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Abstract

By boundary element method, we present a numerical iterative process
for solving a free third boundary problem modeling tumor growth with spec-
tral accuracy. The piecewise quadratic curves are fitted to maintain local
smoothness of the boundary at every node. The double-layer and single-layer
potentials with weakly singular kernels are evaluated with spectral accuracy.
The method of characteristics is employed to transform interfacial velocity
PDE into discrete ODEs. The numerical integral formula for weakly singu-
lar operator with logarithmic singularity is deduced and the convergence and
error are presented. The nonradially symmetric solutions of the free bound-
ary problem on a perturbed boundary are provided to test the accuracy and
effectiveness of the numerical method.
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1. Introduction

In the past thirty years, the theories and numerical methods of the free
boundary problems [1, 2, 3, 4, 5, 6, 7, 8, 9] have been studied extensively. Due
to the changing domain and the moving boundary, it is difficult to analyze
theoretically or solve numerically the free boundary problems, and the numer-
ical methods always need the large scale numerical computations. In recent
years, different kinds approximation techniques have been developed and car-
ried out to get numerical solutions with minimal possible errors for the free
boundary problems, among them boundary element method [10, 11, 12, 13]
is the most efficient and accurate method because the dimensionality of the
problem is cutted down by one. The boundary integral equations are only
solved at the moving boundary, thus the number of unknowns is dramatically
reduced.

However, the accuracy of the boundary element method depends on the
order of the elements and the accuracy of the numerical integration. Even
though the quadratic elements commonly used in practice lead to at most sec-
ond order accuracy in space [14]. Thanks to the editor and the reviwers whose
comments brought us to Nystrom’s method [15, 16] and Hilbert transform to
compute the singular integrals with spectral accuracy(see[14, 15, 16, 17, 18]).
In this paper, we successfully adopt these quadrature methods to the free
boundary problem modeling tumor growth and achieve spectral accuracy.

It is worthy of noting that the spectral accuracy is hard to achieve because
of geometric discontinuity at the edges of the elements [14]. On the basis of
Hermitian-like interpolations, a appropriate boundary smoothing technique
was adopted to maintain the continuity of the boundary at the edges of the
elements by Dimitrakopoulos andWang [18]. Also, Sun and Li [14], Kropinski
[19] employed Fourier series to represent the boundary and make better the
spatial accuracy. In this paper, we fit the piecewise quadratic curve at each
node by this node and its two adjacent nodes, and all the computational
nodes of the tumor boundary are covered twice by the piecewise quadratic
curves so that there is a local quadratic curve smoothly passing through each
node, which can keep the local smoothness of the boundary curve and the
existence of until infinity derivative at each node. In fact, we always use this
piecewise quadratic curve and its until the second derivative at each node in
our numerical computations such as (3.31), (3.32), (3.35), (3.37) and so on.

In this paper, we consider a tumor mathematical model with the free
nonhomogeneous boundary conditions of the third kind. Boundary element
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method is implemented to solve this model with spectral accuracy. We adopt
a new interfacial smoothing technique described in the above paragraph to
maintain the local smoothness of the boundary at each node, and the higher
order orthogonal polynomials are employed to analyze and evaluate the sin-
gular single-layer and double-layer potentials, which result in a more efficient
simulation process and successfully achieve spectral accuracy. Additionally,
our numerical simulations help to predict the expansion or contraction of the
tumor volume in clinical medicine which primarily come from reproduction
or death of tumor cells respectively, and reveal the affect of each relevant
parameter to tumour evolution.

The organization of this work is as follows: in section 2, the governing
equations are presented. In section 3, the single-layer and double-layer poten-
tials with weakly singular kernels are analyzed and evaluated with spectral
accuracy, and the numerical schemes of the free boundary integral equa-
tions are derived. In Section 4, the characteristic curve method is applied
to transform interfacial velocity PDE into discrete ODEs. In section 5, the
numerical integral formula with weakly singular kernel is deduced and the
convergence and error for such approximation schemes are presented. In sec-
tion 6, Example is provided to demonstrate the accuracy and effectiveness of
the numerical method. In section 7, the conclusions are given.

2. A Free Third Boundary Problem Modeling Tumor Growth

Ω(t) denotes the tumor domain at time t and Γ(t) is the boundary of
Ω(t). Modeling the tumor as an incompressible fluid, it is reasonable to
assume that the velocity field ~v(x, t) in Ω(t) satisfies Darcy’s law ~v = −∇p
and the law of conservation of mass div~v = µ(σ − σ̃). Where p(x, t) is the
pressure within the tumor results from proliferation of the tumor cells, σ(x, t)
is the modified nutrient concentration of the tumor, µ is the proliferation rate
which expresses the ?intensity? of the expansion or shrinkage, and σ̃ > 0 is
a threshold concentration of nutrients needed for sustainability.

Then we can deduce directly that

div~v = div(−∇p) = −∆p = µ(σ − σ̃), x ∈ Ω(t). (2.1)

and the normal velocity vn of Γ(t) in the outward normal direction −→n

~v · −→n = −∇p · −→n , x ∈ Γ(t),
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i.e.,

vn(x, t) = −∂p(x, t)
∂n

, x ∈ Γ(t).

In this paper, we consider the free boundary problem modeling tumor
growth with the boundary conditions of the third kind as follows





λσt −∆σ(x, t) + σ(x, t) = 0, x ∈ Ω(t),
−∆p(x, t) = µ(σ(x, t)− σ̃), x ∈ Ω(t),

σ(x, t) + ∂σ(x,t)
∂n

= 1 x ∈ Γ(t),

p(x, t) + ∂p(x,t)
∂n

= κ(x, t) x ∈ Γ(t),
∂p(x,t)

∂n
= −vn(x, t) x ∈ Γ(t).

(2.2)

Because λ is small, one can set λ = 0. Substituting σ(x, t) = ∆σ(x, t)
into −∆p(x, t) = µ(σ(x, t) − σ̃), then, −∆p(x, t) = µ(σ(x, t) − σ̃) can be
rewrited as

−∆[p(x, t) + µ(σ(x, t)− σ̃
|x|2
2d

)] = 0, x ∈ Ω(t),

noting that ∆|x|2 = 2d and d is the dimension.

P (x, t)
∆
= p(x, t) + µ(σ(x, t)− σ̃ |x|2

2d
), we get

−∆P (x, t) = 0, x ∈ Ω(t).

Then, the free boundary problem (2.2) can be rewritten as





−∆σ(x, t) + σ(x, t) = 0 x ∈ Ω(t),
−∆P (x, t) = 0 x ∈ Ω(t).

σ(x, t) + ∂σ(x,t)
∂n

= 1 x ∈ Γ(t),

P (x, t) + ∂P (x,t)
∂n

= κ(x, t) + µ[1− σ̃
2d
(|x|2 + ∂|x|2

∂n
)], x ∈ Γ(t)

∂P (x,t)
∂n

= −vn(x, t) + µ[∂σ(x,t)
∂n

− σ̃
2d

∂|x|2
∂n

], x ∈ Γ(t),
(2.3)

where κ denotes the mean curvature.
The Helmholtz and Laplace equations in problem (2.3) can be trans-

formed into the following boundary integral equations, respectively,

σ(x)

2
=

∫

∂Ω

[
G1(x,y)

∂σ(y)

∂n
− σ(y)

∂G1(x,y)

∂n

]
dSy, x ∈ Γ(t), (2.4)
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P (x)

2
=

∫

∂Ω

[
G2(x,y)

∂P (y)

∂n
− P (y)

∂G2(x,y)

∂n

]
dSy, x ∈ Γ(t), (2.5)

where G1 and G2 are the Green functions corresponding to the operator
−∆+1 and −∆, separately. For three dimensional case, G1(x,y) =

1
4π

e−|x−y|
|x−y| ,

G2(x,y) = 1
4π|x−y| . For two dimensional case, G1(x,y) = i

4
H

(1)
0 (i|x − y|),

G2(x,y) = − 1
2π
ln(|x− y|), H(1)

0 is a Hankel function.

