤ σ̄r

2 holds for all sufficiently large
k. Then it follows from (38) that

‖Σ−1
1 ‖ ≤ 1

σ̄r − L‖x̄k − xk‖
≤ 2

σ̄r
, (39)

moreover, for sufficiently large k, we have from (35), (38) and Lemma 3.2 that

‖λ−1
k Σ2‖ =

‖Σ2‖
µk‖Fk‖1+ 1

k

≤ L

mc1+ 1
k

‖x̄k − xk‖−
1
k . (40)

The next lemma plays an important role in the proof of cubic convergence of Algorithm 2.1.

7



Lemma 4.3. Under Assumption 4.1, if xk ∈ N(x∗, b
2 ), then we have

(a) ‖U1U
T
1 Fk‖ ≤ O(‖x̄k − xk‖),

(b) ‖U2U
T
2 Fk‖ ≤ O(‖x̄k − xk‖2),

(c) ‖U3U
T
3 Fk‖ ≤ O(‖x̄k − xk‖2),

(d) ‖U1U
T
1 F (yk)‖ ≤ O(‖x̄k − xk‖2),

(e) ‖U2U
T
2 F (yk)‖ ≤ O(‖x̄k − xk‖3),

(f) ‖U3U
T
3 F (yk)‖ ≤ O(‖x̄k − xk‖3),

for all sufficiently large k.

Proof. We can find the proof of (a), (b) and (c) in [4]. Also, the proof of (d), (e) and (f) is similar to
Lemma (3-5) in [5].

Lemma 4.4. Let Assumption 4.1 is satisfied and the sequence {xk} is generated by Algorithm 2.1, then,
for any sufficiently large k, we have

(a) ‖d̂k‖ ≤ O(‖x̄k − xk‖2),

(b) ‖F (yk) + αkJkd̂k‖ ≤ O(‖x̄k − xk‖3).

Proof. Using the SVD of Jk, we get

d̂k = −V1(Σ2
1 + λkI)−1Σ1U

T
1 F (yk)− V2(Σ2

2 + λkI)−1Σ2U
T
2 F (yk), (41)

and

F (yk) + Jkd̂k

= F (yk)− U1Σ1(Σ2
1 + λkI)−1Σ1U

T
1 F (yk)− U2Σ2(Σ2

2 + λkI)−1Σ2U
T
2 F (yk)

= λkU1(Σ2
1 + λkI)−1UT

1 F (yk) + λkU2(Σ2
2 + λkI)−1UT

2 F (yk) + U3U
T
3 F (yk). (42)

It follows from (35), (39-41) and Lemma (4.3) that

‖d̂k‖ = ‖ − V1(Σ2
1 + λkI)−1Σ1U

T
1 F (yk)− V2(Σ2

2 + λkI)−1Σ2U
T
2 F (yk)‖

≤ ‖Σ1‖−1‖UT
1 F (yk)‖ + ‖λk

−1Σ2‖‖UT
2 F (yk)‖

≤ O(‖x̄k − xk‖2) + O(‖x̄k − xk‖3− 1
k ) = O(‖x̄k − xk‖2). (43)

Computing αk by (5) together with (34), (42) and Lemma (4.3) result

‖F (yk) + αkJkd̂k‖ ≤ ‖F (yk) + Jkd̂k‖

≤ λk‖Σ−2
1 ‖‖UT

1 F (yk)‖+ ‖UT
2 F (yk)‖+ ‖UT

3 F (yk)‖
≤ O(‖x̄k − xk‖3+ 1

k ) + O(‖x̄k − xk‖3) + O(‖x̄k − xk‖3)

= O(‖x̄k − xk‖3). (44)

The proof is completed. �

Now we can state the convergence result of Algorithm 2.1.

Theorem 4.5. Let the sequence {xk} is generated by Algorithm 2.1, under the conditions of Assumption
4.1, the sequence {xk} converges cubically to a solution of (1).

