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Improving the domain of parameters for Newton’s
method with applicationsI

Ioannis K. Argyrosa, Ángel Alberto Magreñánb,∗, Juan Antonio Siciliab

aCameron University, Department of Mathematics Sciences Lawton, OK 73505, USA
bUniversidad Internacional de La Rioja, Av Gran Vı́a Rey Juan Carlos I, 41, 26002

Logroño, La Rioja, Spain

Abstract

We present a new technique to improve the convergence domain for Newton’s
method both in the semilocal and local case. It turns out that with the new
technique the sufficient convergence conditions for Newton’s method are weaker,
the error bounds are tighter and the information on the location of the solution
is at least as precise as in earlier studies. Numerical examples are given showing
that our results apply to solve nonlinear equations in cases where the old results
cannot apply.

Keywords: Banach space, majorizing sequence, local/semilocal convergence,
domain of parameters.

1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x∗ of equation

F (x) = 0, (1.1)

where F is a Fréchet-differentiable operator defined on a convex subset D of a
Banach space X with values in a Banach space Y .

Many problems in Applied Sciences including engineering can be solved by
means of finding the solutions of equations in a form like (1.1) using Mathe-
matical Modelling [2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 16]. For example, dynamic
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the grant SENECA 19374/PI/14 and by Ministerio de Ciencia y Tecnoloǵıa MTM2014-52016-
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systems are mathematically modeled by difference or differential equations, and
their solutions usually represent the states of the systems. Except in special
cases, the solutions of these equations can rarely be found in closed form. This
is the main reason why the most commonly used solution methods are usually
iterative. The convergence analysis of iterative methods is usually divided into
two categories: semilocal and local convergence analysis. The semilocal con-
vergence matter is, based on the information around an initial point, to give
criteria ensuring the convergence of iteration procedures; while the local one is,
based on the information about a solution, to find estimates of the radii of the
convergence balls. A very important problem in the study of iterative proce-
dures is the convergence domain. In general the convergence domain is small.
Therefore, it is important to enlarge the convergence domain without additional
hypotheses. Another important problem is to find more precise error estimates
on the distances ‖xn+1 − xn‖, ‖xn − x∗‖.

Newton’s method defined for each n = 0, 1, 2, . . . by

xn+1 = xn − F ′(xn)−1F (xn) (1.2)

where x0 is an initial point,is undoubtedly the most popular method for gener-
ating a sequence {xn} approximating x∗.

Let U(z, %) , Ū(z, %) stand, respectively for the open and closed ball in X
with center z ∈ X and of radius % > 0. Let also L(X,Y ) stand for the space of
bounded linear operators from X into Y .

The best known semilocal convergence result for Newton’s method is the
Newton-Kantorovich theorem [3, 4, 5, 9] (see Theorem 1 that follows) which is
based on the hypotheses (given in affine invariant form) by:

(H1) There exists x0 ∈ D such that F ′(x0)−1 ∈ L(Y,X) and a parameter η ≥ 0
such that

‖F ′(x0)−1F (x0)‖ ≤ η

(H2) There exists a parameter L > 0 such that for each x, y ∈ D

‖F ′(x0)−1(F ′(x)− F ′(y))‖ ≤ L‖x− y‖.

and

(H3) Ū(x0, R) ⊆ D for some R > 0.

The sufficient semilocal convergence condition of Newton’s method is given by
the famous for its simplicity and clarity Kantorovich hypothesis

h = 2Lη ≤ 1. (1.3)