Substituting the boundary condition σ(x, t) + ∂σ(x,t)
∂n

= 1 into (2.4), we
obtain

σ(x)

2
=

∫

∂Ω

[
G1(x,y)(1− σ(y))− σ(y)

∂G1(x,y)

∂n

]
dSy, x ∈ Γ(t),

i.e.,

σ(x)

2
+

∫

∂Ω

σ(y)

[
G1(x,y) +

∂G1(x,y)

∂n

]
dSy =

∫

∂Ω

G1(x,y)dSy,

x ∈ Γ(t). (2.6)

Substituting the boundary condition P + ∂P (x,t)
∂n

= κ(x, t)+µ[1− σ̃
2d
(|x|2+

∂|x|2
∂n

)] into (2.5), we have

P (x)

2
=

∫

∂Ω

{
G2(x,y)

[
κ(y, t) + µ[1− σ̃

2d
(|y|2 + ∂|y|2

∂n
)]− P (y)

]
− P (y)

∂G2(x,y)

∂n

}
dSy,

x ∈ Γ(t),

i.e.,

P (x)

2
+

∫

∂Ω

P (y)

[
G2(x,y) +

∂G2(x,y)

∂n

]
dSy

=

∫

∂Ω

G2(x,y)

{
κ(y, t) + µ[1− σ̃

2d
(|y|2 + ∂|y|2

∂n
)]

}
dSy, x ∈ Γ(t). (2.7)

On the one hand, the boundary integral equations (2.6) and (2.7) reduce
the dimensionality of the problem (2.3) by one, so computational cost is
reduced dramatically.

On the other hand, the boundary integral equations (2.6) and (2.7) involve
double-layer and single-layer potentials with weakly singular kernels, and
σ(x), P (x) as the unknown, respectively. We will subtract the logarithmic
singularity from these integrals in R2, and spectral accuracy will be derived.
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3. Single-layer and Double-layer Potentials with Weakly Singular
Kernels are Analyzed and Evaluated

In this section, we design the numerical schemes for the boundary integral
equations (2.6) and (2.7) which contain the logarithmic singularities in two-
dimensional space.

We use the polar coordinate system. Assuming tumor domains are star
shapes without large deformations (if not, one can take ds = L

2π
dθ, where

L is the length of the tumor boundary), we decompose the interval [0, 2π]
of polar angle θ with uniform grid points 0 = θ0 < θ1 < ... < θk−1 < θk <
θk+1 < ... < θN = 2π.

In order to maintain the local smoothness of the boundary at the edges
of the elements, we fit the boundary of the tumor by the piecewise quadratic
curve

rk(θ) = ak(θ − k∆θ)2 + bk(θ − k∆θ) + ck, k = 1, 2, 3, ..., 2n, (3.1)

in the interval [θk−1, θk+1] at each node, where ∆θ = 2π
2n
. We can determine

ak, bk, ck by three points (r((k−1)∆θ), (k−1)∆θ), (r(k∆θ), k∆θ) and (r((k+
1)∆θ), (k + 1)∆θ), k = 1, 2, 3, ..., 2n, where r(θ2n) = r(θ0) and r(θ2n+1) =
r(θ1).

From (3.1), we infer

r′k(θ) = 2ak(θ − k∆θ) + bk, k = 1, 2, 3, ..., 2n (3.2)

r′′k(θ) = 2ak, k = 1, 2, 3, ..., 2n (3.3)

and

rk(k∆θ) = ck, r
′
k(k∆θ) = bk, r

′′
k(k∆θ) = 2ak, k = 1, 2, 3, ..., 2n. (3.4)

For convenience, rk(θ) is denoted by r(θ) in this paper.
Firstly, we consider the boundary integral equations (2.6)

σ(x)+2

∫

∂Ω

σ(y)

[
G1(x,y)+

∂G1(x,y)

∂n

]
dSy = 2

∫

∂Ω

G1(x,y)dSy, x ∈ Γ(t),

(3.5)

where G1(x,y) = i
4
H

(1)
0 (i|x − y|), x =

(
x, y

)
= r(θ)

(
cos θ, sin θ

)
, y =(

x, y
)
= r(θ)

(
cos θ, sin θ

)
and

|x− y| =
√

(x− x)2 + (y − y)2
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=

√
r2(θ)− 2r(θ)r(θ) cos(θ − θ) + r2(θ). (3.6)

Hence, the left side of (3.5) is calculated as

σ(x) + 2

∫

∂Ω

σ(y)

[
G1(x,y) +

∂G1(x,y)

∂n

]
dSy

= σ(x) +
i

2

∫

∂Ω

σ(y)

[
H

(1)
0 (i|x− y|) +∇H(1)

0 (i|x− y|) · −→n
]
dSy

= σ(θ) +
1

2

∫ 2π

0

σ(θ)

[
iH

(1)
0 (i

√
r2(θ)− 2r(θ)r(θ) cos(θ − θ) + r2(θ))

√
r2(θ) + r′2(θ)

+
H

(1)
1 (i

√
r2(θ) + r2(θ)− 2r(θ)r(θ) cos(θ − θ))

√
r2(θ) + r2(θ)− 2r(θ)r(θ) cos(θ − θ)

(r2(θ)− r(θ)r(θ) cos(θ − θ)

+r
′
(θ)r(θ) sin(θ − θ))

]
dθ, (3.7)

where

dSy =
√

(x′(θ))2 + (y′(θ))2dθ =
√
r2(θ) + r′2(θ)dθ.

The right side of (3.5) is specified as

2

∫

∂Ω

G1(x,y)dSy =
i

2

∫

∂Ω

H
(1)
0 (i|x− y|)dSy

=
i

2

∫ 2π

0

H
(1)
0 (i

√
r2(θ)− 2r(θ)r(θ) cos(θ − θ) + r2(θ))

√
r2(θ) + r′2(θ)dθ. (3.8)

Combining (3.7) and (3.8), we get

σ(θ) +
1

2

∫ 2π

0

σ(θ)

[
iH

(1)
0 (i

√
r2(θ)− 2r(θ)r(θ) cos(θ − θ) + r2(θ))

√
r2(θ) + r′2(θ)

+
H

(1)
1 (i

√
r2(θ) + r2(θ)− 2r(θ)r(θ) cos(θ − θ))

√
r2(θ) + r2(θ)− 2r(θ)r(θ) cos(θ − θ)

(r2(θ)− r(θ)r(θ) cos(θ − θ)

+r
′
(θ)r(θ) sin(θ − θ))

]
dθ

=
i

2

∫ 2π

0

H
(1)
0 (i

√
r2(θ)− 2r(θ)r(θ) cos(θ − θ) + r2(θ))

√
r2(θ) + r′2(θ)dθ. (3.9)
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For simplicity, we confine ourselves to a special case r(θ) = 1. It follows
from (3.9)

σ(θ) +
1

2

∫ 2π

0

σ(θ)

[
iH

(1)
0 (i

√
2(1− cos(θ − θ)) +

H
(1)
1 (i

√
2(1− cos(θ − θ))

√
2(1− cos(θ − θ)

·(1− cos(θ − θ))

]
dθ =

i

2

∫ 2π

0

H
(1)
0 (i

√
2(1− cos(θ − θ))dθ, (3.10)

i.e.,

σ(θ) +
1

2π

∫ 2π

0

π · σ(θ)
[
iH

(1)
0 (2i|sinθ − θ

2
|) + |sinθ − θ

2
| ·H(1)

1 (2i|sinθ − θ

2
|)
]
dθ

=
1

2π

∫ 2π

0

πi ·H(1)
0 (2i|sinθ − θ

2
|)dθ. (3.11)

The Hankel function H1
0 can be decomposed by

H1
0 = J0 + iY0, (3.12)

where

J0(z) =

∞∑

k=0

(−1)k

(k!)2
(
z

2
)2k (3.13)

and

Y0(z) =
2

π
(ln

z

2
+ b)J0(z)−

2

π

∞∑

k=0

ak
(−1)k

(k!)2
(
z

2
)2k, (3.14)

with ak =
∑k

m=1
1
m
, b = 0.57721...

