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Abstract

Due to its simplicity and low memory requirement, conjugate gradient methods are

widely used for solving large-scale unconstrained optimization problems. In this paper,

we propose a three-term conjugate gradient method. The search direction is given by

a symmetrical Perry matrix, which contains a positive parameter. The value of this

parameter is determined by minimizing the distance of this matrix and the self-scaling

memoryless BFGS matrix in the Frobenius norm. The sufficient descent property of the

generated directions holds independent of line searches. The global convergence of the

given method is established under Wolfe line search for general non-convex functions.

Numerical experiments show that the proposed method is promising.

Keywords: unconstrained optimization, conjugate gradient method, self-scaling

memoryless BFGS matrix, global convergence
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1. Introduction1

The method involved in this paper is designed to solve the following unconstrained2

optimization problem:3

min f (x),x ∈ Rn, (1)
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where f (x) is a continuously differentiable objective function.4

The most popular methods for such unconstrained optimization problems, espe-5

cially for large-scale problems, are first-order methods. Namely, only the gradient of6

the objective function is used in iterations. Since Newton or quasi-Newton methods re-7

quire calculating and storing Hessian or approximate Hessian matrix, for a n-dimension8

problem, it need at least O(n2) storages and calculations at each iteration. However,9

first-order methods only need O(n) storages and calculations at each iteration. So, in10

this paper, we mainly focus on studying the first-order method for solving problem (1).11

There are several types of first-order method to solve problem (1).12

Gradient descent method is the simplest iterative first-order method with the form :13

xk+1 = xk −αkgk, (2)

where the step size αk is either fixed or determined by a line search, and gk = ∇ f (xk)14

is the gradient of the objective function. It requires only vector operations. However,15

its convergent rate is slowly and it is easy to form a zigzag search path.16

Subgradient method [1]has the similar form with gradient descent method:17

xk+1 = xk +αk∂ fk, (3)

where ∂ fkis the subgradient of the objective function f(x) at xk.18

Nesterov accelerated gradient method [2] is one of well-known accelerated gra-19

dient method which accelerates first-order method by foming estimating sequences.20

Gonzaga and Karas [3] presented a variant of Nesterov’s method that adapts to un-21

known strong convexity. To improve the convergence rate, O’Donoghue and Candés22

[4] proposed a heuristic for resetting the momentum term to zero.23

Th heavy ball method proposed by Polyak [5] adds an adjusted term to the gradient24

step:25

xk+1 = xk −αk∇ f (xk)+βkdk, (4)

where dk = xk − xk−1. The motivation is to avoid the bounce between the walls of nar-26

row ’valleys’ on the objective surface which may occur in gradient descent method.27

However, in the heavy ball method, the objective function f (x) is supposed to be28
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strongly convex and strongly smooth, namely:29

strongly convex with the constant µ30

f (y) ≥ f (x)+∇ f (x)T (y− x)+
µ
2
||y− x||2, (5)

strongly smooth with the constant L31

f (y) ≤ f (x)+∇ f (x)T (y− x)+
L
2
||y− x||2. (6)

And, the step size αk depends on two constants L and µ .32

The conjugate gradient (CG) method can be considered as an instance of the heavy33

ball method with adaptive step size. However, conjugate gradient method has an ad-34

vantage that it does not require knowledge of L and µ to determine step size. The35

iterative formula of conjugate gradient method is given by36

xk+1 = xk +αkdk. (7)

37

dk+1 =





−gk+1, f or k = 0;

−gk+1 +βkdk, f or k ≥ 1,
(8)

where βk is a scalar called the conjugate gradient(CG) parameter, αk > 0 is the step size38

obtained by some line searches [6, 7]. Among them, the so-called Wolfe line search39

[8, 9] requires αk satisfying40

f (xk +αkdk)− f (xk)≤ ραkgT
k dk, (9)

and41

g(xk +αkdk)
T dk ≥ σgT

k dk, (10)

where 0 < δ < σ < 1. In the convergence analysis and numerical implementations of42

the conjugate gradient methods, the step size αk is often computed by the strong Wolfe43

line search [9] which requires αk satisfying (9) and44

|g(xk +αkdk)
T dk| ≤ −σgT

k dk. (11)

Due to its simplicity and low memory requirement, conjugate gradient methods are45

widely used in solving large-scale optimization problems. In the past decades, a variety46
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of conjugate gradient methods are developed. There are some well known conjugate47

gradient methods, such as Fletcher-Reeves (FR) method [10], Hestenes-Stiefel (HS)48

method [11], Polak-Ribiére-Polyak (PRP) method [12, 13] and Dai-Yuan (DY) method49

[14].50

Recent effors have been made to relate the nonlinear conjugate gradient method51

to modified conjugacy gradient conditions and quasi-Newton method. The following52

