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Abstract

Staggered finite difference methods for a one-dimensional Biot’s problem are
considered. The permeability tensor of the porous medium is assumed to
depend on the strain, thus yielding a non-linear model. Some strong two-side
estimates for displacements and for pressure are provided and convergence
results in the discrete L?-norm are proved. Numerical examples are given to
illustrate the good performance of the proposed numerical approach.

Keywords: Finite-difference scheme, Maximum principle, Non-linear Biot’s
model

1. Introduction

Biot’s model addresses the time-dependent coupling between the defor-
mation of a porous matrix and the fluid flow inside. The porous matrix is
supposed to be saturated by the fluid phase and the flow is governed by
Darcy’s law. The state of the continuous medium is characterized by the
knowledge of the displacements and the fluid pressure at each point of the
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domain. The one-dimensional theory of isothermal consolidation was first
formulated by Terzaghi [24] which was extended to a general 3D consolida-
tion theory by Biot [2, 3]. Existence and uniqueness of the solution of the
problem are analyzed by Showalter in [22] and by Zenisek in [26]. Nowadays,
Biot’s models are frequently used in a great variety of disciplines as in geome-
chanics, petrol engineering, hydrogeology, biomechanics and food processing.

Analytical solution of the Biot’s model is available only in very special
cases, and therefore, numerical methods are commonly used for solving this
problem. In general, the solution of complex poromechanics problems is
usually approximated by finite elements, see for instance the monograph by
Lewis and Schrefler [11]. Problems where the solution is smooth are satisfac-
torily solved by standard finite element discretizations. Nevertheless, when
strong pressure gradients appear, solutions generated by finite element meth-
ods exhibit non-physical oscillations. These oscillations can be minimized if
stable finite element methods are used. As for Stokes problems, approxima-
tion spaces for the vector and the scalar fields satisfying the LBB stability
condition [6] can be used. This approach has been analyzed, for example in
[18], for the classical quasi—static Biot’s model. Nevertheless, these methods
still present small oscillations in the pressure approximation when very sharp
boundary layers occur.

Naturally, as for finite elements, standard finite-difference schemes may
suffer the same unstable behaviour in the pressure approximation. In [§],
a reason for this non-monotone behaviour for one-dimensional consolidation
problems has been identified, and to avoid this effect, the use of staggered
grid discretizations was suggested, theoretically analyzed and tested in two-
dimensions [9]. Notice that the use of staggered grids is the way to incor-
porate a discrete infsup condition in the finite-difference framework, see for
example [21]. An extension of this method to the case of discontinuous co-
efficients through harmonic averaging has been presented in [7]. For other
Biot’s models, such as the secondary consolidation model [10], the double
porosity model [5] and the fully dynamic problem [4], staggered grids have
also been successfully applied. In this work, we also apply this technique to
non-linear poroelasticity problems in order to avoid the pressure oscillations.

Most of the works in this area treat the linear case. However, the hy-
draulic permeability of hydrogels and other hydrated soft tissues (e.g., car-
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tilage and intervertebral disc) is deformation dependent [17]. Also, in simu-
lations of hydraulic fracturing of rocks, it is often considered a dependence
of the permeability tensor on the stress in exponential form [25]. All these
models give rise to non-linear problems. Barucq et al. proved in [1] the
existence and uniqueness of the solution of a non-linear fully dynamic poroe-
lastic model, where the nonlinearity appeared in the first equation. Tavakoli
and Ferronato [23] used the Galerkin’s method to prove the existence and
uniqueness of solution of the variational problem associated to a non-linear
Biot’s model where the permeability of the material depended on the strain.
The aim of this research is to provide results of stability and convergence of
a finite difference scheme on staggered grids for this non-linear Biot’s model.