Additionally, (H1
0 )

′
= −H1

1 , H
1
1 = J1 + iY1.

We rewrite (3.11) as

σ(θ) +
1

2π

∫ 2π

0

σ(θ)

[
K(θ, θ) +M(θ, θ)

]
dθ

=
1

2π

∫ 2π

0

K(θ, θ)dθ (3.15)
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Using (3.12), (3.13) and (3.14), we split off the singular kernel

K(θ, θ) = πi ·H(1)
0 (2i|sinθ − θ

2
|) = πi · J0(2i|sin

θ − θ

2
|)− πY0(2i|sin

θ − θ

2
|)

= πi · J0(2i|sin
θ − θ

2
|) + [−2ln(i|sinθ − θ

2
|)− 2C]J0(2i|sin

θ − θ

2
|)

+2

∞∑

k=0

ak
(−1)k

(k!)2
(i|sinθ − θ

2
|)2k

= [−ln(4sin2 θ − θ

2
)− 2lni+ ln4− 2C]J0(2i|sin

θ − θ

2
|) + πi · J0(2i|sin

θ − θ

2
|)

+2

∞∑

k=0

ak
(−1)k

(k!)2
(i|sinθ − θ

2
|)2k

∆
= K1(θ, θ)ln(4sin

2 θ − θ

2
) +K2(θ, θ), (3.16)

where

K1(θ, θ) = −J0(2i|sin
θ − θ

2
|), (3.17)

and

K2(θ, θ) = (−2lni+ ln4 − 2C)J0(2i|sin
θ − θ

2
|) + πi · J0(2i|sin

θ − θ

2
|)

+2

∞∑

k=0

ak
(−1)k

(k!)2
(i|sinθ − θ

2
|)2k

= K(θ, θ)−K1(θ, θ)ln(4sin
2 θ − θ

2
), (3.18)

noting that K1 and K2 are analytic. K2(θ, θ) = −2ln i
2
+ iπ − 2C.

Similarly, we can decompose the singular kernel

M(θ, θ) = π · |sinθ − θ

2
| ·H(1)

1 (2i|sinθ − θ

2
|)

= M1(θ, θ)ln(4sin
2 θ − θ

2
) +M2(θ, θ), (3.19)

where

M1(θ, θ) = i · sinθ − θ

2
· J1(2isin

θ − θ

2
), (3.20)
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M2(θ, θ) =M(θ, θ)−M1(θ, θ)ln(4sin
2 θ − θ

2
), (3.21)

and M1 and M2 are analytic. M2(θ, θ) = 1.
Furthermore, (3.15) can be rewrited by

σ(θ) +
1

2π

∫ 2π

0

σ(θ)

[
K1(θ, θ)ln(4sin

2 θ − θ

2
) +K2(θ, θ) +M1(θ, θ)ln(4sin

2 θ − θ

2
)

+M2(θ, θ)

]
dθ =

1

2π

∫ 2π

0

[K1(θ, θ)ln(4sin
2 θ − θ

2
) +K2(θ, θ)]dθ. (3.22)

For an analytic and periodic function K1, we have the following quadra-
ture formula

1

2π

∫ 2π

0

K1(θ, θj)ln(4sin
2 θ − θj

2
)dθ ≈

2n−1∑

k=0

Rn
j (θk)K1(θj , θk), j = 0, 1, 2, ..., 2n− 1, (3.23)

with the quadrature weights

Rn
j (θk) = −1

n
{
n−1∑

m=1

1

m
cosm(θk − θj) +

1

2n
cosn(θk − θj)}, j = 0, 1, 2, ..., 2n− 1. (3.24)

For the integral involving the kernel K2, we use the composite trapezoidal
rule

1

2π

∫ 2π

0

K2(θ, θj)dθ ≈
1

2n

2n−1∑

k=0

K2(θj , θk), j = 0, 1, 2, ..., 2n− 1. (3.25)

The other items are the same as (3.23) and (3.25), we then approximate
the singular integral equation (3.22) by a finite-dimensional linear system

σ(θj) +

2n−1∑

k=0

σ(θk)

[
Rn

j (θk)K1(θj, θk) +
1

2n
K2(θj , θk) +Rn

j (θk)M1(θj , θk) +
1

2n
M2(θj , θk)

]

=

2n−1∑

k=0

[Rn
j (θk)K1(θj, θk) +

1

2n
K2(θj , θk)], j = 0, 1, 2, ..., 2n− 1, (3.26)

with the quadrature weights

Rn
j (θk) = −1

n
{
n−1∑

m=1

1

m
cosm(θk − θj) +

1

2n
cosn(θk − θj)}, j = 0, 1, 2, ..., 2n− 1. (3.27)
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In particularly, for evenly spaced nodes, θk = 2πk
2n

, θj =
2πj
2n

, the quadra-
ture weights (3.24) of the formula (3.23) can be simplified as

Rn
j (θk) = −1

n
{
n−1∑

m=1

1

m
cos

mπ(k − j)

n
+

1

2n
cosπ(k − j)}

= −1

n
{
n−1∑

m=1

1

m
cos

mπ(k − j)

n
+

(−1)(k−j)

2n
} ∆
= R

(n)
k−j,

k, j = 0, 1, 2, ..., 2n− 1. (3.28)

and the quadrature formula (3.23) yields spectral accuracy.
Now, we turn our attention to the singular boundary integral equation

(2.7),

P (x) + 2

∫

∂Ω

P (y)

[
G2(x,y) +

∂G2(x,y)

∂n

]
dSy

= 2

∫

∂Ω

G2(x,y)

{
κ(y) + µ[1− σ̃

2d
(|y|2 + ∂|y|2

∂n
)]

}
dSy, x ∈ Γ(t),(3.29)

where G2(x,y) = − 1
2π
ln(|x− y|).