Dai-Liao [15] conjugacy condition53

dT
k+1yk =−tgT

k+1sk, (12)

where sk = xk+1−xk, yk = gk+1−gk and t is a positive parameter, is one of the most in-54

teresting conjugacy condition. Based on condition ( 12), Dai and Liao obtained β DL(t)
k55

as follows56

β DL
k (t) =

gT
k+1yk

dT
k yk

− t
gT

k+1sk

dT
k yk

(13)

Hager and Zhang [16] presented an another choice for the parameter t = 2 ||yk||2
sT
k yk

and57

obtained CG-Descent method by computing the parameter βk in (8) with58

β̄k
N
= max{β N

k ,ηk}, (14)

in which59

ηk =
−1

||dk||min{η , ||gk||}
, β N

k =
gT

k+1yk

dT
k yk

− 2
||yk||2
dT

k yk

gT
k+1dk

dT
k yk

, (15)

where η is a fixed positive parameter. By seeking the conjugate gradient direction60

closest to the direction of the scaled memoryless BFGS method, Dai and Kou obtianed61

CGOPT family [17], in which the parameter βk(τk) is determined by62

βk(τk) =
yT

k gk+1

dT
k yk

− dT
k gk+1

dT
k yk

‖yk‖2

dT
k yk

(1+ τk
sT

k yk

‖yk‖2 )+
dT

k gk+1

‖dk‖2 . (16)

Combining with two types of modified secant equations, Kou [18] proposed an im-63

proved CGOPT method. Similar with Dai and Liao’s approach, based on modified64

secant equations proposed in [19, 20, 21], other conjugate gradient methods have also65

beeen developed by Li, Yabe and Zhou et al. in [22, 23, 24], respectively. Other choices66

for the paramter t in (13) can also be found in [25, 26, 27].67
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On the other hand, by using quasi-Newton techniques in conjugate gradient method,68

some authors considered conjugate gradient method as a special type of quasi-Newton69

method. Based on this technique, Perry [28] proposed the following formula for com-70

puting the parameter β in (8):71

β P
k =

gT
k+1yk − gT

k+1sk

dT
k yk

. (17)

By substituting (17) into (8) and applying some simple algebraic manipulation, we can72

obtain the corresponding Perry’s search direction as follows:73

dP
k+1 =−QP

k+1gk+1, (18)

where74

QP
k+1 = I − skyT

k

yT
k sk

+
sksT

k

yT
k sk

. (19)

From equations (18) and (19), it is obviously that Perry conjugate gradient method75

can be considered as a special case of quasi-Newton method. In Perry method, the76

matrix QP
k+1 is used to estimate the approximation of the inverse Hessian matrix of the77

objective function. From a strictly point of view, Perry’s method can not be considered78

as a quasi-Newton method, since the matrix QP
k+1 is not positive symmetric and does79

not fullfill secant condtion.80

To overcome the asymmetry, combining with Dai-Liao conjugacy condition (12),81

Babaie-Kafaki and Ghanbari [29] proposed the following matrix Ak+182

Ak+1 = I− 1
2

skyT
k + yksT

k

sT
k yk

+ t
sksT

k

sT
k yk

, (20)

to replace the the matrix QP
k+1 in (19). Andrei also presented a symmetric matrix to83

estimate the inverse Hessien approximation as follows:84

QN
k+1 = I − skyT

k − yksT
k

sT
k yk

+ t
sksT

k

sT
k yk

. (21)

By computing the parameter t in some different manners, Andrei obtained some differ-85

ent conjugate gradient methods [30, 31, 32, 33].86

The above results indicate that conjugacy conditions and quasi-Newton techniques87

can be used to improve the traditional conjugate gradient efficiently. In this paper, we88
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will investigate Perry conjugate gradient method by mininizing the distance between89

a symmetrical Perry matrix with a positive parameter and the self-scaling memoryless90

BFGS update in the Frobenius norm.91

The structure of the paper is as follows. In the next section, the motivations of92

this paper will be discussed. After that, the corresponding method will be proposed.93

In section 3, the global convergence results of the obtained algorithm are established94

under Wolfe line search. In section 4, the numerical Dolan-Moré performance profile95

[34] of the proposed algorithm with some will known conjugate gradient algorithms96

will be shown by using the unconstrained optimization test problems from [35]97

2. Motivations and the corresponding Perry conjugate gradient method98

2.1. Motivations99

Let us simply review the update matrices Ak+1 and QN
k+1 proposed by Saman and100

Reza [29] and Andrei [30, 31, 32], the iterative update matrix both can be expressed as101

the following form:102

Qk+1 = I+Rk+1
2 + tkRk+1

1 , (22)

where Rk+1
2 and Rk+1

1 are given rank 2 and rank 1 adjusted matrix respectively.103

Motivated by this observation, in this paper, we propose the following symmetric104

Perry matrix105

QM
k+1 = I+ tkAk+1

2 +Ak+1
1 , (23)

where106

Ak+1
2 =− skyT

k + yksT
k

sT
k yk

, Ak+1
1 =

sksT
s

sT
k yk

, (24)

tk is a positive parameter to be determined. The search direction is generated by107

dk+1 =−QM
k+1gk+1, k ≥ 1. (25)