For solving numerically non-linear Biot’s models, it is important to de-
velop monotone schemes. Notice that monotone schemes (schemes that sat-
isfy the discrete maximum principle) have remarkable properties providing
physically correct solutions, see [13, 15, 16]. The study of these schemes will
be carried out on a class of one-dimensional problems uncoupled due to the
considered boundary conditions. This fact let us to simplify the problem to
the case of non-linear parabolic equations with boundary conditions of the
second type. For linear parabolic problems, an approach for the construction
of second-order monotone finite difference schemes with boundary conditions
of the second and third kind without using the differential equation on the
boundary of the domain was suggested in [12]. The main idea was based on
the extension of the solution of the problem in some small neighborhood of
the domain and the use of half-integer grid points. Later, such approach was
applied to develop monotone finite difference schemes for non-linear parabolic
equations with boundary conditions of the first and third type [14]. In this
work, this approach will be extended to the non-linear parabolic problem in
the case of boundary conditions of the second type, and as a consequence to
the one-dimensional non-linear Biot’s model.

The rest of the manuscript is organized as follows. In Section 2, we
propose the discretization by finite-difference schemes of non-linear parabolic
equations with boundary conditions of the second type. Two-side estimates
of the numerical solution and convergence results in the discrete L?-norm are
provided in Section 3 and Section 4 respectively. These results will be used to
prove the corresponding estimates of the pressure and of the displacements
as well as convergence results for the non-linear Biot’s model. Numerical




results are presented in Section 6, and some conclusions are drawn at the
end in Section 7.

2. Difference schemes for non-linear parabolic problems with mixed
boundary conditions

We consider a finite difference scheme for the solution of the non-linear
parabolic differential equation

ou 0 ou
= 2 — | = Q= T 1
= (Moge) = o, sen-©0. te@T)
with initial and boundary conditions given by
u(z,0) = wup(x), z€Q,

w(0,t) = pi(t), k(u )gu(l t)=0, te(0,T]. (2)

We assume that the functions k(u) and f(x,t) are sufficiently smooth in
such a way that the solution u(z,t) € C**(Qr), with Qr = [0,1] x [0, T].
Moreover, we suppose that there exist values ki and ko such that

0< kl < k’(U) < kg, Yu € [ml,mg],
where m; and msy are two constants such that

my = min{ min g1(t), min ug(z } / min f(x,§)d¢,

te[0,7 z€[0,]] z€[0,]]

moy = max{max (1), max ug(z } / maxf x,&)dE.

te[0,T) x€(0,l] xz€(0,l]

Let N and Ny be positive integers and let h = 21/(2N + 1) and 7 = T//N,
be the space and time discretization parameters, respectively. Then, we
introduce the uniform grids
op = {x;=1ih,i=0,...,N+1}, (3)
Wy = {tn:nT,nzo,...,No, TNOIT}. (4)
On the grid wy, X w;, we approximate the differential problem by the implicit
difference scheme

ye = (alyMyst), it i=1. N, (5)
vl = we(z;), i=0,....,N+1, (6)
yg“ = N?Hv aNHyZJJrle 0 (7)
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where

1 [te
_/ f(xw&)dga Z:LaN

(R(yy) + k() o™ ==

aly;’) =

DN | —

Here, we have used the standard notation of the theory of difference schemes [20]:

n+1 n
n _ Y Y Uil — Uy U — Ui
Yei = s Ugi = g Uzi = I gt

Notice that due to the assumed regularity, the solution of problem (1)-(2)
can be continuously extended to the domain [0,1+ h/2] x [0,T].

3. Two-side estimates of the numerical solution

We start this section establishing a maximum principle for three-point
difference schemes written in the form (see [20])

A?y?—ﬁl _Czlyn+1+B?y;1—al = _Fin+17 1= 17"'>N_ 17 (8)

)

v =T CRrynT = ARynty + PR (9)

Theorem 1. Suppose that the following conditions are fulfilled
A?>0, B!'>0, Clr—A"-B'=1, i=1,...,N—1, (10)
Ay >0, By=0 Cy—-—Ay=1, (11)
then the following bounds for the solution hold

: 1 +1 +1 +1 +1 . _
min{ uf ) min F' ) <y < max{puf ) max, F'™}, i=0,...,N.
(12)