For the double-layer potential, we have

2

∫

∂Ω

P (y)
∂G2(x,y)

∂n
dSy = −

∫ 2π

0

P (θ)N(θ, θ)dθ, (3.30)

where

N(θ, θ) =
1

π

r2(θ)− r(θ)r(θ) cos(θ − θ) + r
′
(θ)r(θ) sin(θ − θ)

r2(θ) + r2(θ)− 2r(θ)r(θ) cos(θ − θ)
, θ 6= θ, (3.31)

N(θ, θ) =
1

2π

r(θ)r
′′
(θ)− r2(θ)− 2(r

′
(θ))2

r2(θ) + r′2(θ)
, θ = θ, (3.32)

and the kernel N(θ, θ) is continuous provided Γ is of class C2.
For the single-layer potential, we have

2

∫

∂Ω

P (y)G2(x,y)dSy =
1

4π

∫ 2π

0

P (θ)[−ln(4sin2 θ − θ

2
) +Q(θ, θ)]dθ, (3.33)
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with

Q(θ, θ) = ln
4sin2 θ−θ

2

r2(θ) + r2(θ)− 2r(θ)r(θ) cos(θ − θ)
− 1

|Γ|

·
∫ 2π

0

ln
1

r2(θ) + r2(θ)− 2r(θ)r(θ) cos(θ − θ)

√
r2(θ) + r′2(θ)dθ +

4π

|Γ| , θ 6= θ, (3.34)

and Q is continuously differentiable provided Γ is of class C2.
Employing the same computational strategy and combining (3.30) and

(3.33) , the singular boundary integral equation (3.29) can be evaluated by
the linear system

P (θj) +
2n−1∑

k=0

P (θk){−Rn
j (θk) +

1

2n
[Q(θj , θk)−N(θj , θk)]}

=
2n−1∑

k=0

[−Rn
j (θk) +

1

2n
Q(θj , θk)]

{
κ(θk) + µ[1− σ̃

2d
(r2(θk) +

2r2(θk)√
r2(θk) + (r′(θk))2

)]

}
,

j = 0, 1, 2, ..., 2n− 1, (3.35)

with the quadrature weights

Rn
j (θk) = −1

n
{
n−1∑

m=1

1

m
cosm(θk − θj) +

1

2n
cosn(θk − θj)}, j = 0, 1, 2, ..., 2n− 1, (3.36)

and

κ(θ) =
r2(θ) + 2(r

′
(θ))2 − r(θ)r

′′
(θ)

(r2(θ) + (r′(θ))2)
3
2

. (3.37)

We wish to point out that once the values of P (θ0), P (θ1), ..., P (θ2n−1)
are determined by (3.35) , we can also use (3.35) to define the values P (θ)
for all θ [17]

P (θ) :=

2n−1∑

k=0

P (θk){Rn(θk)−
1

2n
[Q(θ, θk)−N(θ, θk)]}

+

2n−1∑

k=0

[−Rn(θk) +
1

2n
Q(θ, θk)]

{
κ(θk) + µ[1− σ̃

2d
(r2(θk) +

2r2(θk)√
r2(θk) + (r′(θk))2

)]

}
, (3.38)

with

Rn(θk) = −1

n
{
n−1∑

m=1

1

m
cosm(θk − θ) +

1

2n
cosn(θk − θ)}. (3.39)
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4. Method of Characteristics

We consider the boundary velocity equation

∂r(θ, t)

∂t
= vr = vn ·

√
r2(θ, t) + (rθ(θ, t))2

r(θ, t)
. (4.1)

It follows from (4.1)

F (θ, t, r, rθ, rt, rθθ) =
∂r(θ, t)

∂t
− vn ·

√
r2(θ, t) + r2θ(θ, t)

r(θ, t)

= rt − (p(θ, t)− r2(θ, t) + 2r2θ(θ, t)− r(θ, t)rθθ(θ, t)

(r2(θ, t) + r2θ(θ, t))
3
2

) ·
√
r2(θ, t) + r2θ(θ, t)

r(θ, t)

∆
= rt − (ψ(θ, t)−H(r, rθ, rθθ))W (r, rθ) = 0, (4.2)

where vn = −∂p(x,t)
∂n

= p(x, t)−κ = p(θ, t)− r2(θ,t)+2r2θ (θ,t)−r(θ,t)rθθ(θ,t)

(r2(θ,t)+r2θ(θ,t))
3
2

, ψ(θ, t)
∆
=

p(θ, t), H(r, rθ, rθθ)
∆
=

r2(θ,t)+2r2θ(θ,t)−r(θ,t)rθθ(θ,t)

(r2(θ,t)+r2θ (θ,t))
3
2

and W (r, rθ)
∆
=

√
r2(θ,t)+r2θ(θ,t)

r(θ,t)
.

The characteristic equations of nonlinear PDE (4.2) are given by the
following ODEs

dθ

ds
= Hrθ(r, rθ, rθθ)W (r, rθ)− (ψ(θ, t)−H(r, rθ, rθθ))Wrθ(r, rθ),

dt

ds
= 1,

drθ
ds

= ψθ(θ, t)W (r, rθ)− [Hr(r, rθ, rθθ)W (r, rθ)− (ψ(θ, t)−H(r, rθ, rθθ))Wr(r, rθ)]rθ,

drt
ds

= ψt(θ, t)− [Hr(r, rθ, rθθ)W (r, rθ)− (ψ(θ, t)−H(r, rθ, rθθ))Wr(r, rθ)]rt

drθθ
ds

=

[
ψθθ − [Hrrrθ +Hrrθrθθ]rθ +Hrrθθ + [Hrθrrθ +Hrθrθrθθ]rθθ

]
W

+2[ψθ −Hrrθ −Hrθrθθ](Wrrθ +Wrθrθθ) + (ψ −H)[
(Wrrrθ +Wrrθrθθ)rθ +Wrrθθ + (Wrθrrθ +Wrθrθrθθ)rθθ

]
,

dr

ds
= [Hrθ(r, rθ, rθθ)W (r, rθ)− (ψ(θ, t)−H(r, rθ, rθθ))Wrθ(r, rθ)]rθ + rt. (4.3)

Note that the derivatives of rt are calculated by

rθt = [ψθ −Hrrθ −Hrθrθθ −Hrθθrθθθ]W + (ψ −H)(Wrrθ +Wrθrθθ), (4.4)
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and

rθθt =

[
ψθθ − [Hrrrθ +Hrrθrθθ +Hrrθθrθθθ]rθ +Hrrθθ + [Hrθrrθ +Hrθrθrθθ +Hrθrθθrθθθ]rθθ

+Hrθrθθθ + [Hrθθrrθ +Hrθθrθrθθ +Hrθθrθθrθθθ]rθθθ +Hrθθrθθθθ

]
W

+2[ψθ −Hrrθ −Hrθrθθ −Hrθθrθθθ](Wrrθ +Wrθrθθ) + (ψ −H)[
(Wrrrθ +Wrrθrθθ)rθ +Wrrθθ + (Wrθrrθ +Wrθrθrθθ)rθθ +Wrθrθθθ

]
. (4.5)

We decompose the time interval [0, T ] with grid points tm = m∆t for
m = 0, 1, 2...,M , where ∆t = T

M
and M is a positive integer.

From (4.3), it is easy to get the following iterative formulas to compute
numerically the free boundary at time T .