2.2. The optimal choice for the parameter108

In the following, we will discuss some properties of the method formed by equa-109

tions (23), (24) and (25). And then, the parameter tk will be determined by minimizing110
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the distance between the matrix QM
k+1 and the self-scaling memoryless BFGS matrix in111

the Frobenius norm.112

It is well known that, BFGS method [36, 37, 38, 39] is one of the most efficient113

quasi-Newton method. The BFGS update matrix is given by114

Hk+1 = Hk −
skyT

k Hk +HkyksT
k

yT
k sk

+(1+
yT

k Hkyk

yT
k sk

)
sksT

k

yT
k sk

. (26)

For large-scale problems, the expenditure of storing and computing the matrix Hk is115

huge. Perry [40] and Shanno [41] proposed the self-scaling memoryless BFGS update116

matrix by replacing Hk with a scaled identity matrix ξkI. The corresponding self-117

scaling memoryless BFGS matrix is given as follows:118

Hξk
k+1 = ξkI − ξk

skyT
k + yksT

k

yT
k sk

+(1+ ξk
||yk||2
yT

k sk
)

sksT
k

yT
k sk

. (27)

Since the self-scaling memoryless BFGS method is one of the most efficient memo-119

ryless quasi-Newton method, and, the matrix QM
k+1 defined by (23) has similar structure120

with the self-scaling memoryless BFGS matrix Hξk
k+1 given by (27), in this paper, the121

parameter tk at each iteration, in (23) is defined by122

t∗k = argmin
t>0

{‖QM
k+1 −Hξk

k+1‖2
F}

= argmin
t>0

{‖(I+ tAk+1
2 +Ak+1

1 )− (ξkI− ξk
skyT

k + yksT
k

yT
k sk

+(1+ ξk
||yk||2
yT

k sk
)

sksT
k

yT
k sk

)‖2
F}.
(28)

where ‖ · ‖F is the Frobenius matrix norm. For convenience, we use Dk+1(t) to denote123

QM
k+1 −Hξk

k+1. Since ‖Dk+1(t)‖2
F = tr(Dk+1(t)T Dk+1(t)), it follows that the problem124

(28) can be expressed as125

t∗k = argmin
t>0

{tr(Dk+1(t)T Dk+1(t))}. (29)

After some directly and tediously computation, we can have126

tr(Dk+1(t)T Dk+1(t)) = (2+ 2ak)t2 − 4t + g(ak,ξk), (30)

where127

ak =
‖sk‖2‖yk‖2

(sT
k yk)2 , (31)
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128

g(ak,ξk) = (1− ξk)
2n− (a2

k − 2)ξ 2
k − 2akξk + 4ξk. (32)

Based on equation (31), obviously, ak ≥ 1 and (2+ 2ak)> 0, so, the problem (29) has129

the following unique solution130

t∗k =
1

1+ ak
. (33)

It should be noticed that, since ak ≥ 1 given by (31), the value of t∗k ≤ 1
2 . From (33),131

the optimal value t∗k depends only on ak instead of ξk. It is an amazed result, since132

this result indicates that whatever the scale parameter ξk, the solution of (29) uniquely133

exists.134

On the other hand, the descent property of a given search direction is very important135

for the convergence analysis. Now, we discuss the descent property of the direction136

generated by (23), (24) and (25). By substituting ((23), (24)) into (25) and multiplying137

both sides of (25) with gk+1, we have138

dT
k+1gk+1 =−‖gk+1‖2 + 2tk

gT
k+1ykgT

k+1sk

sT
k yk

− (gT
k+1sk)

2

sT
k yk

≤−‖gk+1‖2 + tk(‖gk+1‖2 +(
gT

k+1sk

sT
k yk

)2‖yk‖2)− (gT
k+1sk)

2

sT
k yk

=−(1− tk)‖gk+1‖2 − (
gT

k+1sk

sT
k yk

)2[sT
k yk − tk‖yk‖2].

(34)

If the Wolfe line search (10) is utilized to compute the step size αk, we can deduce that139

sT
k yk > 0. From equation (34), in order to ensure the sufficient descent property, in this140

paper, we make the following restriction on tk141

tk ≤
sT

k yk

‖yk‖2 . (35)

Based on the above discussion, the parameter tk in this paper is determined by142

tk = min{ 1
1+ ak

,
sT

k yk

‖yk‖2 }. (36)

2.3. The corresponding Perry conjugate gradient method143

To facilitate the convergence analysis, we rewrite the method formed by (23), (24)144

and (25) as a typical three-term conjugate gradient method as follows:145

dk+1 =−gk+1 +βkdk + δkyk, (37)
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where146

βk =
tkgT

k+1yk − gT
k+1sk

dT
k yk

, (38)

147

δk =
tkgT

k+1sk

sT
k yk

, (39)

in which tk is determined by (36). Furthermore, in order to establish the global conver-148

gence for general function, we need to make a nonnegative restriction on βk as follows:149