There are simple examples in the literature to show that hypothesis (1.3) is
not satisfied but Newton’s method converges starting at x0 (See Example 2.2).
Moreover, the convergence domain of Newton’s method depending on the pa-
rameters L and η is in general small. Therefore, it is important to enlarge the
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convergence domain by using the same constants L and η using techniques as the
ones that appeared in [8, 9, 13, 14]. Argyros et all in a series of papers [3, 4, 5, 6]
presented weaker sufficient convergence conditions for Newton’s method by us-
ing more precise majorizing sequences than before [9]. These conditions are

h1 = 2A1η ≤ 1, (1.4)

h2 = 2A2η ≤ 1, (1.5)

h3 = 2A3η ≤ 1, (1.6)

h4 = 2A4η0 ≤ 1, (1.7)

where
A1 =

L0 + L

2
, A2 =

1
8

(
L+ 4L0 +

√
L2 + 8L0L

)
,

A3 =
1
8

(
4L0 +

√
L0L+ 8L2

0 +
√
L0L

)
, A4 =

1
η0
,

η0 is the small positive root of a quadratic polynomial (see Theorem in [3, 4, 5, 6]
or Theorem 5 or Theorem 6 that follows) and L0 > 0, is the center-Lipschitz
constant such that

‖F ′(x0)−1(F ′(x)− F ′(x0))‖ ≤ L0‖x− x0‖ for each x ∈ D (1.8)

The existence of L0 is always implied by (H2).
We have that

L0 ≤ L (1.9)

holds in general and L
L0

can be arbitrarily large [3]. Notice also (1.8) is not an
additional to (H2) hypothesis, since in practice the computation of parameter
L involves the computation of L0 as a special case. Notice that if L0 = L
conditions (1.4)–(1.7) reduce to condition(1.3). However, if L0 < L, then we
have [4, 6]

h ≤ 1⇒ h1 ≤ 1⇒ h2 ≤ 1⇒ h3 ≤ 1⇒ h4 ≤ 1, (1.10)
h1

h
→ 1

2
,

h2

h
→ 1

4
,

h2

h1
→ 1

2
,

h3

h
→ 0,

and
h3

h2
→ 0,

h3

h1
→ 0, as

L0

L
→ 0.

(1.11)

Estimates (1.11) show by how many times (at most) a condition is improving
the previous one.

Notice also that the error bounds on the distances involved as well as the
location on the solution x∗ are also improved under these weaker conditions
[3, 4, 5, 6]. In the present study, the main goal is to improve further conditions
(1.3)–(1.7) by using smaller than L0 and L parameters and by restricting the
domain D. Similar ideas are used to improve the error bounds and enlarge
convergence radii in the local convergence case.

The rest of the paper is organized as follows: The semilocal and local con-
vergence analysis is presented in Section 2. The numerical examples are given
in the concluding Section 3.
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2. Convergence Analysis

We present first the semilocal convergence analysis of Newton’s method.
Next, we state the following version of the Newton Kantorovich theorem [3, 4,
5, 9].

Theorem 1. Let F : D ⊂ X → Y be a Fréchet-differentiable operator. Suppose
that (1.3) and conditions (H1)–(H3) hold, where

R =
1−
√

1− h
L

.

Then, the sequence {xn} generated by Newton’s method is well defined, remains
in U(x0, R) for each n = 0, 1, 2, . . . and converges to a unique solution x∗ ∈
Ū(x0, R) of equation (1.1).

Let us consider an academic example, where the Newton-Kantorovich hy-
pothesis (1.3) is not satisfied.

Example 1. Let X = Y = R, x0 = 1, D = U(1, 1−p) for p ∈ (0, 1
2 ) and define

function F on D by
F (x) = x3 − p.

We have that η = 1−p
3 and L = 2(2−p). Then, hypothesis (1.3) is not satisfied,

since
h =

4
3

(2− p)(1− p) > 1 for each p ∈ (0,
1
2

).

Hence, there is no guarantee under the hypotheses of Theorem 1 that sequence
{xn}starting from x0 = 1 converges to x∗ = 3

√
p.

Next, we present a semilocal convergence result that extends the applicability
of Theorem 1.