θm+1 − θm

∆t
= Hm

rθ
(rm, rmθ , r

m
θθ)W

m(rm, rmθ )− (ψm(θm, m∆t)−Hm(rm, rmθ , r
m
θθ))

Wm
rθ
(rm, rmθ ),

rm+1
θ (θm+1)− rmθ (θ

m)

∆t
= ψm

θ (θm, m∆t)Wm(rm, rmθ )− [Hm
r (rm, rmθ , r

m
θθ)W

m(rm, rmθ )

−(ψm(θm, m∆t)−Hm(rm, rmθ , r
m
θθ))W

m
r (rm, rmθ )]r

m
θ ,

rm+1
t (θm+1)− rmt (θ

m)

∆t
= ψm

t (θm, m∆t)− [Hm
r (rm, rmθ , r

m
θθ)W

m(rm, rmθ )− (ψm(θm, m∆t)

−Hm(rm, rmθ , r
m
θθ))W

m
r (rm, rmθ )]r

m
t ,

rm+1
θθ (θm+1)− rmθθ(θ

m)

∆t
=

[
ψm
θθ − [Hm

rrr
m
θ +Hm

rrθ
rmθθ]r

m
θ +Hm

r r
m
θθ + [Hm

rθr
rmθ +Hm

rθrθ
rmθθ]r

m
θθ

]
Wm

+2[ψm
θ −Hm

r r
m
θ −Hm

rθ
rmθθ](W

m
r r

m
θ +Wm

rθ
rmθθ) + (ψm −Hm)[

(Wm
rr r

m
θ +Wm

rrθ
rmθθ)r

m
θ +Wm

r r
m
θθ + (Wm

rθr
rθ +Wm

rθrθ
rmθθ)r

m
θθ

]
,

rm+1(θm+1)− rm(θm)

∆t
= [Hm

rθ
(rm, rmθ , r

m
θθ)W

m(rm, rmθ )− (ψm(θm, m∆t)−Hm(rm, rmθ , r
m
θθ))

Wm
rθ
(rm, rmθ )]r

m
θ + rmt , (4.6)

with

(θ0, r0(θ0), r0θ(θ
0), r0t (θ

0), r0θθ(θ
0)) = (θ, r0(θ),

∂r0(θ, 0)

∂θ
,
∂r0(θ, 0)

∂t
,
∂2r0(θ, 0)

∂θ2
), (4.7)
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and r0t = (ψ0(θ, 0)−H(r0, r0θ , r
0
θθ))W (r0, r0θ).

Note that the superscript m denotes the numerical solutions at t = m∆t
time level.

In above formulation, the mesh size of θ is not a fixed quantity but changes
along the characteristic curve in time.

5. Numerical Integral Formula with Weakly Singular Kernel

In this section, we deduce the numerical integral formula (3.23) with
weakly singular kernel and provide the convergence and error for such ap-
proximation schemes.

We have used the following two numerical integrations in section 3.
(1) A weakly singular operator with a logarithmic singularity

(Aψ)(θ) =
1

2π

∫ 2π

0

ln(4sin2 θ − θ

2
)ψ(θ)dθ, θ ∈ [0, 2π], (5.1)

is approximated by a numerical integration operator

(Anψ)(θ) =

2n−1∑

j=0

Rn
j (θ)ψ(θj), θ ∈ [0, 2π], (5.2)

with the quadrature weights

Rn
j (θ) = −1

n
{
n−1∑

m=1

1

m
cosm(θ − θj) +

1

2n
cosn(θ − θj)}, j = 0, 1, 2, ..., 2n− 1. (5.3)

(2) A integral operator with analytic and 2π-periodic kernel

(Bψ)(θ) =
1

2π

∫ 2π

0

M(θ, θ)ψ(θ)dθ, (5.4)

is approximated by composite trapezoidal rule

(Bnψ)(θ) =
1

2n

2n−1∑

j=0

M(
jπ

n
, θ)ψ(

jπ

n
). (5.5)

We now deduce the numerical approximates (5.2) of the integral (5.1).
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The interpolation of ψ(θ) in (5.1) is given by

P2nψ(θ) =

2n−1∑

j=0

Lj(θ)ψ(θj), (5.6)

with P2nψ(θj) = ψ(θj), j = 0, 1, 2, ..., (2n− 1).
Here L0(θ), L1(θ), ..., L2n−1(θ) denote the Lagrange basises which have

the interpolation property

Lk(θj) = δjk, j, k = 0, 1, 2, ..., (2n− 1), (5.7)

and δjk is the Kronecker symbol with δjk = 1 as k = j, δjk = 0 as k 6= j.
Hence, we derive

(Anψ)(θ) =
1

2π

∫ 2π

0

ln(4sin2 θ − θ

2
)

2n−1∑

j=0

Lj(θ)ψ(θj)dθ

=

2n−1∑

j=0

ψ(θj)
1

2π

∫ 2π

0

ln(4sin2 θ − θ

2
)Lj(θ)dθ

=
2n−1∑

j=0

Rn
j (θ)ψ(θj), θ ∈ [0, 2π], (5.8)

where

Rn
j (θ) =

1

2π

∫ 2π

0

ln(4sin2 θ − θ

2
)Lj(θ)dθ. (5.9)

The Lagrange basis for the trigonometric interpolation has the form [17]

Lj(θ) =
1

2n
{1 + 2

n−1∑

m=1

cosm(θ − θj) + cosn(θ − θj)}, j = 0, 1, 2, ..., 2n− 1. (5.10)

Therefore, we have

Rn
j (θ) =

1

2π

∫ 2π

0

ln(4sin2 θ − θ

2
)Lj(θ)dθ

=
1

2π

∫ 2π

0

ln(4sin2 θ − θ

2
) · 1

2n
{1 + 2

n−1∑

m=1

cosm(θ − θj) + cosn(θ − θj)}dθ
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=
1

4nπ

∫ 2π

0

ln(4sin2 θ − θ

2
){1 + 2

n−1∑

m=1

cosm[(θ − θ) + (θ − θj)] + cosn[(θ − θ) + (θ − θj)]}dθ

=
1

4nπ

∫ 2π

0

ln(4sin2 θ − θ

2
){1 + 2

n−1∑

m=1

[cosm(θ − θ)cosm(θ − θj)− sinm(θ − θ)sinm(θ − θj)]

+cosn(θ − θ)cosn(θ − θj)− sinn(θ − θ)sinn(θ − θj)}dθ. (5.11)

Using [17]

1
2π

∫ 2π

0
ln(4sin2 ϕ

2
)eimϕdϕ =

{
0 m = 0,

− 1
|m| m = ±1,±2, ...,

(5.12)

we obtain

Rn
j (θ) = −1

n
{
n−1∑

m=1

1

m
cosm(θ − θj) +

1

2n
cosn(θ − θj)}, j = 0, 1, 2, ..., 2n− 1. (5.13)

Thus, we have completed the deduction of (5.1),(5.2) and (5.3), i.e.,
(3.23).

Moreover, the sequence An given by (5.2) is collectively compact and
pointwise convergent to the integral operator A with the logarithmic singu-
larity given by (5.1). And the quadrature error is exponentially decreasing
provided ψ is analytic and 2π-periodic. (see[17])

Let the kernel M and ψ be analytic and 2π-periodic, then the error for
the composite trapezoidal quadrature can be estimated by [17]

(Bψ)(θ)− (Bnψ)(θ) ≤ C(cothns− 1) = C
e2ns + 1

e2ns − 1

= C
2

e2ns − 1
≤ C

3

e2ns
= 3Ce−2ns, (take n ≥ 1

2s
ln3), (5.14)

where C and s depend on M and ψ. The error decays at least exponentially.
In addition, assume the error of the time level m∆t is β, we consider the

error of the time level (m+ 1)∆t

|rm+1 − r(t+∆t)| = |rm+1 − r(t)− r′(t)∆t− r′′(t)

2!
(∆t)2 − ... |

= |rm+1 − rm + rm − r(t)− r′(t)∆t− r′′(t)

2!
(∆t)2 − ... |
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≤ |rm+1 − rm|+ |rm − r(t)|+ | − r′(t)∆t− r′′(t)

2!
(∆t)2 − ... |

≤ |vmr · △t|+ β + |r′(t)∆t + r′′(t)

2!
(∆t)2 + ... |

≈ |(∂p
∂n

)m ·
√

(rm)2 + ((rθ)m)2

rm
· △t|+ β + |r′(t)∆t + r′′(t)

2!
(∆t)2 + ... |, (5.15)

where ∂p
∂n

= κ− p.