150

β+
k = max{βk,0}. (40)

Now, we present the detailed description of the obtianed algorithm for solving un-151

constrained optimization problems.152

Algorithm 1. New Three-term Perry Algorithm (NTPA):153

• Step 1: Given x1 ∈ Rn, ε ≥ 0, t1 > 0 , set d1 =−g1, k = 1, if ‖g1‖ ≤ ε , then stop;154

• Step 2:Compute αk such that the Wolfe line search conditions (9) and (10) hold;155

• Step 3: Let xk+1 = xk +αkdk, gk+1 = g(xk+1), if ‖gk+1‖ ≤ ε , then stop;156

• Step 4: Generate dk+1 by dk+1 = −gk+1 +β+
k dk + δkyk in which β+

k , δk and tk157

are determined by (40), (39) and (36) respectively.158

• Step 5: Set k := k+ 1, go to step 2.159

The symbol ‖ · ‖ stands for the Euclidean norm in this paper.160

3. Convergence analysis161

In this section, we investigate the convergence properties of the presented Algo-162

rithm 1. In the rest parts of this paper, we assume that gk 6= 0 for all k, otherwise a163

stationary point has been found. We also make the following basic assumptions on the164

objective function.165

Assumption 1. 1. f (x) is bounded below on the level set Γ = {x ∈ Rn : f (x) ≤166

f (x1)}, i.e., there exists a positive constant B such that for all x ∈ Γ, ‖x‖ ≤ B.167
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2. In some neighborhood N of Γ, f (x) is differentiable and its gradient g(x) is168

Lipschitz continuous, namely, there exists a constant L > 0 such that169

‖g(x)− g(y)‖ ≤ L‖x− y‖, f or all x,y ∈ N. (41)

Under the above assumptions on f (x), there exists a constant Θ ≥ 0 such that ‖g(x)‖≤170

Θ for all x ∈ Γ.171

The descent property of search direction is critical in the convergence analysis for172

conjugate gradient method. The following proposition shows that the search direction173

generated by the proposed Algorithm 1 possesses sufficient descent property.174

Lemma 1. Suppose that dk is generated by (37), (38) and (39) in which tk is deter-175

mined by (36), then the sufficient descent property holds for all k ≥ 1, namely, there176

exists a positive constant c, such that177

−gT
k dk ≥ c‖gk‖2, f or all k ≥ 1. (42)

Proof: From equations (37), (38) and (39), we have178

dT
k+1gk+1 =−‖gk+1‖2 + 2tk

gT
k+1ykgT

k+1sk

sT
k yk

− (gT
k+1sk)

2

sT
k yk

≤−(1− tk)‖gk+1‖2 − (
gT

k+1sk

sT
k yk

)2[sT
k yk − tk‖yk‖2].

(43)

Combining the equations (36) and (33), we have tk ≤ 1
2 . Inequation (43) indicates that179

the sufficient descent condition (42) holds for c = 1
2 .180

It should be noticed that, the sufficient descent property of the search direction gener-181

ated by the proposed Algorithm 1 is independent with the line search scheme, also, the182

objective function f (x) is only required to be continuously differentiable.183

The following lemma shows that, if the objective function satisfies the Assumption184

1, and the step size αk fullfills the Wolfe line search conditions (9) and (10), then for185

all k ≥ 1, the step size αk has a positive lower bound.186

Lemma 2. Suppose that dk is generated by (37), (38) and (39) in which tk is deter-187

mined by (36), f (x) satisfies Assumption 1, if the step size αk fullfills the Wolfe cond-188

tions (9) and (10), then189

αk ≥
(σ − 1)gT

k dk

L‖dk‖2 , (44)
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where σ and L are positive constant in (10) and (41) respectively.

Proof: Based on Lemma 1, dk is a descent direction, namely dT
k gk < 0. Combining

with Lisschitz inequation (41), Wolfe condition (10) deduces

(σ − 1)gT
k dk ≤ (gk+1 − gk)

T dk = yT
k dk ≤ ‖yk‖‖dk | ≤ αkL‖dk‖2.

So, (44) holds immediately.190

Zoutendijk condition [42] plays an important role in the analysis of global convergence191

for conjugate gradient method. In the following, we will prove that the proposed Algo-192

rithm 1 possesses the Zoutendijk condition.193

Lemma 3. Suppose that dk is generated by (37), (38) and (39) in which tk is deter-194

mined by (36), in which step size αk fullfills Wolfe conditions (9) and (10), if f (x)195

satisfies the Assumption 1, then the following so-called Zoutendijk condition holds:196

∑
k≥1

(gT
k dk)

2

‖dk‖2 < ∞. (45)

Proof: Wolfe condition (9) means that

f (xk)− f (xk +αkdk)≥−ραkgT
k dk,

combining with (44), we have197

f (xk)− f (xk +αkdk)≥
ρ(1−σ)(gT

k dk)
2

L‖dk‖2 . (46)