Theorem 2. Let F : D ⊂ X → Y be a Fréchet-differentiable operator. Suppose
that there exist x0 ∈ D, η ≥ 0, γ > 1, Lγ > 0 such that

F ′(x0) ∈ L(Y,X),

‖F ′(x0)−1F (x0)‖ ≤ η,
Dγ = U(x0, γη) ⊆ D,

‖F ′(x0)−1(F ′(x)− F ′(y))‖ ≤ Lγ‖x− y‖ for each x, y ∈ Dγ ,

hγ = 2Lγη ≤ 1

and
Rγ ≤ γη,

where

Rγ =
1−

√
1− hγ
Lγ

.

Then, the sequence {xn} generated by Newton’s method is well defined, remains
in U(x0, Rγ) for each n = 0, 1, 2, . . . and converges to a unique solution x∗ ∈
Ū(x0, Rγ) of equation (1.1).

4



Proof. The hypotheses of Theorem 1 on Dγ are satisfied. �

Example 2. Returning back to the Example 1 let p = 0.49 and γ = 1.9. Then,
we have that η = 0.17, γη = 0.323 and Rγ = 0.258202394 < 0.323 < 1 − p =
0.51. Hence, the hypotheses of Theorem 2 are satisfied.

Next, we present a semilocal result given in [6] involving condition (1.6).

Theorem 3. Let F : D ⊂ X → Y be a continuously Fréchet-differentiable
operator. Suppose that (1.6) and conditions (H1)− (H3) hold, where

r3 = η +
L0η

2

2(1− α)(1− L0η)
,

and
α =

2L
L+
√
L2 + 8L0L

.

Then, the sequence {xn} generated by Newton’s method is well defined, remains
in U(x0, r3) for each n = 0, 1, 2, . . . and converges to a unique solution x∗ ∈
Ū(x0, r3) of equation (1.1).

Next, we present an improvement of Theorem 3.

Theorem 4. Let F : D ⊂ X → Y be a Fréchet-differentiable operator. Suppose
that there exist x0 ∈ D, η ≥ 0, γ > 1, Lγ > 0, L0,γ ≥ 0 such that

F ′(x0) ∈ L(Y,X),

‖F ′(x0)−1F (x0)‖ ≤ η,
Dγ ⊆ D,

‖F ′(x0)−1(F ′(x)− F ′(x0)) ≤ L0,γ‖x− x0‖ for each x ∈ Dγ ,

‖F ′(x0)−1(F ′(x)− F ′(y)) ≤ Lγ‖x− y‖ for each x, y ∈ Dγ ,

h3,γ = 2L3,γη ≤ 1

and
r3,γ ≤ γη,

where the set Dγ is given in Theorem 2

L3,γ =
1
4

(4L0,γ +
√
LγL0,γ + 8L2

0,γ +
√
L0,γLγ)

r3,γ = η +
L0,γη

2

2(1− αγ)(1− L0,γη)
,

and
αγ =

2Lγ

Lγ +
√
L2
γ + 8L0,γLγ

.

Then, the sequence {xn} generated by Newton’s method is well defined, remains
in U(x0, r3,γ) for each n = 0, 1, 2, . . . and converges to a unique solution x∗ ∈
Ū(x0, r3,γ) of equation (1.1).
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Proof. The hypotheses of Theorem 3 on Dγ are satisfied. �
We present a semilocal convergence result of Newton’s method involving

condition (1.7) [6].

Theorem 5. Let F : D ⊂ X → Y be a Fréchet-differentiable operator. Suppose
that conditions (H1) − (H3) and Dγ ⊂ D holds. Moreover, suppose that there
exist K0 > 0, K1 > 0 such that

‖F ′(x0)−1(F ′(x1)− F ′(x0))‖ ≤ K0‖x1 − x0‖,

‖F ′(x0)−1(F ′(x0 + θ(x1−x0))−F ′(x0))‖ ≤ K1θ‖x1−x0‖ for each θ ∈ [0, 1],

h4 = 2L4η0 ≤ 1,

where
x1 = x0 − F ′(x0)−1F (x0),

L4 =
1

2η0
≤ 1,

α0 =
L(t2 − t1)