ProOOF. We prove the upper bound. In a similar way, the lower bound can
be proved. If the grid function y(x) reaches its maximum on the boundary
point x = 0, then for i =0,..., N

n+1 n+1 n+1

ntl < ntl — )

Yi — 02%)](\[ Yi 251
If the grid function y reaches its maximum at an interior grid-point z;«, 1 <
1" < N — 1. Then, as
Cryi™ = ARyE, + BRyiih + PR < (AL + BRJyitt + PR,

¥
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from (10) we have

max yzl+1 yn+1 < Fn+1

0<i<N

Finally, if the maximum is reached at ¢ = N, then, the following inequality
holds
Onyn'' = ANyn™y + Fy™ < Ay + Byt

and from (11) we obtain

n+1 n+1 n+1
max = < FUT
R Yy = Yn N

g

Next, we apply the previous result to obtain estimates of the numerical so-
lution of problem (5)-(7).

Corollary 2. Let y"*! be the numerical approzimation of the non-linear
parabolic problem (1)-(2) generated by scheme (5)-(7), then we have the fol-
lowing a priori estimate of the solution with respect to the right-hand-side,
boundary and initial conditions

T
max y't! < max max pyt! max uf max f(z;, &) dé = ms.
0<Z<Ny {O<n<N0  Ha T 0Zi<N + 0 oging( i§) g 2

(13)

Besides, we have the lower estimate

min y't > min{ min g min ul } / min f(z;,&)dE = my.

0<i<N 0<n<Ng—1 0<i<N 0<i<N
(14)

Proor. First, by removing the fictitious point x .1 we can write difference
scheme (5)-(7) in the canonical form (8)-(9), with

A= saf, B = Al Cr=14+A7+B), i=1...N-1(15)
n—+1 n+1 n+l __ 1 ftt .
F _yz +7—90 ) Pi ; f(xzaf)d€7 121,,N—(16)
tn
T
Af = 5ay, COnv=1+Ay, Fy™ =gy +7o)" (17)




The following upper and lower bounds follow directly from Theorem 1.

tna1
Yttt < max{p?“, max (yf+/ f(xi,€) df)}a i=0,...,N]18)
tn

1<i<N

1<i<N

tn+1
y* > min {wf*% min <y = [ s dg) } P=0..... N19)
tn
and therefore estimates (13) and (14) are obtained. O

4. Convergence in L?

In this section, we use the energy inequality method to obtain estimates
of the error and convergence results in the discrete L?-norm. Defining the
approximation error 1"*! in the interior nodes as

Uit =i (aw)uptt) =g =1, N,
and at the right boundary point as
w?vill = (uNH)unglH,
the grid-function error z = y — u is the solution of the discrete problem
7= (ay")yr ™ —a()ug™), o =1 N, (20)
a(y%+1>yf,N+1 - a(“NH)U:z N+1 = 1/117@1117 (21)
with initial and boundary conditions,

2 =0, i=0,...,N+1, (22)

(2

zg = 0, n=1,...,Np. (23)

It is easy to see that the approximation errors have order O(h? + 7) in all
the nodes, including the boundary point = = [, i.e. ¥/ = O(h* +7), i =
1,...,N+1.

We now define

N—-1

(?Jav)w; = Zl hyivi, |l wy —\/ (yay)w;7 (24)
N

(yvv)um = Zhyiviv ”yHWh =\ <y7y)wh7 (25)
i=1




where wy, = {x; = ih,i = 0,..., N}. The following results will be useful
to prove the convergence of the scheme. With this purpose, we will use the
formula of summation by parts [20], and the Gronwall’s inequality.

Lemma 3. (Summation by parts). For any grid functions y,v defined in wy,
vanishing on the boundary point xq = 0, the following identity holds

(¥ Va)or = =z, V), + Ynvn. (26)

Lemma 4. (Gronwall’s inequality). Let €, and f,, be non-negative discrete
functions defined on the grid w, = {t, = nt,n = 0,1,...} and p > 0 a
constant such that the following inequalities are satisfied

5n+1§p€n+fna TLZO,I,...