By summing up both sides of (46), and using the bounded below assumption on f (x),198

we can have zoutendijk condition (45) immediately.199

For uniformly convex functions, i.e. there exists a constant µ > 0 such that200

(∇ f (x)−∇ f (y))T (x− y)≥ µ‖x− y‖2, (47)

for all x, y ∈ Rn, we can prove that the norm of the directions {‖dk‖}generated by201

Algorithm 1 is bounded above.202

Lemma 4. Suppose that dk is generated by (37), (38) and (39) in which tk is deter-203

mined by (36), in which the step size αk is determined by Wolfe line search (9) and (10).204

11



If the objective function f (x) is uniformly convex, then the norm of ‖dk‖ is bounded205

above, namely, there exists M > 0 such that206

‖dk‖ ≤ M, (48)

holds for all k ≥ 1.207

Proof: Based on Lipschitz condition and uniformly convexity, we have208

‖yk‖ ≤ L‖sk‖, yT
k sk ≥ µ‖sk‖2. (49)

The sufficient descent condition gT
k dk ≤ −c‖gk‖2 indicates that the sequence {xk} ∈

Γ = {x ∈ Rn : f (x)≤ f (x1)}. By Assumption 1, there exists a constant Θ ≥ 0 such that

‖g(xk)‖ ≤ Θ holds for all k ≥ 1. On the other hand, from the definition of dk+1, (49)

and (36), we have

‖dk+1‖= ‖− gk+1+
tkgT

k+1yk − gT
k+1sk

sT
k yk

sk + tk
gT

k+1sk

sT
k yk

yk‖

≤ ‖gk+1‖+
tk‖gk+1‖‖yk‖+ ‖gk+1‖‖sk‖

µ‖sk‖2 ‖sk‖+ tk
‖gk+1‖‖sk‖

µ‖sk‖2 ‖yk‖

≤ ‖gk+1‖+
1
2 L+ 1

µ
‖gk+1‖+

L
2µ

‖gk+1‖

≤ (1+
L+ 1

µ
)Θ := M.

With Lemma 4, we can prove the following convergence results for uniformly convex209

function.210

Theorem 1. Assum that f (x) satisfies assumption 1. Consider the search direction dk211

generated by (37), (38) and (39) in which tk is determined by (36), and αk is calculated212

by Wolfe line search. If furthermore, f (x) is uniformly convex, we have213

lim
k→∞

‖gk‖= 0. (50)

Proof: Based on Lemma 4, we have ‖dk‖ ≤ M. According to Lemma 1, the sufficient214

descent condition −gT
k dk ≥ c‖gk‖2 holds. By using zoutendijk condition (45) we have215

∞ > ∑
k≥1

(gT
k dk)

2

‖dk‖2 ≥ ∑
k≥1

(gT
k dk)

2

M2 ≥ c2

M2 ∑
k≥1

‖gk‖2. (51)

The above inequation deduces (50).216
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From Theorem 1, we know that, for uniformly convex function, the global convergence217

can be established without the nonnegative restriction on βk given by (38). Now, we218

will discuss the global convergence properties for general functions. In order to prove219

the establish the global convergence, we need to make a nonnegative restriction on βk220

as β+
k = max{βk,0}, in which βk is given by (38).221

For general function, we can obtain a weaker convergence result in the sence that222

liminf
k→∞

‖gk‖= 0. (52)

For this purpose, we are going to prove this convergence result (52) by contradiction.223

Suppose that (52) does not hold, which means that there exists a positive constant γ > 0224

such that225

‖gk‖> γ, f or all k ≥ 1. (53)

226

Lemma 5. Suppose that f (x) satisfies Assumption 1. Consider the proposed Algorithm227

1 in which dk+1 is generated by by dk+1 =−gk+1+β+
k dk +δkyk in which β+

k , δk and tk228

are determined by (40), (39) and (36) respectively, step size αk is calculated by Wolfe229

line search satisfying (9) and (10). If (53) holds, then,230

∑
k≥1

‖uk+1 − uk‖2 < ∞, (54)

where uk+1 =
dk+1

‖dk+1‖ . Proof. Based on the sufficient descent condition 42, dk+1 = 0231

implies gk+1 = 0 which contradicts with (53), so, uk+1 is well defined. From equation232

dk+1 =−gk+1 +β+
k dk + δkyk, we have233

dk+1

‖dk+1‖
=

−gk+1

‖dk+1‖
+β+

k
dk

‖dk+1‖
+ δk

yk

‖dk+1‖

=
−gk+1 + δkyk

‖dk+1‖
+β+

k
‖dk‖
‖dk+1‖

dk

‖dk‖
.

(55)

Rewrite (55) as follows:234

uk+1 = ωk +ηkuk, (56)

where235

ωk =
−gk+1 + δkyk

‖dk+1‖
, (57)
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236

ηk = β+
k

‖dk‖
‖dk+1‖

≥ 0. (58)

Using the identity ‖uk+1‖= ‖uk‖= 1 and (56), we obtain237

‖ωk‖= ‖uk+1 −ηkuk‖= ‖ηkuk+1 − uk‖. (59)

Since ηk ≥ 0, triangle inequality and (59) imply that238

‖uk+1 − uk‖ ≤ ‖(1+ηk)uk+1 − (1+ηk)uk‖

≤ ‖uk+1 −ηkuk‖+ ‖ηkuk+1 − uk‖

= 2‖ωk‖.