2(1− L0t2)
,

t1 = η, t2 = η +
K1η

2

2(1−K0η)
,

r4 = η +
(

1 +
α0

1− αγ

)
Kη2

2(1−K0η)
,

η0 is defined by

η0 =





1
L0 +K0

, if B = LK + 2αγ(L0(K − 2K0)) = 0,

positive root of p, if B > 0,
small positive root of p, if B < 0,

and
p(t) = (LK + 2αγL0(K − 2K0))t2 + 4αγ(L0 +K0)t− 4αγ .

Then, the sequence {xn} generated by Newton’s method is well defined, remains
in U(x0, r4) for each n = 0, 1, 2, . . . and converges to a unique solution x∗ ∈
Ū(x0, r4) of equation (1.1).

Notice that if B = 0, then p(t) = 0, if t = η0. The discriminant of the
quadratic polynomial p is positive, since

16α2
γ(L0 +K0)2 + 16αγ(LK + 2αγL0(K − 2K0))

= 16αγ [αγ(L0 −K0)2 + 2αγL0(K0 +K) +KL].

If B > 0, then p has a unique positive root by the Descarte’s rule of signs.
But if B < 0, by the Vietta relations of the roots of the quadratic polynomial,
the multiple of the roots equals − 4αγ

B > 0 and the sum of the roots equals
−4αγ(L0+K0)

B > 0. Therefore, p has two positive roots.
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The improvement of Theorem 5 is:

Theorem 6. Let F : D ⊂ X → Y be a Fréchet-differentiable operator. Suppose
that there exist x0 ∈ D, η ≥ 0, γ > 1, K0,γ > 0, Kγ > 0, Lγ > 0, L0,γ ≥ 0 such
that

F ′(x0) ∈ L(Y,X),

‖F ′(x0)−1F (x0)‖ ≤ η,
Dγ ⊆ D,

‖F ′(x0)−1(F ′(x1)− F ′(x0)) ≤ K0,γ‖x1 − x0‖,
‖F ′(x0)−1(F ′(x0 + θ(x1 − x0))− F ′(x0)) ≤ Kγθ‖x1 − x0‖ for each θ ∈ [0, 1],

‖F ′(x0)−1(F ′(x)− F ′(x0)) ≤ L0,γ‖x− x0‖ for each x ∈ Dγ ,

‖F ′(x0)−1(F ′(x)− F ′(y)) ≤ Lγ‖x− y‖ for each x, y ∈ Dγ ,

h4,γ = 2L4,γη0,γ ≤ 1

and
r4,γ ≤ γη,

where
x1 = x0 − F ′(x0)−1F (x0),

α0,γ =
Lγ(t2 − t1)

2(1− L0,γt2)
,

t1 = η, t2 = η +
Kγη

2

2(1−K0,γη)
,

r4,γ = η +
(

1 +
α0,γ

1− αγ

)
Kγη

2

2(1−K0,γη)
,

η0,γ is defined by

η0,γ =





1
L0,γ +K0,γ

, if B = LγKγ + 2αγ(L0,γ(Kγ − 2K0,γ)) = 0,

positive root of pγ , if LγKγ + 2αγL0,γ(Kγ − 2K0,γ > 0,
small positive root of pγ , if LγKγ + 2αγL0,γ(Kγ − 2K0,γ) < 0,

and

pγ(t) = (LγKγ + 2αγL0,γ(Kγ − 2K0,γ))t2 + 4αγ(L0,γ +K0,γ)t− 4αγ .

Then, the sequence {xn} generated by Newton’s method is well defined, re-
mains in U(x0, r4,γ) for each n = 0, 1, 2, . . . and converges to a unique solution
x∗ ∈ Ū(x0, r4,γ) of equation (1.1).