8



Proof. The relations (28), (30) and (32) conclude that

c ‖x̄k+1 − xk+1‖ ≤ ‖F (xk+1)‖

= ‖F (yk + αkd̂k)‖
≤ ‖F (yk) + αkJ(yk)d̂k‖+ Lα2

k‖d̂k‖2

≤ ‖F (yk) + αkJkd̂k‖+ αk‖(J(yk)− Jk)d̂k‖+ Lα2
k‖d̂k‖2

≤ ‖F (yk) + αkJkd̂k‖+ Lα̂‖dk‖‖d̂k‖+ Lα̂2‖d̂k‖2.

Using Lemmas 4.1 and 4.4, we obtain

c ‖x̄k+1 − xk+1‖ ≤ O(‖x̄k − xk‖3) + O(‖x̄k − xk‖3) + O(‖x̄k − xk‖4) = O(‖x̄k − xk‖3), (45)

which implies that xk is cubically convergence to a solution of set X∗.
In other hand, it is clear that

‖x̄k − xk‖ = dist(xk, X∗) ≤ ‖x̄k+1 − xk‖ ≤ ‖x̄k+1 − xk+1‖+ ‖sk‖.

It follows from (45) and lemma 4.1 that, for any k sufficiently large,

‖x̄k − xk‖ ≤ 2‖sk‖ ≤ 2c3dist(xk, X∗) = 2c3‖x̄k − xk‖.

So, ‖sk‖ = O(‖x̄k − xk‖) holds for all sufficiently large k. Hence we deduce from (45) that

‖sk+1‖ ≤ O(‖sk‖3), (46)

which indicates the sequence {xk} converges cubically to a solution of (1). �

5. Numerical experiments

This section devote to report some numerical experiments to show the promising behavior of Algorithm
2.1 in comparison with the performance of modified Levenberg-Marquardt (MLM) method [4] and acceler-
ating the modified Levenberg-Marquardt (AMLM) method [5] on some singular test problems. These test
problems are constructed by modifying the standard test problems given in [16] by the following form

F̂ (x) = F (x)− J(x∗)A(AT A)−1AT (x− x∗),

where F (x) is the standard test function, A ∈ Rn×k has full column rank with 1 ≤ k ≤ n and x∗ is a
solution of the equation F (x) = 0. Obviously

Ĵ(x∗) = J(x∗)(I −A(AT A)−1AT ),

is the Jacobian matrix of F̂ (x) with rank n − k and F̂ (x∗) = 0. However, F̂ (x) may have roots that are
not roots of F (x). We constructed two set of singular problems while Ĵ(x∗) have rank n − 1 or n − 2, by
choosing

A = [1, 1, ..., 1]T ∈ Rn×1,

and

A =
[

1 1 1 1 ... 1
1 −1 1 −1 ... ±1

]T

∈ Rn×2,

respectively [18].

9



All codes are written in MATLAB R2009 programming environment on a personal PC with 2.5 GHz, 4
GB RAM, using Windows 7 operation system. For all algorithms, we set

p0 = 0.0001, p1 = 0.25, p2 = 0.75, µ1 = 0.5, m = 10−6 and α̃ = 5.

The algorithms are terminated when the number of iterations exceeds 1000 or

‖JT
k Fk‖ ≤ 10−5.

Tables 1 and 2 list the numerical results for the algorithms on the test problems with different starting
points. The results for the first set problems with rank n−1 and the second with rank n−2 are listed in Tables
1, 2 respectively. We set n = 1000 in all problems, with the exception of Extended Helical valley function,
that n is set 999. All test problems are run for four starting points x0, 10x0, 100x0 and 1000x0, where x0

is suggested in [16]. In Tables, ”NF” and ”NJ” represent the numbers of function evalutions, Jacobian
evalutions and ”NS?” returns Y(yes) or N(no) while ”Y” shows the corresponding method is converged to
x∗ and ”N” shows that it is converged to another solution. Besides, the sign ”− ” indicates that the number
of iterations exceeds 1000 and ”OF” indicates the algorithm had underflows or overflows. Note that, for
general nonlinear equations, the evalutions of the Jacobian are usually n times of the function evalutions.
So, we also use the values ”NT = NF + NJ ∗ n” for comparisons of the total evalutions.