(60)

By the definition of ωk, δk and tk substituting (39) into (57), we have239

‖ωk‖=
‖− gk+1+ δkyk‖

‖dk+1‖
=

‖− gk+1+ tk
gT

k+1sk

sT
k yk

yk‖
‖dk+1‖

≤
‖gk+1‖+ 1

1+ak

‖gk+1‖‖sk‖‖yk‖
sT
k yk

‖dk+1‖
.

(61)

By using the definition of ak (31), (61) indicates240

‖ωk‖ ≤
‖gk+1‖+ ‖gk+1‖ (sT

k yk)
2

(sT
k yk)

2+‖sk‖2‖yk‖2
‖sk‖‖yk‖

sT
k yk

‖dk+1‖

≤
‖gk+1‖(1+ ‖sk‖2‖yk‖2

(sT
k yk)

2+‖sk‖2‖yk‖2 )

‖dk+1‖

≤ 2‖gk+1‖
‖dk+1‖

.

(62)

If (53) ‖gk+1‖ ≥ γ , from the sufficient descent condition (53), and Zoutendijk condition241

(45), we have242

∞ > ∑
k≥1

(gT
k+1dk+1)

2

‖dk+1‖2 ≥ ∑
k≥1

c2‖gk+1‖4

‖dk+1‖2 ≥ ∑
k≥1

c2γ2‖gk+1‖2

‖dk+1‖2 . (63)

Equations (60), (62) and (63) deduce (54).243

The above Lemma 5 shows that the search directions uk+1 change slowly, asymp-244

totically. To establish the global convergence for general functions, we need to require,245

in addition, that βk be small when the step sk = xk+1 − xk is small.246
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This property is firstly formally stated by Gilbert and Nocedal [43], and is widely247

used in the convergence analysis of the typical two-term conjugate gradient method,248

namely the method formed by (7) and (8). For three-term conjugate gradient method249

formed by (7) and (37), similar with Gilbert and Nocedal [43], we present this property250

as follows.251

Property(*) 1. Consider a method of the form (7) and (37), and suppose that252

0 < γ ≤ ‖gk‖ ≤ γ̄, (64)

for all k ≥ 1. Under this assumption, we say that the method has Property(*) if there253

exists constants b > 1 and λ > 0 such that for all k254

|βk| ≤ b, (65)

and255

‖sk‖ ≤ λ ⇒ |βk| ≤
1

2b
. (66)

For general conjugate gradient method with the form (7) and (8), it is known that256

many methods satisfy this property. In the following Lemma, we will show that the257

proposed three-term conjugate gradient method formed by (7) and (37) also possesses258

this property.259

Lemma 6. Consider the three-term conjugate gradient method form by (7) and (37),260

in which βk, δk and tk are defined by (38), (39) and (36) respectively, if the objective261

function satisfies Assumption 1 and step size αk is determined by Wolfe line searches262

(9) and (10), then the method possesses Property (*).263

Proof. By Wolfe line search condition (10) and the sufficient descent property 42, we264

have265

dT
k yk ≥ (σ − 1)gT

k dk ≥ c(1−σ)‖gk‖2. (67)
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Combining (67), Assumption 1 and (64) with the definition of βk given by (37), we have266

|βk|= | tkgT
k+1yk − gT

k+1sk

dT
k yk

|

≤ tk‖gk+1‖‖yk‖+ ‖gk+1‖‖sk‖
c(1−σ)‖gk‖2

≤
1
2‖gk+1‖‖gk+1 − gk‖+ ‖gk+1‖‖sk‖

c(1−σ)‖gk‖2

≤ γ̄2 + γ̄B
c(1−σ)γ2 := b.

(68)

Define267

λ :=
c2(1−σ)2γ4

2γ̄2(γ̄ +B)(L
2 + 1)

. (69)

On the other hand, if ‖sk‖ ≤ λ , from the second inequation of (68) and (69), we obtain268

|βk| ≤
1
2 L‖gk+1‖sk‖+ ‖gk+1‖‖sk‖

c(1−σ)‖gk‖2

≤ ( 1
2 Lγ̄ + γ̄)

c(1−σ)γ2 ‖sk‖ ≤
( 1

2 Lγ̄ + γ̄)
c(1−σ)γ2 λ

=
1

2b
.