Proof. The hypotheses of Theorem 6 on Dγ are satisfied. �
Next, we present the local convergence results.
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Theorem 7. [5, 6] Let F : D ⊂ X → Y be a Fréchet-differentiable operator.
Suppose that there exist x∗ ∈ D, l0 > 0, l > 0 such that

F (x∗) = 0,

F ′(x∗) ∈ L(Y,X),

‖F ′(x∗)−1(F ′(x)− F ′(x∗)) ≤ l0‖x− x∗‖, for each x ∈ D

‖F ′(x∗)−1(F ′(x)− F ′(y)) ≤ l‖x− y‖, for each x, y ∈ D
and

Ū(x∗, %) ⊂ D,
where

% =
2

2l0 + l
.

Then, the sequence {xn} generated for x0 ∈ U(x∗, %) \ {x∗} by Newton’s method
is well defined, remains in U(x∗, %) for each n = 0, 1, 2, . . . and converges to a
x∗. Moreover, for T ∈ [%, 2

l0
), the limit point x∗ is the only solution of equation

(1.1) in Ū(x∗, T ) ∩D.

Then, the improvement of Theorem 7 is given by:

Theorem 8. Let F : D ⊂ X → Y be a Fréchet-differentiable operator. Suppose
that there exist x∗ ∈ D, δ ≥ 1, l0,δ > 0, lδ > 0 such that

F (x∗) = 0, F ′(x∗)−1 ∈ L(Y,X),

‖F ′(x∗)−1(F ′(x)− F ′(x∗)) ≤ l0,δ‖x− x∗‖ for each x ∈ Dδ

‖F ′(x∗)−1(F ′(x)− F ′(y)) ≤ lδ‖x− y‖ for each x, y ∈ Dδ

Dδ = Ū(x∗, δ‖x0 − x∗‖) ⊆ D for x0 ∈ D
and

%δ ≤ δ‖x0 − x∗‖,
where

%δ =
2

2l0,δ + lδ
.

Then, the sequence {xn} generated for x0 ∈ U(x∗, %δ)\{x∗} by Newton’s method
is well defined, remains in U(x∗, %δ) for each n = 0, 1, 2, . . . and converges to
a x∗. Moreover, for T ∈ [%δ, 2

l0,δ
), the limit point x∗ is the only solution of

equation (1.1) in Ū(x∗, T ) ∩D.

Proof. The hypotheses of Theorem 8 are satisfied on the domain Dδ. �

Remark 9. (a) If D = U(x0, ξ) for some ξ > η, then γ ∈ [1, ξη ], if η 6= 0.
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(b) If we set γ =
2

1 +
√

1− 2Lγη
, then condition Rγ ≤ γη is satisfied as

equality. Another choice for γ is given by γ = 2. Then, again Rγ ≤ γη,
since we have that Rγ ≤ 2η = γη.

(c) Clearly, we have that
L0,γ ≤ L,
Lγ ≤ L,
K0,γ ≤ K0

and
Kγ ≤ K.

Therefore, we get that
h ≤ 1⇒ hγ ≤ 1

h3 ≤ 1⇒ h3,γ ≤ 1

and
h4 ≤ 1⇒ h4,γ ≤ 1

but not necessarily vice versa unless if L0,γ = L, Lγ = L, K0,γ = K0 and
Kγ = K.

Notice also that the new majorizing sequences are more precise that the
corresponding older ones. As an example, the majorizing sequences {tn},
{t̄n} for Newton’s method corresponding to conditions h ≤ 1 and hγ ≤ 1
are:

t0 = 0, t1 = η, tn+1 = tn +
L(tn − tn−1)2

2(1− Ltn)

t̄0 = 0, t̄1 = η, t̄n+1 = t̄n +
Lγ(t̄n − t̄n−1)2

2(1− L0,γ t̄n)