6. Numerical Experiments

Our numerical method is that at m∆t time level, we solve approximate
solution σm

k (k = 0, 1, 2, ..., 2n− 1) of σ(k∆θ,m∆t)(k = 0, 1, 2, ..., 2n− 1) on
the boundary Γm at θ = θm0 , θ

m
1 , θ

m
2 , ...θ

m
2n−1 by the numerical scheme(3.26)

of the boundary integral equation(2.6); Substituting σm
k (k = 0, 1, 2, ..., 2n−

1) into the numerical scheme (3.35)of boundary integral equation(2.7), we
solve approximate solution Pm

k (k = 0, 1, 2, ...2n − 1) of P (k∆θ,m∆t)(k =
0, 1, 2, ...2n− 1) on the boundary Γm at θ = θm0 , θ

m
1 , θ

m
2 , ...θ

m
2n−1; Then, using

(4.6), we can obtain the new nodes θ = θm+1
0 , θm+1

1 , θm+1
2 , ...θm+1

2n−1 and the new

boundary r
(m+1)
k (k = 0, 1, 2, ..., 2n − 1) at time level (m + 1)∆t according

to the boundary rmk (k = 0, 1, 2, ..., 2n − 1) and Pm
k (k = 0, 1, 2, ..., 2n −

1). Afterwards, we simulate the boundary Γm+1 of the tumor by piecewise
quadratic curve at every node θ = θm+1

0 , θm+1
1 , θm+1

2 , ...θm+1
2n−1.

Similar method, at (m+1)∆t time level, we solve σm+1
k (k = 0, 1, 2, 3, ..., 2n−

1) from (3.28) at θ = θm+1
0 , θm+1

1 , θm+1
2 , ...θm+1

2n−1 on the new boundary rm+1
k

(k = 0, 1, 2, ..., 2n − 1) ; Next, we compute Pm+1
k (k = 0, 1, 2, ...2n − 1)

from (3.35) at θ = θm+1
0 , θm+1

1 , θm+1
2 , ...θm+1

2n−1 on the boundary Γm+1 at θ =
θm+1
0 , θm+1

1 , θm+1
2 , ...θm+1

2n−1 after substituting σm+1
k (k = 0, 1, 2, ..., 2n− 1) into

(3.35); Then, using (4.6), ......, Eventually, we derive the free boundary at
the final time T .

Furthermore, we construct the numerical example to test our numerical
method.

We consider a perturbed boundary Γ(t) : r = R(t) + εf(θ), where R(t)
is the radius of a evolving circle and ε is the dimensionless perturbation
amplitude.

We now turn our attention to compute nonradially symmetric solutions
of the form

σ|r=R(t)+εf(θ) = σs|r=R(t)+εf(θ) + εσε|r=R(t)+εf(θ) +O(ε2), (6.1)
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p|r=R(t)+εf(θ) = ps|r=R(t)+εf(θ) + εpε|r=R(t)+εf(θ) +O(ε2), (6.2)

where σs and ps are the radial symmetrical solutions.
From (6.1), we can deduce

ε(σε +
∂σε
∂n

)|r=R(t) = ε(σε +
∂σε
∂n

)|r=R(t)+εf(θ) +O(ε2)

= (σ +
∂σ

∂n
)|r=R(t)+εf(θ) − (σs +

∂σs
∂n

)|r=R(t)+εf(θ) +O(ε2)

= 1− [(σs +
∂σs
∂n

)|r=R(t) + ε
∂(σs +

∂σs

∂n
)

∂r
(R(t))f(θ) +O(ε2)]

= −ε ∂
∂r

(σs +
∂σs
∂n

)(R(t))f(θ) +O(ε2). (6.3)

In the following calculation, we neglect the higher order terms

{
−∆σε + σε = 0 in BR(t),

σε +
∂σε

∂r
= − ∂

∂r
(σs +

∂σs

∂r
)(R(t))f(θ) on ∂BR(t),

(6.4)

where the boundary ∂BR(t) : r = R(t).
The solution for the problem (6.4) is given as follows

σε(r, t) = − I0(r)

I0(R(t)) + I1(R(t))

∂

∂r
(σs +

∂σs
∂r

)(R(t))f(θ). (6.5)

In addition, we have the mean curvature of the boundary

κ =
1

R(t)
− ε

R2(t)
[f(θ) + f ”(θ)] +O(ε2). (6.6)

To compute pε, we employ the same computational strategy as used in
(6.3)

ε(pε +
∂pε
∂n

)|r=R(t) = ε(pε +
∂pε
∂n

)|r=R(t)+εf(θ) +O(ε2)

= (p+
∂p

∂n
)|r=R(t)+εf(θ) − (ps +

∂ps
∂n

)|r=R(t)+εf(θ) +O(ε2)

= κ− [(ps +
∂ps
∂r

)|r=R(t) + ε
∂(ps +

∂ps
∂r

)

∂r
(R(t))f(θ) +O(ε2)]
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= κ− 1

R(t)
− ε

∂

∂r
(ps +

∂ps
∂r

)(R(t))f(θ) +O(ε2)

= [
1

R(t)
− ε

R2(t)
[f(θ) + f ”(θ)] +O(ε2)]− 1

R(t)
− ε

∂

∂r
(ps +

∂ps
∂r

)(R(t))f(θ) +O(ε2)

= − ε

R2(t)
[f(θ) + f ”(θ)]− ε

∂

∂r
(ps +

∂ps
∂r

)(R(t))f(θ) +O(ε2).

Dropping the higher terms, we get




−∆pε = µσε, in BR(t),
σε +

∂σε

∂r
= − ∂

∂r
(σs +

∂σs

∂r
)(R(t))f(θ), on ∂BR(t),

pε +
∂pε
∂r

= − ∂
∂r
(ps +

∂ps
∂r

)(R(t))f(θ)− 1
R2(t)

[f(θ) + f ”(θ)], on ∂BR(t).

i.e.,




−∆(pε + µσε) = 0, in BR(t),

pε + µσε +
∂
∂r
(pε + µσε) = − ∂

∂r
(ps +

∂ps
∂r

)(R(t))f(θ)− 1
R2(t)

[f(θ) + f ”(θ)]

−µ ∂
∂r
(σs +

∂σs

∂r
)(R(t))f(θ). on ∂BR(t).

(6.7)

For simplicity’s sake, we take f(θ) = coslθ, l = 2, 3, 4, ..., so

− ∂

∂r
(ps +

∂ps
∂r

)(R(t))f(θ)− 1

R2(t)
[f(θ) + f ”(θ)]− µ

∂

∂r
(σs +

∂σs
∂r

)(R(t))f(θ)

= [− ∂

∂r
(ps +

∂ps
∂r

)(R(t))− 1

R2(t)
− µ

∂

∂r
(σs +

∂σs
∂r

)(R(t)) +
l2

R2(t)
]coslθ. (6.8)

We are now in a position to solve the problem (6.7).
It is known that the general solution of Laplace equation has the form

pε + µσε = a0 +
∞∑

n=1

[anr
ncosnθ + bnr

nsinnθ], (6.9)

which yields

pε + µσε +
∂

∂r
(pε + µσε) = a0 +

∞∑

n=1

[an(r
n + nrn−1)cosnθ + bn(r

n + nrn−1)sinnθ]. (6.10)

It follows from the boundary condition of problem (6.7) that

[− ∂

∂r
(ps +

∂ps
∂r

)(R(t))− 1

R2(t)
− µ

∂

∂r
(σs +

∂σs
∂r

)(R(t)) +
l2

R2(t)
]coslθ
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= a0 +
∞∑

n=1

[an(R
n(t) + nRn−1(t))cosnθ + bn(R

n(t) + nRn−1(t))sinnθ]. (6.11)

It is easy to calculate from (6.11)

[− ∂

∂r
(ps +

∂ps
∂r

)(R(t))− 1

R2(t)
− µ

∂

∂r
(σs +

∂σs
∂r

)(R(t)) +
l2

R2(t)
]

∫ 2π

0

cos2lθdθ

= a0

∫ 2π

0

coslθdθ +

∞∑

n=1

[an(R
n(t) + nRn−1(t))

∫ 2π

0

coslθcosnθdθ

+bn(R
n(t) + nRn−1(t))

∫ 2π

0

coslθsinnθdθ]

= al(R
l(t) + lRl−1(t))

∫ 2π

0

cos2lθdθ.