It is seen from Table 1 that Algorithm 2.1 solves 87% of the problems in the least number of total evalu-
tions while AMLM and MLM solve only 39% and 21% in the least number of total evalutions, respectively.
In a similar view of Table 2, it is easy to see that Algorithm 2.1 wins over 89% of problems while AMLM
and MLM algorithm wins only 50% and 32% of the test problems. Moreover, from these tables, we see that,
the new algorithm performs better than two other algorithms; the number of ”NT”, ”NJ” and ”NF” are
reduced. Furthermore, for Extended Helical valley problem, with 100x0 and 1000x0, our algorithm could
successfully find x∗ while other algorithms find another solution of F̂ (x) = 0 for this function. Hence, it
seems that our new Levenberg-Marquardt algorithm is more efficient for nonlinear equations.

References

[1] R. Behling and A. Iusem, The effect of calmness on the solution set of systems of nonlinear equations, Math. Program.
137 (2013), 155-165.

[2] C. G. Broyden, Quasi-Newton methods and their applications to function minimization. Math. Comp. 21 (1967), 577-593.
[3] J. E. Dennis and R.B. Schnable, Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-

Hall, Englewood Cliffs, NJ, (1983).
[4] J. Fan, The modified Levenberg-Marquardt method for nonlinear equations with cubic convergence. Math. Comp. 81

(2012), 447-466.
[5] J. Fan, Accelerating the modified Levenberg-Marquardt method for nonlinear equations. Math. Comp. 83 (2014), 1173-1187.
[6] J. Fan and J. Pan, Convergence properties of a self-adaptive Levenberg-Marquardt algorithm under local error bound

condition. Comput. Optim. Appl. 34 (2006), 47-62.
[7] J. Fan and Y. X. Yuan, On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assump-

tion. Computing 74 (2005), 23-39.
[8] A. Fischer, Local behavior of an iterative framework for generalized equations with nonisolated solutions. Math. Program.

94 (2002), 91-124.
[9] A. Fischer and P. K. Shukla, A Levenberg-Marquardt algorithm for unconstrained multicriteria optimization. Math. Comp.

36 (2008), 643-646.
[10] A. Fischer, P. K. Shukla and M. Wang, On the inexactness level of robust Levenberg-Marquardt methods. Optimization

59 (2010), 273-287.
[11] C. T. Kelley, Iterative Methods for Optimization. SIAM, Philadelphia. 18 (1999).
[12] K. Levenberg, A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math. 2 (1944),

164-168.
[13] D. W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indust. Appl. Math. 11

(1963), 431-441.
[14] J. J. Moré, The Levenberg-Marquardt algorithm, implementation and theory. Numerical analysis, Springer, Berlin Heidel-

berg, 630 (1978), 105-116.
[15] J. J. Moré, Recent developments in algorithms and software for trust region methods. Math. program. 85 (1983), 258-287.

10



Table 1: Numerical results for singular nonlinear equations with rank (F ′(x∗)) = n− 1

MLM AMLM Algorithm 2.1
Problem x0 NF/NJ/NT NS? NF/NJ/NT NS? NF/NJ/NT NS?

Extended Rosenbrock 1 105/52/52105 Y 265/85/85265 Y 55/27/27055 Y
10 131/53/53131 Y 269/88/88269 Y 29/15/15029 Y
100 53/25/25053 Y 65/28/28065 Y 33/17/17033 Y
1000 51/26/26051 Y 55/27/27055 Y 37/19/19037 Y

Extended Powell singular 1 17/9/9017 Y 17/9/9017 Y 15/8/8015 Y
10 23/12/12023 Y 21/11/11021 Y 21/11/11021 Y
100 27/14/14027 Y 43/17/17043 Y 25/13/13025 Y
1000 33/17/17033 Y 33/17/17033 Y 29/15/15029 Y