Then, a simple induction argument shows that

t̄n ≤ tn

0 ≤ t̄n+1 − t̄n ≤ tn+1 − tn
and

Rγ ≤ R.
If Lγ < L, then the strict inequality holds for n ≥ 2 in the first inequality
and for n ≥ 1 in the second inequality. Moreover, we have that Rγ < R.
Hence, in this case the information on the location of the solution x∗ is
more precise under the new approach. Similar comments can be made for
the majorizing sequences corresponding to the other “h” and corresponding
“hγ” conditions. Finally, notice that the majorizing sequences correspond-
ing to conditions (1.5)–(1.7) have already been shown to be more precise
than sequence {tn} which corresponds to condition (1.4) [4, 6].
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(d) If D = U(x∗, ξ) for some ξ > ‖x0 − x∗‖, then δ can b chosen so that
δ ∈ [1, ξ

‖x0−x∗‖ ) for x0 6= x∗.

(e) We have that
l0,δ ≤ l0

and
lδ ≤ l.

Therefore, we get that
% ≤ %δ.

Moreover, if l0,δ < l0 or lδ < l, then % < %δ. The corresponding error
bounds are also improved, since we have

‖xn+1 − x∗‖ ≤
l‖xn − x∗‖2

2(1− l0‖xn − x∗‖)
.

Notice that, if l0 = l, then Theorem 2.9 reduces to the corresponding by
Rheinboldt [15] and Traub [16]. The radius found independently by these
authors is given by

%̄ =
2
3l
.

However, if l0 < l, then our radius is such that

%̄ < % < %δ

and
%̄

%
→ 1

3
as

l0
l
→ 0.

Hence, our radius of convergence % can be at most three times larger than
%̄.

3. Numerical examples

We present numerical examples in this section.
Example 3.1 Let D = U(x0, 1), x∗ = 3

√
2 and define function F on D by

F (x) = x3 − 2. (3.1)

We are going to consider such initial points for which previous conditions
cannot be satisfied but our new conditions are satisfied. That is, the improve-
ment that we get is the new weaker conditions.

The sufficient condition in Theorem 1 is

h = 2Lη ≤ 1.

So, we want to get the values of x0 and γ for which condition h ≤ 1 is not
satisfied but the conditions of Theorem 2 are satisfied.
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We get that

η =
1
3

∣∣∣∣
−2 + x3

0

x2
0

∣∣∣∣ ,

L =
∣∣∣∣
2(1 + x0)

x2
0

∣∣∣∣ ,

h =
4|1 + x0|

∣∣∣−2+x3
0

x2
0

∣∣∣
3x2

0

,

R =

x2
0


1−

√

1−
4|1+x0|

∣∣∣∣
−2+x30
x20

∣∣∣∣
3x2

0




2|1 + x0|

Lγ =
2
(
x0 + 1

3γ
∣∣∣−2+x3

0
x2
0

∣∣∣
)

x2
0

hγ =
4
∣∣∣−2+x3

0
x2
0

∣∣∣
(
x0 + 1

3γ
∣∣∣−2+x3

0
x2
0

∣∣∣
)

3x2
0

and

Rγ =

x2
0


1−

√

1−
4

∣∣∣∣
−2+x30
x20

∣∣∣∣
(
x0+

1
3γ

∣∣∣∣
−2+x30
x20

∣∣∣∣
)

3x2
0




2
(
x0 + 1

3γ
∣∣∣−2+x3

0
x2
0

∣∣∣
)

Imposing the following conditions, we recall (SL)-conditions:

• h > 1

• hγ ≤ 1

• Rγ ≤ γη
• γη ≤ 1

we obtain that the coloured zone corresponds to the cases for which previous
conditions (Theorem 1) cannot guarantee the convergence to the solution but
our new weaker criteria can. In order to compute the graphics we associate the
pair (x0, γ) of the xy−plane, where x = x0 and y = γ. Moreover, if we consider
the set of points

V = {(x0, γ) ∈ R2 : (SL)− conditions are satisfied}
we can observe that every point x0 chosen such that the pair associated (x0, γ)
belongs to V cannot be chosen as a starting point with the old condition but
can be chosen with the conditions of Theorem 2. Two examples of these regions
in which Theorem 2 can guarantee the convergence but previous results can’t
are shown in Figure 1 and Figure 2.
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Figure 1: One of the cases in which previous conditions are not satisfied but conditions of
Theorem are satisfied.