Then, the following estimate holds

n
—k
Ens1 < " g + an Tk
k=0

PROOF. See, for example, page 159 in [19].

Theorem 5. The solution of scheme (20)-(23) satisfies the estimate
|7y < C(r + 1),

being C' a positive constant independent of the discretization parameters.

PROOF. Multiplying scalarly (20) by 272" we obtain

2T(zz¢72n+l)w; — 97 (Zn+1, (a(yn) g+1 o a(un>ug+1>m)w_ + 2T(Zn+1awn+1)w;‘
h

(27)
Using the identity 2" = (Z"Jrl + Z") + gzt” , the left-hand side in equation

(27) satisfies the equality

DN | —

n+1)

2r(gf, ) = [ — 2+ 72l (28)

Y,

On the other hand, using the formula of summation by parts (26), we have
that

or (Zn+1, (a(yn)yg-i—l . a(un)ugﬁ-l)x)ur
h

2125 (alyf)ye i — a(uf)uly) .

T

8

T

— 97 (Zg-i-l’ a(yn)yn—i-l _ a(un)u@—i-l)wh

(29)



Next, we are going to bound the two different terms appearing in the right-
hand side of the above equation. Considering equation (20) for i = N and
(21) we obtain

2r23 (a(yi)ye N — a(u)ully) = —2hr2it ey y+2r 2 (Wi + hoitt)
Combining the embedding theorem

271 < e 27 < VA (30)

and the generalized Cauchy-Schwarz inequality
1
ab < e1a® + —0b*, a,bER,
4e 1

for a = [[25™|,, and b = VI([Yy"] + [¢rtL]), we immediately get the
following inequality

202t ([l | + R | ]) < 20 V|2, ([0 + Uil ]) < 27en]lz2 )2,

Tl
+€_1 max{wj@ﬁrll Jort! } < 27eq||22 2, + Te(h 4 7)?,

where ¢ is a constant independent of A and 7 and we have assumed that

h < 1. Using that

n+1
n+l _ + ZN T n

N T T 5N
we obtain the following bound for the second term of the right-hand side of
equality (29)

2 (Ui, = au ) € —h(RI + h(R ) — (e
+27¢1 ||z§+1||wh +1e(h? +7)% (31)

Next, we focus on the first term of the right-hand side in (29). Taking into
account that

a(y")yz; " = a(uMuz™ = aly")zg "t + (aly”) - alu”))uzt,
we have the equality

=27 (2 a(y )y — a(uut) = —2r (z?“,a(y”)z?“)wh_



Since a(y) > ky for y € [my, my], and taking into account that due to the
assumed regularity of function k, there exists a positive constant L such that
fori=1,...,N
la(y’) — a(u}’)] < Llz|0.),
where the grid-function z(5) is defined as (2;)0.5) = (2 + 2i-1)/2, we have
that
27 ("Wl — alw ), < ~2mk | B 2 (1 o b 125 )

Wh

Taking into account that due to the smoothness of the solution the following
inequality holds
T n+1
‘ujrl‘ / Ou™"
~h | Ox

and applying the generalized Cauchy-Schwarz inequality, the following esti-
mate is obtained

dz S Ca,

TLCQ

27L (|z”| Y|k +1| |z"+1|) 2

< 27’L62€2||2g+1”ih + ||Zn||ihv

Wh

and therefore

o n+1 n+l n+1 < n+1 TLC2 n
21 (2 aly")ys T — alu)uptt) < =27 (ky — Lees) 1271, Ml E S

(32)

For the second term in the right-hand side in (27) we have,

27 (2" ") < 2|l [ - < 27l L 1

and applying again the generalized Cauchy—Schwarz inequality

27 (2", "), < 2regl| M2, + ||¢"+1||2 < 2resl||2p 2, Hre(hP+7)”.
(33)

Taking into account (27), (28), (31), (32) and (33)

2R, 47 a2, +27 (i —er— Lesz—lzg) |22, < (147) 1272, +7e(+7)°.