Extended Powell badly 1 1337/402/403337 N 1919/528/529919 N 11/6/6011 N
10 - - -
100 - - -
1000 - - -

Extended Wood 1 27/14/14027 Y 27/14/14027 Y 25/13/13025 Y
10 33/17/17033 Y 49/22/22049 Y 29/15/15029 Y
100 135/51/51135 Y 181/77/77181 Y 33/17/17033 Y
1000 975/309/309975 Y 1405/558/5581405 Y 39/20/20039 Y

Extended Helical valley 1 21/11/11021 N 35/14/14035 N 15/8/8015 N
10 31/14/14031 N 25/12/12025 N 13/7/7013 N
100 19/10/10009 N 19/10/10009 N 73/34/34073 Y
1000 25/13/13015 N 23/12/12023 N 61/22/22061 Y

Brown almost-linear 1 15/8/8015 Y 13/7/7013 Y 13/7/7013 Y
10 OF OF OF
100 OF OF OF
1000 OF OF OF

Discrete boundary value 1 1/1/1001 Y 1/1/1001 Y 1/1/1001 Y
10 15/8/8015 N 13/7/7013 N 13/7/7013 N
100 27/14/14027 N 27/14/14027 N 25/13/13025 N
1000 35/18/18035 N 31/16/16031 N 29/15/15029 N

Discrete integral equation 1 15/8/8015 N 13/7/7013 N 11/6/6011 N
10 21/11/11021 N 19/10/10019 N 17/9/9017 N
100 15/8/8015 N 15/8/8015 N 13/7/7013 N
1000 23/12/12023 N 23/12/12023 N 23/12/12023 N

Trigonometric 1 23/8/8023 Y 25/7/7025 Y 33/7/7033 Y
10 75/28/28075 Y 77/25/25077 Y 85/30/30085 Y
100 59/19/19059 Y 61/20/20061 Y 51/15/15051 Y
1000 73/24/24073 Y 77/25/25077 Y 69/25/25069 Y

Broyden tridiagonal 1 15/8/8015 Y 13/7/7013 Y 13/7/7013 Y
10 21/11/11021 Y 21/11/11021 Y 19/10/10019 Y
100 27/14/14027 Y 25/13/13025 Y 25/13/13025 Y
1000 31/16/16031 Y 31/16/16031 Y 29/15/15029 Y

Broyden banded 1 17/9/9017 Y 17/9/9017 Y 17/9/9017 Y
10 27/14/14027 Y 27/14/14027 Y 27/14/14027 Y
100 35/18/18035 Y 35/18/18035 Y 35/18/18035 Y
1000 43/22/22043 Y 43/22/22043 Y 43/22/22043 Y

11



[16] J. J. Moré, B. S. Garbow and K. E. Hillstrom, Testing unconstrained optimization software. ACM Trans. Math. Softw. 7
(1981), 17-41.

[17] M. J. D. Powell, Convergence properties of a class of minimization algorithms: Nonlinear programming. AERE, New
York. (1974).

[18] R. B. Schnabel and P. D. Frank, Tensor methods for nonlinear equations. SIAM J. Numer. 21 (1984), 815-843.
[19] G. W. Stewart and J. G. Sun, Matrix Perturbation Theory, Computer Science and Scientific Computing. Boston. (1990).
[20] W. Sun and Y. X. Yuan, Optimization Theory and Methods: Nonlinear programming. Springer, New York. (2006).
[21] Ph. L. Toint, Nonlinear step size control, trust regions and regularization for unconstrained optimization. Optim. Methods

Softw. 28(1) (2013), 82-95.
[22] N. Yamashita and M. Fukushima, On the rate of convergence of the Levenberg-Marquardt method. Comput. Suppl. 15

(2001), 237-249.
[23] Y. X. Yuan, Trust region algorithms for nonlinear equations. Hong Kong Baptist University, Department of Mathematics.