Thus

al =
1

Rl(t) + lRl−1(t)
[− ∂

∂r
(ps +

∂ps
∂r

)(R(t))− 1

R2(t)
− µ

∂

∂r
(σs +

∂σs
∂r

)(R(t)) +
l2

R2(t)
].

We can also determine that an = 0, n 6= l and bn = 0, n = 1, 2, ...
Therefore, we yield the solution of problem(6.7)

pε+µσε =
rl

Rl(t) + lRl−1(t)
[− ∂

∂r
(ps+

∂ps
∂r

)(R(t))− 1

R2(t)
−µ ∂

∂r
(σs+

∂σs
∂r

)(R(t))+
l2

R2(t)
]coslθ,

which implies

pε = −µσε−
rl

Rl(t) + lRl−1(t)
[
∂

∂r
(ps+

∂ps
∂r

)(R(t))+
1

R2(t)
+µ

∂

∂r
(σs+

∂σs
∂r

)(R(t))− l2

R2(t)
]coslθ,

(6.12)
and

∂pε(R(t))

∂r
= −µ∂σε

∂r
(R(t))− l

R(t) + l
[
∂

∂r
(ps +

∂ps
∂r

)(R(t)) +
1

R2(t)
+ µ

∂

∂r
(σs +

∂σs
∂r

)(R(t))

− l2

R2(t)
]coslθ. (6.13)

As a result, we obtain

p|r=R(t)+εf(θ) = p|r=R(t) + εp
′|r=R(t)f(θ) +O(ε2)
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= (ps + εpε +O(ε2))|r=R(t) + ε(ps + εpε +O(ε2))
′ |r=R(t)f(θ) +O(ε2)

= ps(R(t)) + ε[pε(R(t)) +
∂ps
∂r

(R(t))f(θ)] +O(ε2), (6.14)

and

∂p

∂n
|r=R(t)+εf(θ) =

∂p

∂n
|r=R(t) + ε(

∂p

∂n
)
′ |r=R(t)f(θ) +O(ε2)

=
∂[ps + εpε +O(ε2)]

∂r
|r=R(t) + ε

∂

∂r
(
∂[ps + εpε +O(ε2)]

∂r
)|r=R(t)f(θ) +O(ε2)

=
∂ps(R(t))

∂r
) + ε[

∂2ps(R(t))

∂r2
f(θ) +

∂pε(R(t))

∂r
] +O(ε2) = −vn . (6.15)

Furthermore, we calculate the radially symmetric solutions ps(R(t)),
∂ps(R(t))

∂r

and ∂2ps(R(t))
∂r2

in above formula (6.14) and (6.15).
We consider the following boundary problem





−∆σ + σ = 0 in BR(t),
−∆p = µ(σ − σ̃) in BR(t),

σ + ∂σ
∂n

= 1 on ∂BR(t),

p+ ∂p
∂n

= κ on ∂BR(t),
∂p
∂n

= −vn on ∂BR(t).

(6.16)

Assume radial symmetrical solution σ = σs(r, t) of

{
−∆σs + σs = 0 in BR(t),

σs +
∂σs

∂n
= 1 on ∂BR(t),

(6.17)

we have {
σsrr +

1
r
σsr − σs = 0 in BR(t),

σs +
∂σs

∂r
= 1 on ∂BR(t).

Substituting the radial symmetrical solution σs(x, t) = cI0(r) of equation
σsrr +

1
r
σsr − σs = 0 into the boundary condition σs +

∂σs

∂r
= 1, we get

[cI0(r) + cI1(r)]|r=R(t) = 1,

i.e.,

c =
1

I0(R(t)) + I1(R(t))
.

Therefore, the radial symmetrical solution of problem (6.17) is
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σs(r, t) =
I0(r)

I0(R(t)) + I1(R(t))
, (6.18)

which yields that

∂σs
∂n

(R(t)) =
∂σs
∂r

(R(t)) =
I

′
0(R(t))

I0(R(t)) + I1(R(t))
=

I1(R(t))

I0(R(t)) + I1(R(t))
,

(6.19)
and

∂2σs(R(t))

∂r2
=

I
′′
0 (R(t))

I0(R(t)) + I1(R(t))
=

I ′1(R(t))

I0(R(t)) + I1(R(t))
, (6.20)

where I0(r), I1(r) are the modified Bessel functions, I0(r) =
∑∞

n=0
1

(n!)2
( r
2
)2n,

I1(r) =
∑∞

n=0
1

n!(n+1)!
( r
2
)2n+1, I

′
0(r) = I1(r).

Likewise, we consider the radial symmetrical solution of the following
boundary problem





∆(ps + µσs) = µσ̃ in BR(t),
σs +

∂σs

∂r
= 1 on ∂BR(t),

ps +
∂ps
∂r

= κ on ∂BR(t).
(6.21)

i.e., {
(ps + µσs)rr +

1
r
(ps + µσs)r = µσ̃ in BR(t),

(ps + µσs) +
∂
∂r
(ps + µσs) =

1
R(t)

+ µ on ∂BR(t).

Substituting the radial symmetrical solution ps + µσs = µσ̃
4
r2 + c of the

equation (ps +µσs)rr +
1
r
(ps +µσs)r = µσ̃ into the boundary condition (ps +

µσs) +
∂
∂r
(ps + µσs) =

1
R(t)

+ µ, we obtain

[
µσ̃

4
r2 + c+

µσ̃

2
r]|r=R(t) =

1

R(t)
+ µ,

i.e.,

c = −µσ̃
4
R2(t)− µσ̃

2
R(t) +

1

R(t)
+ µ.

Hence, the radial symmetrical solution of the problem (6.21) is

ps + µσs =
µσ̃

4
r2 − µσ̃

4
R2(t)− µσ̃

2
R(t) +

1

R(t)
+ µ,
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i.e.,

ps(r, t) = −µσs(r, t) +
µσ̃

4
r2 − µσ̃

4
R2(t)− µσ̃

2
R(t) +

1

R(t)
+ µ, (6.22)

which implies that

∂ps
∂n

(R(t)) =
∂ps
∂r

(R(t)) = −µ[∂σs
∂r

(R(t))− σ̃
2
R(t)] = −µ[ I1(R(t))

I0(R(t)) + I1(R(t))
− σ̃
2
R(t)],

(6.23)
and

∂2ps(R(t))

∂r2
= −µ[∂

2σs(R(t))

∂r2
− σ̃

2
] = −µ[ I ′1(R(t))

I0(R(t)) + I1(R(t))
− σ̃

2
]. (6.24)

Now, we derive the numerical example as follows
Example I: On a perturbed boundary Γ(t) : r = R(t) + εcoslθ, l =

2, 3, 4, ..., the analytical solutions of the problem (2.2) are given as follows:

σ|r=R(t)+εcoslθ = σs(R(t)) + ε[σε(R(t)) +
∂σs
∂r

(R(t))coslθ] +O(ε2), (6.25)

p|r=R(t)+εcoslθ = ps(R(t)) + ε[pε(R(t)) +
∂ps
∂r

(R(t))coslθ] +O(ε2), (6.26)

and

∂p

∂n
|r=R(t)+εcoslθ = −µ[ I1(R(t))

I0(R(t)) + I1(R(t))
− σ̃

2
R(t)]− εµ[

I ′1(R(t))

I0(R(t)) + I1(R(t))
− σ̃

2
]coslθ

−εµ∂σε
∂r

(R(t))− εl

R(t) + l
[
∂

∂r
(ps +

∂ps
∂r

)(R(t)) +
1

R2(t)

+µ
∂

∂r
(σs +

∂σs
∂r

)(R(t))− l2

R2(t)
]coslθ +O(ε2) = −vn . (6.27)

Next, we implement the numerical example above.
We take ε to be a small value 10−3 and the number of grid points 2n = 160

on the boundary. Setting µ = 1.2, σ̃ = 0.6. Our boundary smoothing
technique is: At time step tm = m∆t(m = 0, 1, 2, ...,M), for each node
θkm(k = 0, 1, 2, ..., 2n− 1), we fit a small quadratic curve rmk at each node by
this node and its two adjacent nodes in

[
θmk−1, θ

m
k+1

]
(k = 0, 1, 2, ..., 2n−1), and
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totally fit 2n small quadratic curves rmk (k = 0, 1, 2, ..., 2n− 1) at 2n nodes so
that there always is a local quadratic curve smoothly passing through each
node, which can keep the local smoothness (the existence of until infinity
derivatives at each node) of the boundary curve. In our numerical computa-
tion (3.35) (see (3.31), (3.32), (3.34), (3.37)), we use the values (3.4) of the
piecewise quadratic curve and its until the second derivative at each node
to compute N(θj , θk), Q(θj, θk) and curvature κ(θk). As expected, the errors
of our numerical experiments are O(ε2), where the errors measured are the
difference between our nonlinear computation and the ”analytical solution”.
In fact, the ”analytical solution” is just the linear solution (the linear part
of (6.25),(6.26) and (6.27)) in our numerical errors.

To test the convergence in time, using a very small ∆t, we take the
solution as the reference solution. Then using large time steps such as
2∆t, 4∆t, 8∆t etc., we rerun the program and measure the difference with
the reference solution to confirm the second-order accuracy in terms of ∆t
for Example I. The numerical errors are shown in Table 1, which suggest the
method is convergent and spectrally accurate in terms of ∆t. Similarly, to
test the spatial convergence, using a very small ∆θ, we take the solution as
the reference solution. Then using large spatial steps such as 2∆θ, 4∆θ, 8∆θ
etc., we rerun the program and compare the solutions with the reference so-
lution to obtain the error estimates (Table 2) which demonstrate the spectral
accuracy in terms of ∆θ for Example I.

σ̃ > 0 is a threshold concentration of nutrients needed for sustainability
and µ is a parameter expressing the intensity of the expansion by mitosis ( if
σ > σ̃) or shrinkage by apoptosis ( if σ < σ̃) within the tumor. Tumor grows
corresponding to the normal velocity vn > 0 and small σ̃ ∈ (0, 1). Tumor
shrinks corresponding to the normal velocities vn < 0 and big σ̃ ∈ (0, 1). The
growth does not occur correspond to with vn = 0. We take ε(0) = 0, growth
and shrinkage cases are shown in Figure 1 (Left: R(0) = 1, µ = 5.2, σ̃ = 0.37;
Right: R(0) = 12, µ = 0.7, σ̃ = 0.6 ), in which time is labeled.

When d
dt
( ε(t)
R(t)

) = 0, the tumor shape does not change in time and the
evolution is linearly self-similar. This condition divides regimes of stable

( ε(t)
R(t)

→ 0) and unstable (
∣∣∣ ε(t)
R(t)

∣∣∣ → ∞) growth.

For d
dt
( ε(t)
R(t)

) = 0, the shape of growing (or shrinking) tumor tends to
become self-similar thereby preventing the occurrence of instabilities and
invasive fingering. In Figure 2, self-similar (shape invariant) evolution is

shown for different inital perturbation amplitudes ε(0)
R(0)

= 0 and ε(0)
R(0)

= 0.38.
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For
∣∣∣ ε(t)R(t)

∣∣∣ → ∞, the perturbation grows unbounded with respect to unper-

turbed radius. For ε(t)
R(t)

→ 0, the perturbation decays to zero. An initial small
perturbation and the evolution of the perturbation during tumor growth are
also considered. The perturbation may either grow or decay. In Figure 3, the
growth of a perturbed circular initial boundary r(θ, 0) = 1.0 + 0.02cos(70θ)
is presented, in which µ = 5.2, σ̃ = 0.37. Figure 3 indicates that the pertur-
bation decays over time during tumor growth.
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Figure 1: Left: the tumor grows rapidly due to normal velocity vn > 0 (µ = 5.2, σ̃ = 0.37,
initial boundary r = 1, ε = 0). Right: the tumor shrinks rapidly due to normal velocity
vn < 0 (µ = 0.7, σ̃ = 0.6, initial boundary r = 12, ε = 0).

Table 1 The difference between the numerical solutions and the reference solution confirms

the second-order accuracy in terms of ∆t for Example I.

∆t ||| σ − σm
k |||∞,0 rate ||| p− pmk |||∞,0 rate ||| ∂p

∂n
− ( ∂p

∂n
)mk |||∞,0 rate

0.008 9.779e-7 – 9.885e-7 – 9.982e-7 –
0.004 2.300e-7 2.0881 2.432e-7 2.0230 2.467e-7 2.0166
0.002 5.381e-8 2.0957 6.026e-8 2.0129 6.112e-8 2.0130
0.001 1.216e-8 2.1457 1.402e-8 2.1037 1.413e-8 2.1129
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Figure 2: Left (ε(0) = 0, R(0) = 1, 2n = 200): During tumor growth, the tumor remains
circular. Right (ε(0) = 0.95, R(0) = 2.5, l = 2, 2n = 200): During tumor shrinkage,
analogous shapes are found to hold.

Table 2 The difference between the numerical solutions and the reference solution confirms

the second-order accuracy in terms of ∆θ for Example I.

N = 2π
∆θ

||| σ − σm
k |||∞,0 rate ||| p− pmk |||∞,0 rate ||| ∂p

∂n
− ( ∂p

∂n
)mk |||∞,0 rate

60 8.872e-7 – 8.916e-7 – 8.991e-7 –
120 2.217e-7 2.0007 2.229e-7 2.0000 2.248e-7 1.9998
240 5.501e-8 2.0108 5.513e-8 2.0155 5.602e-8 2.0046
480 1.327e-8 2.0515 1.358e-8 2.0214 1.381e-8 2.0202

7. Conclusions

In this work, we successfully apply Nystrom method based on trigonomet-
ric interpolatory quadratures for logarithmic singularities to free boundary
problems (2.2) in R2. However, this approach can’t be extended to three-
dimensional case because the square root singularities in R3 cannot be split
in the same way. It is possible to use the technique in R3 for rotationally
symmetric boundaries. [17]

In a future work, we plan to prove the convergences of boundary element
method for free boundary problems, which have always been numerically
tested, but, were rarely proven before in this field because the methods for
fixed boundary are not applicable in free boundary problems.
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Figure 3: The evolution of a perturbed circular boundary with initial shape r(θ, 0) =
1.0+ 0.02cos(70θ) indicates that the perturbation decays over time during tumor growth.
Here µ = 5.2, σ̃ = 0.37.
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