[

Choosing €1, €9, €3 small enough in order to satisfy that k1 —e1—cLey—leg > 0,
we obtain the recurrent estimate

127G, < (L 7ol [15, + Te(h® +7)* < e™|[2" |5, + Te(h® + 7)°.

Finally, using Gronwall’s inequality we arrive to the result. U
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5. Finite difference schemes for the non-linear poroelasticity prob-
lem

In this section, we consider a non-linear one-dimensional Biot’s model.
Considering as unknowns the displacement of the solid u(x,t) and the pore
pressure of the fluid p(x,t), the governing equations read

0 ou dp
~ 5 ((A+2u)a—x> + E 0, z€(0,1), (34)

=
9] 9] 0 du\ 0
It (Gbﬂp—f—a—j;) o (K (a—z) a—i) =q(z,t), x€(0,0), 0<t<L3D)

with initial and boundary conditions given by

((bﬁp + %) (x,0) =0, =€ (0,0), (36)
P00 = polt), - (A2 52(0,1) = —soft), @7
) =m0, K (5) L —o 39

where A and p are the Lamé coefficients, ¢ is the porosity, § the compress-
ibility coefficient of the fluid, K is the permeability of the porous medium
which is assumed to be dependent on the strain du/0z, and the source term
q(x,t) represents a forced extraction or injection process.

Due to the considered boundary conditions for the displacements and for
the pressure, the above problem is decoupled. In effect, from equation (34)
the following relation between the pressure and the strain holds

(1) = (4 20 2% 2,0) + (1), (39)

Using the boundary conditions at © = 0 we have that p(t) = ug(t) + so(t),
and therefore

X at) =
Bz A+ 2u

On the other hand, from (39) and the initial condition (36), we have

p(x,0) = c1(p0(0) + 50(0)),

(p(z,t) = po(t) — so(t)) - (40)

11




where

1
(1+6B(A+2p))

By substituting the strain (40) in (35), we obtain a non-linear parabolic
problem for the pressure

Ccl =

9 _ Cga (k;()ap):f(x,t), r€Q=1(0,0), te(0,7T],(41)

ot ox ox
p(z,0) = c1(po(0) +50(0), z€Q, (42)
p<07 t) - :U’O(t)v k?(p)%(l, t) =0, te (OaTL (43)
where
1 1

f(@,t) = caq(x, 1) + cacs (o (t) + (1), es = Cy =

B +cs
Relation (40) shows explicitly the dependence of the permeability on the
pressure. We have introduced function k as k(p) = K(0u/0z(p)). Once the
pressure is obtained solving problem (41)-(43), we can calculate the displace-
ments by using (40). We assume that the input data are sufficiently smooth
in such a way that the solutions p(z,t) € C**(Q7) and u(x,t) € C*?(Qr).
Moreover, we suppose that there exist values k3 and k4 such that

A+2u

0 < ks <k(p) <ks Vpe€[ms my,

where ms and my are two constants such that

ms = min{ min fo(t), ¢1(po(0) + so(0 } / min f(z,§)d¢,
0

t€(0,T) xE[O ]

o= s o). 4f0) + (0 |+ [ e .6
te[0,T o €0,
In order to obtain schemes providing solutions without oscillations, we will
consider staggered grids which have been widely used for the stabilization of
difference schemes in CFD. Given a positive integer N and h = 5 N +1, let us
define two different grids, w, to discretize the pressure and @, to discretize
the displacement,

Wy ={z;|xi=1ih, i=0,...,N+1},
wu:{$i+1/2‘xi+1/2:<i+%)h,i:0,...,N}.