Figure 2: One of the cases in which previous conditions are not satisfied but conditions of
Theorem are satisfied.

Example 3.2 Let X = Y = C[0, 1], be the space of continuous functions
defined in [0, 1] be equipped with the max-norm. Let Ω = {x ∈ C[0, 1]; ‖x‖ ≤ R},
for R > 0. Define operator F on Ω [2, 7, 8, 9, 14] by

F (x)(s) = x(s)− f(s)− λ
∫ 1

0

G(s, t)x(t)3 dt, x ∈ C[0, 1], s ∈ [0, 1],

where f ∈ C[0, 1] is a given function, λ is a real constant and the kernel G is
the Green’s function defined by

G(s, t) =
{

(1− s)t, t ≤ s,
s(1− t), s ≤ t.

In this case, for each x ∈ Ω, F ′(x) is a linear operator defined on Ω by the
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following expression:

[F ′(x)(v)](s) = v(s)− 3λ
∫ 1

0

G(s, t)x(t)2v(t) dt, v ∈ C[0, 1], s ∈ [0, 1].

If we choose x0(s) = f(s) = 1, it follows ‖I − F ′(x0)‖ ≤ 3|λ|/8. Thus, if
|λ| < 8/3, F ′(x0)−1 is defined and

‖F ′(x0)−1‖ ≤ 8
8− 3|λ| .

Moreover,

‖F (x0)‖ ≤ |λ|
8
,

η = ‖F ′(x0)−1F (x0)‖ ≤ |λ|
8− 3|λ| .

On the other hand, for each x, y ∈ Ω, we have

‖F ′(x)− F ′(y)‖ ≤ ‖x− y‖1 + 3|λ|(‖x+ y‖)
8

≤ ‖x− y‖1 + 6R|λ|
8

.

and

‖F ′(x)− F ′(1)‖ ≤ ‖x− 1‖1 + 3|λ|(‖x‖+ 1)
8

≤ ‖x− 1‖1 + 3(1 +R)|λ|
8

.

Choosing λ = 1 and R = 2, we have

η = 0.2,

L = 2.6,

L0 = 2,

L3 = 22.8624

α = 0.544267 . . .

and
r3 = 0.346284 . . . .

Condition (1.3) is not satisfied, since

h = 1.04 > 1.

However, choosing γ = 6 conditions of Theorem 4 are satisfied, since

η = 0.2,

Lγ = 1.64,

L0,γ = 1.52,
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L3,γ = 12.3667 . . . ,

αγ = 0.512715 . . . ,

r3,γ = 0.289636 . . . ≤ γη = 1.2

and
2L3,γη = 0.656 ≤ 1.

The convergence of Newton’s method is ensured by Theorem 4.
Example 3.3 Let X = Y = C[0, 1], equipped with the max-norm. Consider

the following nonlinear boundary value problem
{

u′′ = −u3 − α u2

u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation

u(s) = s+
∫ 1

0

G(s, t) (u3(t) + α u2(t)) dt (3.2)

where, G is the Green’s function defined by

G(s, t) =
{

t (1− s), t ≤ s
s (1− t), s < t.

We observe that

max
0≤s≤1

∫ 1

0

|G(s, t)| dt =
1
8
.

Then problem (3.2) is in the form (1.1), where, F : D −→ Y is defined as

[F (x)] (s) = x(s)− s−
∫ 1

0

G(s, t) (x3(t) + α x2(t)) dt.