(70)

Since the proposed three-term conjugate gradient method possesses Property(*), in269

the next lemma, we will show that if the gradients are bounded away from zero, then a270

fraction of the steps cannot be too small. Let N denote the set of positive integers. For271

λ > 0 let272

Kλ := {i ∈ N : i ≥ 1, ‖si‖> λ}, (71)

i.e., the set of integers corresponding to steps that are larger than λ . We will need to273

discuss groups of ∆ consecutive iterates, for this purpose, let274

Kλ
k,∆ := {i ∈ N : k ≤ i ≤ k+∆− 1, ‖si‖> λ}. (72)

Let |Kλ
k,∆| denote the number of elements of Kλ

k,∆, and ⌊·⌋ denote floor operator.275

Lemma 7. Consider the three-term conjugate gradient method form by (7) and (37),276

in which βk, δk and tk are defined by (38), (39) and (36) respectively, if the objective277

function satisfies Assumption 1 and step size αk is determined by Wolfe line searches278
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(9) and (10). If (64) holds, then there exists λ > 0 such that, for any ∆ ∈ N and any279

index k0, there is a greater index k ≥ k0 such that280

|Kλ
k,∆|>

∆
2
. (73)

Proof. We prove by contradiction. Suppose that281





f or any λ > 0, there exists ∆ ∈ N and k0 such that,

f or any k ≥ k0, we have |Kλ
k,∆| ≤ ∆

2 .

(74)

Based on Lemma 1 and Lemma 3, we have that the sufficient desent condition (42) and282

Zoutendijk condition (45) hold. From the definition of δk and tk given by (39) and (36)283

respectively, we have284

‖δkyk‖= |tk
gT

k+1sk

sT
k yk

|‖yk‖

≤ 1
1+ ak

|g
T
k+1sk

sT
k yk

|‖yk‖

=
(sT

k yk)
2

(sT
k yk)2 + ‖sk‖2‖yk‖2 |

gT
k+1sk

sT
k yk

|‖yk‖

≤ ‖yk‖2‖sk‖2‖gk+1‖
(sT

k yk)2 + ‖sk‖2‖yk‖2 ≤ ‖gk+1‖.

(75)

Since the proposed method has Property(*), there exists λ > 0 and b > 1 such that285

(65) and (66) hold for all k. For this λ , let ∆ and k0 given by (74) For any given index286

l ≥ k0 + 1, from the definition of dk+1 given by (37), we have287

‖dk+1‖2 ≤ (βk‖dk‖+ ‖− gk+1+ δkyk‖)2

≤ 2β 2
k ‖dk‖2 + 2‖− gk+1+ δkyk‖2

≤ 2β 2
k ‖dk‖2 + 2(2‖gk+1‖2 + 2‖δkyk‖2),

(76)

the above inequalities follow from the fact that, for any scalars a and b, we have 2ab≤288

a2 + b2, hence (a+ b)2 ≤ 2a2 + 2b2. Equations (75) and (76) indicate that289

‖dk+1‖2 ≤ 2β 2
k ‖dk‖2 + 8‖gk+1‖2. (77)

For any given index l ≥ k0 + 1, by induction, we have290

‖dl‖2 ≤ c1(1+ 2β 2
l−1+ 2β 2

l−12β 2
k−2 + · · ·+ 2β 2

l−12β 2
k−2 · · ·2β 2

k0
), (78)
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where c1 deponds on ‖dk0−1‖, but not on the index l. Let us consider a typical term in291

(78):292

2β 2
l−12β 2

l−2 · · ·2β 2
k , (79)

where k0 ≤ k ≤ l−1. We now divide 2(l−k) factors of (78) into groups of 2∆ elements,293

i.e., if Λ := ⌊(l − k)/∆⌋, then (78) can be divided into Λ or Λ+ 1 groups as follows:294

(2β 2
l1 · · ·2β 2

k1
), · · · ,(2β 2

lΛ · · ·2β 2
kΛ
), (80)

and possibly295

(2β 2
lΛ+1

· · ·2β 2
k ), (81)

where li = l − 1− (i− 1)∆, for i = 1,2, · · ·Λ+ 1, and ki = li+1 + 1, for i = 1,2, · · ·Λ.296

Since ki ≥ k0 for all i = 1,2, · · · ,Λ, so that we can apply relationship (74) for k = ki.297

Thus we have298

pi := |Kλ
ki ,∆| ≤

∆
2
. (82)

Which means that in the range [ki,ki +∆−1] there are pi indices j such that ‖s j‖> λ ,299

and (∆− pi) indices with ‖s j‖ ≤ λ . Using this fact, (65) and (66), for a typical factor300

in (80), we have301

2β 2
li · · ·2β 2

ki
≤ 2∆b2pi(

1
2b

)2(∆−pi)

= (2b2)2pi−∆ ≤ 1,
(83)

since by (82), 2pi −∆ ≤ 0 and 2b2 ≥ 1. So, each of the factors in (80) is less or equal

to 1, and so is their product. For the last part given in (81), by simply using (65), we

have

2β 2
lΛ+1

· · ·2β 2
k ≤ (2b2)∆.