(1998).
[24] Y. X. Yuan, Recent advances in numerical methods for nonlinear equations and nonlinear least squares. Numer. Algebra

Control Optim. 1 (2011), 15-34.
[25] W. Zhou, On the convergence of the modified Levenberg-Marquardt method with a nonmonotone second order Armijo type

line search. Comput. Appl. Math. 239 (2013), 152-161.

12



Table 2: Numerical results for singular nonlinear equations with rank (F ′(x∗)) = n− 2

MLM AMLM Algorithm2.1
Problem x0 NF/NJ/NT NS? NF/NJ/NT NS? NF/NJ/NT NS?

Extended Rosenbrock 1 17/9/9017 Y 17/9/9017 Y 17/9/9017 Y
10 21/11/11021 N 21/11/11021 N 21/11/11021 N
100 25/13/13025 N 25/13/13025 N 25/13/13025 N
1000 31/16/16031 N 31/16/16031 N 29/15/15029 N

Extended Powell singular 1 17/9/9017 Y 17/9/9017 Y 15/8/8015 Y
10 23/12/12023 Y 21/11/11021 Y 21/11/11021 Y
100 27/14/14027 Y 43/17/17043 Y 25/13/13025 Y
1000 33/17/17033 Y 33/17/17033 Y 29/15/15029 Y

Extended Powell badly 1 279/134/134279 N 483/169/169483 N 47/7/7047 N
10 - - -
100 - - -
1000 - - -

Extended Wood 1 23/12/12023 N 23/12/12023 N 23/12/12023 N
10 27/14/14027 N 27/14/14027 N 27/14/14027 N
100 31/16/16031 N 31/16/16031 N 31/16/16031 N
1000 37/19/19037 N 37/19/19037 N 35/18/18035 N

Extended Helical valley 1 21/11/11021 N 35/14/14035 N 15/8/8015 N
10 31/14/14031 N 25/12/12025 N 13/7/7013 N
100 19/10/10009 N 19/10/10009 N 73/34/34073 Y
1000 25/13/13015 N 23/12/12023 N 65/22/22065 Y

Brown almost-linear 1 15/8/8015 Y 13/7/7013 Y 13/7/7013 Y
10 OF OF OF
100 OF OF OF
1000 OF OF OF

Discrete boundary value 1 1/1/1001 Y 1/1/1001 Y 1/1/1001 Y
10 15/8/8015 N 13/7/7013 N 13/7/7013 N
100 27/14/14027 N 27/14/14027 N 25/13/13025 N
1000 35/18/18035 N 31/16/16031 N 29/15/15029 N

Discrete integral equation 1 15/8/8015 N 13/7/7013 N 11/6/6011 N
10 21/11/11021 N 19/10/10019 N 17/9/9017 N
100 15/8/8015 N 15/8/8015 N 13/7/7013 N
1000 33/13/13033 N 31/13/13031 N 31/12/12031 N

Trigonometric 1 23/8/8023 Y 25/7/7025 Y 33/7/7033 Y
10 79/29/29079 Y 83/28/28083 Y 75/25/25075 Y
100 59/19/19059 Y 61/20/20061 Y 51/15/15051 Y
1000 99/35/35099 Y 91/30/30091 T 71/24/24071 Y

Broyden tridiagonal 1 15/8/8015 Y 13/7/7013 Y 13/7/7013 Y
10 21/11/11021 Y 21/11/11021 Y 19/10/10019 Y
100 27/14/14027 Y 25/13/13025 Y 25/13/13025 Y
1000 31/16/16031 Y 31/16/16031 Y 29/15/15029 Y

Broyden banded 1 17/9/9017 Y 17/9/9017 Y 17/9/9017 Y
10 27/14/14027 Y 27/14/14027 Y 27/14/14027 Y
100 35/18/18035 Y 35/18/18035 Y 35/18/18035 Y
1000 43/22/22043 Y 43/22/22043 Y 43/22/22043 Y

13