Set u0(s) = s and D = U(u0, 1). It is easy to verify that ‖u0‖ = 1. If
2 α < 5, the operator F ′ satisfies the invertibility conditions. Choosing α = 0.5,
and γ = 1.5 we obtain that

η = 0.375,

Lγ = 0.59375,

hγ = 0.429688 . . .

and
Rγ = 0.411354 ≤ γη = 0.5625

So, we can ensure the convergence of {xn} by Theorem 2.
Example 3.4 Let X = Y = R3, D = U(0, 1). Define F on D for v =

(x, y, z)T by

F (v) = (ex − 1,
e− 1

2
y2 + y, z)T . (3.3)
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Then, the Fréchet-derivative is given by

F ′(v) =



ex 0 0
0 (e− 1)y + 1 0
0 0 1


 .

Notice that x∗ = (0, 0, 0)T , F ′(x∗) = F ′(x∗)−1 = diag{1, 1, 1}, l0 = e− 1 < l =
e. Choosing x0 = (0.2, 0.2, 0.2)T , we see in the following Table the radius found
by Traub, our old one and the new one presented in this paper. Notice that our
radius %δ is larger than the older one % and the one given by Traub rTR.

Table 1: Radius of convergence

δ RTR % %δ
3 0.245253 0.324947 0.448563
4 0.245253 0.324947 0.418223
5 0.245253 0.324947 0.324947

Table 2: Corresponding error bounds for Traub’s condition, i.e. l = l0 = e

n ‖xn − x∗‖
0 0.000955501
1 3.94473× 10−7

2 8.41053× 10−14

3 3.84158× 10−27

Table 3: Corresponding error bounds for our old condition, i.e. l = e, l0 = e− 1

n ||xn − x∗||
0 0.00092994
1 3.9426× 10−7

2 8.41053× 10−14

3 3.84158× 10−27

Example 3.5 We consider the following Planck’s radiation law [1] problem
which calculates the energy density within an isothermal blackbody and is given
by:

ϑ(λ) =
8πcPλ−5

e
cP
λBT −1

, (3.4)

where λ is the wavelength of the radiation, T is the absolute temperature of
the blackbody, B is the Boltzmann constant, P is the Planck constant and c
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Table 4: Corresponding error bounds for our new condition with δ = 4

n ||xn − x∗||
0 0.000584918
1 2.49195× 10−7

2 5.31647× 10−14

3 2.42834× 10−27

Table 5: Corresponding error bounds for our new condition with δ = 3

n ||xn − x∗||
0 0.000582411
1 2.49173× 10−7

2 5.31647× 10−14

3 2.42834× 10−27

is the speed of light. We are interested in determining wave length λ which
corresponds to maximum energy density ϑ(λ).

From (3.4), we obtain

ϑ′(λ) =
(

8πcPλ−6

e
cP
λBT − 1

)



cP

λBt
e
cP
λBT

e
cP
λBT − 1

− 5


 , (3.5)

so that the maxima of ϑ occurs when

cP

λBt
e
cP
λBT

e
cP
λBT − 1

= 5. (3.6)

After that, if x = cP
λBT , then (3.6) is satisfied if

F (x) = e−x +
x

5
− 1 = 0. (3.7)

Therefore, the solutions of F (x) = 0 give the maximum wave length of radiation
λ by means of the following formula:

λ ≈ cP

x∗BT
, (3.8)

where x∗ is a solution of (3.7).
Function (3.7) is continuous and such that F (1) = −0.432121 . . . and F (9) =

0.800123 . . .. By the intermediate value theorem function F (x) has zeros in the
interval [1, 9]. So, we consider D = U(5, 4) and x∗ = 4.965114 . . ..

We choose x0 = 3, δ = 1.5 and we obtain:

l0,δ = 0.2214851 . . . ,
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lδ = 0.6890122 . . .

and
ρδ = 1.76681 . . . ≤ 2.94767 . . . = δ‖x0 − x∗‖.

As a consequence, conditions of Theorem 8 are satisfied as a consequence we
can ensure the convergence of Newton’s method (1.2).
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