So, it is obviously that each term on the right-hand side of (78) is bounded by (2b2)∆,302

and as a resut we obtain303

‖dl‖2 ≤ c2(l − k0 + 2), (84)

for a certain positive constant c2 independent of l. (84) shows that ‖dk‖2 grows at most304

linearly, which also indicates305

∑
k≥1

1
‖dk‖2 = ∞. (85)
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On the other hand, from Zoutendijk condition (45), sufficient descent condition (42)

and (64), we have

cγ4 ∑
k≥1

1
‖dk‖2 ≤ c ∑

k≥1

‖gk‖4

‖dk‖2 ≤ ∑
k≥1

(gT
k dk)

2

‖dk‖2 ≤ ∞.

this contraicts (85), concluding the proof.306

Theorem 2. Suppose that f (x) satisfies Assumption 1. Consider the proposed Algo-307

rithm 1 in which dk+1 is generated by by dk+1 =−gk+1+β+
k dk +δkyk in which β+

k , δk308

and tk are determined by (40), (39) and (36) respectively, step size αk is calculated by309

Wolfe line search satisfying (9) and (10). Then the method converges in the sense (52).310

Proof. We proceed by contradiction. Assume that (52) does not hold, this means that311

the condition (64) holds. Therefore, the conditions of Lemmas 5, 6 and 7 hold. Com-312

bining with Assumption 1, we can obtain a contradiction silimarly to the proof of the313

Theorem 4.3 in [43].314

4. Numerical experiments315

In this section, we investigate the numerical performance of the proposed algorithm

1 (NTPA). Based on (37), (38) and (39), the proposed algorithm NTPA can be consid-

ered as a special three-term conjugate gradient method which has similar structure with

THREECG method [31] and TTCG method [30]. So, in this paper, we will compare

the numerical performances of the following different methods: NTPA, THREECG

and TTCG methods. THREECG and TTCG methods are proposed by Andrei [31, 30]

in which the directions are generated by

dk+1 =−gk+1 + δksk −ηkyk,

δk =
gT

k+1yk −ωgT
k+1sk

sT
k yk

, ηk =
gT

k+1sk

sT
k yk

.

In THREECG, ω = 1+ ‖yk‖2

sT
k yk

, in TTCG, ω = 1+ 2 ‖yk‖2

sT
k yk

. In this test, the code was316

downloaded at https://camo.ici.ro/neculai/THREECG/threecg.for, which was written317

by Andrei and widely used in conjugate gradient method numerical test. 75 uncon-318

strained test problems are selected for comparison which are in the generalized or ex-319

tended form in [35]. For each test problem, the numerical experiments are carried out320

19



with the number of variables increasing as n=1000, 2000, . . . ,10000 which are the321

same with [31, 30]. All the default values of the parameters involved in the methods322

are the same with [31, 30]: The Wolfe line search is implemented with ρ = 0.0001 and323

σ = 0.8, stopping criterion is ‖gk‖∞ ≤ 10−6 and the maximum number of iterations is324

limited to 10000, etc.325

The comparing data contain iterations, function evaluations and CPU time. To326

approximately assess the performance of different algorithms, we use the performance327

profile introduced by Dolan and Moré [34] as an evaluated tool.328

Dolan and Moré [34] gave a new tool to analyze the efficiency of Algorithms. They329

introduced the notion of a performance profile as a means to evaluate and compare the330

performance of the set of solvers S on a test set P. Assuming that there exists ns solvers331

and np problems, for each problem p and solver s, they defined:332

tp,s= computing cost required to solve problem p by solver s.333

Requiring a baseline for comparisons, they compared the performance on problem334

p by solver s with the best performance by any solver on this problem; that is, using335

the performance ratio:336

rp,s =
tp,s

min{tp,s : s ∈ S} . (86)

Then they defined337

ρs(τ) =
1
np

size{p ∈ P : rp,s ≤ τ}, (87)

thus ρs(τ) is the probability for solver s that a performance ratio rp,s is within a factor338

τ ≥ 1 of the best possible ratio. Then function ρs is the distribution function for the339

performance ratio. The performance profile ρs is a nondecreasing, piecewise constant340

function. That is, for subset of the methods being analyzed, we plot the fraction P of341

the problems for which any given method is within a factor τ of the best.342

Figure 1 shows the performance profile with respect to the number of iterations.343

From Figure 1, we can find that NTPA method solves about 70% of the test problems344

with the least value of iteration. But with the factor τ increasing, THREECG method345

outperforms NTPA and TTCG methods. Figure 2 gives the profile with respect to346

function evaluations. Based on Figure 2, we can also find that NTPA method solves347

about 73% of all problems with the least value of function evaluations, THREECG348
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Figure 1: Performance profile based on iterations

method solves about 65% and TTCG method solves about 57% with the least value.349

Also, with the factor τ increasing, THREECG method outperforms NTPA and TTCG350

methods. Figures 1 and 2 indicate all three methods perform similarly with respect to351

the number of iterations and function evaluations. Figure 3 presents the profile with352

respect to cup time. From Figure 3, NTPA method outperforms THREECG and TTCG353

methods, which means that NTPA method is very efficient in solving unconstrained354

optimization problems.355
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