12




The grid points for v are shown in Figure 1 by small circles, while the grid
points for p are shown by filled circles. Notice that we have introduced the
fictitious node zxy1 = [ + h/2. Here, again we consider a uniform grid

Figure 1: Staggered grid: Meshes for displacement o and for pressure e, including the
fictitious point.

for time discretization @; with step size 7 > 0, as defined in (4). Problem
(34)-(38) is approximated by the finite difference scheme

— (A +2puz™),  +ppt =0, i=1... . N-1 (44)
(00" +up)y, — (K(upi™), =, i=1,...,N,  (45)
oBpY +ul; =0, i=0,...,N, (46)
P =gt (A 2puigt = =St (47)
u%t_ll/g = /L?Jrl? K(“Z)pgj\%-i-l = 0. (48)

It is trivial to see that the solutions of this problem satisfy the following
relation

n+1 __ ]'

n+1 n+1 n+1 .
urtt = —— (pi — —s i=0,...,N
T, /\ + 2N (pz IU’O 0 ) ) ) ) )

which corresponds to the approximation of (40). Therefore, we deduce that
the approximate pressure is the solution of the finite difference scheme

i = e (apMp), + et i=1. N, (49)
p; = alug+sy), i=0,...,N, (50)
et = T avapiig =0, (51)
where again
CL(pi) = B (k<pi71) +k(pi)) , t=1,...,N.

13




Once the approximation of the pressure is obtained, the discrete displace-
ments can be calculated as

1 1
u?\/—:l/Z = m,
n+1 _ n+1 h n+l l . n+1 n+1 N —1 0
Uity = UNni1/2 — Py, Iz+1/2)( +s5) ], i= ..., 0.
k=i+1

By removing the fictitious point xy.;, difference scheme (49)-(51) can be
written in the canonical form

At —Crpitt 4+ Bt = - i=1,... N -1, (52)

pi = ca(pg + So) (53)
n—l—l — ,LL6L+1, C]r\zfpnN+1 A%p?\ﬁll e Fjv\lfﬁ—l’ (54)
where
A =ap, Bl =Al,, Cf=1+A}4+B}, i=1...N-1»)
Fn+1 n+1 n+1l __ 1 et ) d
- pz _'_ TQD ) 802 T f(ml7€> 57
tn
f(wsth) = CQQ?H + 0203(,“371: + 58t> i=1,...,N—-1, (56)
CoT
AnN = %anNa CN - ]-_’_A?]‘(/', Fn+1 _pN+TQ0n+1. (57)

Next, two-side estimates for the solution of the non-linear poroelasticity prob-
lem are given.

Theorem 6. The solution of finite difference scheme (44)-(48) satisfies the
following bounds

?:11/2 > :“nH —e3(l = wiyrya) (ma — pg™ = s5™) (58)
?-:_11/2 < pitt = es(l - Tiv1/2) (M ( — gttt — 8*1) , 1=0,...,NH9)

where constants mg and my only depend on the input data of the problem in
the following way

mgzmin{ min ,uSH, ,u0+30} / min f(xz;,§)d¢,

0<n<No—1 1<i<N

m4=maX{ max it <uo+so>}+ max f(z;,€) dE.
0

0<n<No—1 1<i<N

14



ProOOF. The result follows immediately applying Corollary 2.

The error grid-functions for the pressure and for the displacements z and w
respectively are the solution of

= (ap")zp ™)+ ((a™) = alp(ei, tor))PE ™), +0pft i=1,.
&(p%—i-l)zg,—i_]\flJrl = ZJJrle (a<pN+1) a(p(xN+1atn+1))>pi,N+l7

2=0, i=1,...,N, 2 =0, n=0,1,...,

with = 20 it i:O,...,N,

where ¢t = O(h? 4+ 7) and ¢ T" = O(h?) are the approximation errors
for the pressure and the dlsplacements, respectively. Finally, the following
convergence result holds

Theorem 7. The solution of scheme (60)-(63) satisfies the estimates

||z"+1||wh < Oy (h? 4 7), 1r£12ax ‘w"+1| < Cy(h? 4 7),

where Cy and Cy are positive constants independent of the discretization pa-
rameters.

ProoOF. The convergence result for the pressure follows from Theorem 3.
Regarding the displacements, we have that

max [w]] < VUllwg ™ lan SV oy + 1905 ) < O + 7).

6. Numerical experiments

In this section we consider two numerical experiments of the non-linear
Biot’s model. In both cases, we fix A+ 2y = 1 and § = 0. The results
obtained are similar for either set of values.
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6.1. Analytical solution of a model problem

We start this section by setting a simple analytic solution that satisfies
the system of poroelasticity equations. We consider the non-linear system of
partial differential equations

—% + g—i =0, xe(0,7/2),

G%)@mqu@% v € (0,7/2),

p(0,1) =0, gg(o,t)=:0,

W(r/2.0) =0, K (%) %(w/lt) 0, (64)

where K (0u/0x) = exp(Ou/dx) and q(z,t) are such that the solutions of
the problem are u(z,t) = — exp(—t) cos(z) and p(z,t) = exp(—t)sin(x). To

h h/2 hJ4 h/3

7 | 0.007017 | 0.006880 | 0.006845 | 0.006836
7/4 | 0.001794 | 0.001650 | 0.001613 | 0.001604
7/16 | 0.000588 | 0.000441 | 0.000403 | 0.000394
7/64 | 0.000296 | 0.000147 | 0.000109 | 0.000100

Table 1: L?-norm errors for pressure with different time and space discretization parame-
ters.

check the accuracy of the proposed scheme, in Table 1 and Table 2 we show
the L?—norm of the pressure error and the maximum norm for the displace-
ment error respectively for different values of space and time discretization
parameters. In particular h = 7/(2N + 1) with N = 20, and 7 = 0.05
have been initially chosen, and from them, h/2* and /4%, are considered
with £ = 1,2,3. As we can observe, in both cases first order convergence is
achieved as expected from the previous theoretical results.

6.2. A second model problem
We consider an idealized problem consisting of a column of fluid-saturated
porous media of height [ = 1. The column is bounded by rigid, imperme-
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h 2 hJd h/3

7 | 0.008408 | 0.0081192 | 0.008136 | 0.008122
7/4 | 0.002208 | 0.001980 | 0.001922 | 0.001907
7/16 | 0.000775 | 0.000544 | 0.000485 | 0.000470
7/64 | 0.000426 | 0.000195 | 0.000135 | 0.000120

Table 2: Maximum norm errors for displacement with different time and space discretiza-
tion parameters.

able bottom and walls. The fluid flows freely through the top surface at
atmospheric pressure and therefore a null pressure is imposed. A unit load
is applied on the top of the column. This problem is an extension of the
classical one-dimensional problem of Terzaghi [24]. Under these conditions,
we have to solve the following problem

Pu  Op
—@—f‘a—x—o, mE(O,l),

0 (0Ou 0 ou\ Op
D (ou\ 9 (. (0u\dp\ _ <
at(@x) 3$<K<8x>8x> 0, z€(0.1), 0<t<T,

with initial an boundary conditions

(65)

ou
(%> (,0) =0, ze€(0,1),
ou
p(()?t) Yy 07 %(Ovt) _1a

u(l,t) =0, K (a—“) g—p(u) =0,

ou ou
where K <%> = exp (8_x>

Applying Theorem 6 to this numerical experiment, we can obtain bounds for
the pressure and displacement solutions. Taking into account that in this
case m; = 0 and mo = 1, we have

ng?+1§1, Ogu?jll/zgl_xi_i,-l/Q, ZZO,,N
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Pressure

In order to illustrate the previous bounds, in Figure 2, we show the numerical
approximation for the pressure and the displacement at different times. For
these results we have chosen h = 2/(2N + 1) with N = 64, and 7 = 107
We can observe that indeed the obtained pressure solutions are between 0
and 1 and the displacement approximations are between 0 and 1 — .

t=1.e-4

Displacement

Figure 2: Numerical approximation for (a) the pressure and (b) the displacement at dif-
ferent times: t =1l.e—4,t=0.01,¢t=0.1,¢t=0.5 and ¢t = 1.

7. Conclusions

We have considered staggered finite difference methods for a one-dimensional

Biot’s model. The permeability tensor depends on the strain, thus yield-
ing a non-linear model. Strong estimates for the displacement and pressure
solutions are provided, and convergence results are proved in the discrete
L?-norm. Planned future work includes the extension of these results to two
and three dimensional non-linear poroelasticity problems.
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