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In this paper an improved version of a verification algorithm for solving nonlinear
systems of equations based on Krawczyk operator is presented. Compared with the
original algorithm, the improved verification algorithm not only saves computing time,
but also computes a narrower (or at least the same) inclusion of the solution to nonlinear
systems of equations for certain classes of problems. Numerical results demonstrate the
performance of the proposed algorithms.
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1. Introduction

In this paper, we consider verification methods for general square nonlinear systems of equations

f (x) = 0, (1)

where f : Rn
→ Rn with f (x) = (f1(x), f2(x), . . . , fn(x))T , x = (x1, x2, . . . , xn)T ∈ Rn. The verification methods for nonlinear

systems are widely applied in the various science (e.g., [1–5]) and engineering problems (e.g., [6,7]).
For nonlinear systems solving, one of the most fundamental goals of verification methods is computing verified bounds

within which there exists a unique solution to (1). The working tools of verification methods are floating-point and interval
arithmetic. Rump has given an overview on verification methods in [8].

With interval Newton operator first proposed by Sunaga [9] in the 1950s, a verification method was presented by
Moore [10]. However, this method requires to solve an interval linear system at each verification step, which results in
huge computational costs. Later, another verification method without solving interval linear systems was developed in
terms of Krawczyk operator by Krawczyk [11] in 1969. The sufficient conditions for the success of the new verification
method were given by Moore [12]. We call it Krawczyk–Moore method in this paper. Furthermore, Rump [13] improved
the method so that it shows better performance in practice in 1983, and wrote the function verifynlss in INTLAB [14],
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the MATLAB Toolbox for Reliable Computing. If verifynlss function runs successfully for a given square nonlinear
system of Eqs. (1), then the computed box (i.e., interval vector) contains a unique solution to the original system.
Since then, based on Krawczyk–Moore method, various verification methods have been developed for general nonlinear
problems such as over- and underdetermined nonlinear systems [15–17], multiple roots of nonlinear equations [18–22],
nonlinear matrix equations [23,24] and so on. Up to now Krawczyk–Moore method still plays a very important role in
the field of nonlinear verification problems.

In this paper we present an improved version of Krawczyk operator, and propose a new verification algorithm. Both
theoretical results and numerical examples show that the improved verification algorithm not only saves more computing
time, but also computes a narrower (or at least the same) inclusion of the solution to (1) than the original one for certain
classes of problems.

The outline of this paper is as follows. Section 2 is devoted as a preparation for this paper. In this section we present
several mathematical notations and technical results that are used in the paper. In Section 3, the main theoretical results
of this paper and their proofs are given. In Section 4, we propose an improved verification algorithm based on improved
Krawczyk operator (6) and Theorem 2.4. To illustrate the performance of our verification method, some numerical
examples are given in Section 5. In Section 6, our further research in this direction is given and we express our gratitude
to the Editors and the Reviewers for the warm work earnestly and the valuable suggestions and comments in the last
section.

2. Notation and preliminaries

In our text, the interval notation adheres to the recently adopted project of the international standard [25]. Specifically,
we designate intervals and interval objects (vectors, matrices) by boldface letters. IR stands for the set of closed intervals
of the real axis R. IRn means the set of n-dimensional interval vectors, whose geometric images are axes aligned boxes
in Rn, and IRn×n denotes the set of interval n × n-matrices whose entries are all closed intervals of the real axis R. We
write wid x, rad x and mid x for the width, radius and midpoint of an interval x ∈ IR, respectively. And the notations
wid and mid for interval objects (vectors, matrices) are defined entrywise, i.e., the width and midpoint of x are the real
vectors wid x and mid x whose entries are the widths and midpoints of the corresponding entries of x: (wid x)i = wid xi
and (mid x)i = mid xi when x ∈ IRn, and the width and midpoint of X are the real matrices wid X and mid X whose
entries are the widths and midpoints of the corresponding entries of X : (wid X)ij = wid xij and (mid X)ij = mid xij when
X ∈ IRn×n, where xi, xij ∈ IR, i, j = 1, 2, . . . , n.

Let x = (xi) ∈ Rn, y = (yi) ∈ Rn. Then denote x ≥ y if xi ≥ yi for all 1 ≤ i ≤ n, especially, if xi ≥ 0 for all i, we say
that x is a nonnegative vector, denote it by x ≥ 0, and |y| denotes the nonnegative vector with entries |yi|. Similarly, let
A =

(
aij
)

∈ Rn×n, B =
(
bij
)

∈ Rn×n. Then denote A ≥ B if aij ≥ bij for all 1 ≤ i, j ≤ n, especially, if aij ≥ 0 for all i, j, we
say that A is a nonnegative matrix, denote it by A ≥ 0, and |B| denotes the nonnegative matrix with entries |bij|.

Denote the Jacobian of f at x by Jf (x). Let x̂ ∈ Rn be a solution to (1), if Jf
(
x̂
)
is nonsingular, then we call x̂ a simple

solution to (1) or a simple zero of f .
Krawczyk operator was first proposed by West German mathematician Rudolf Krawczyk [11] in 1969, and redefined

for the solution existence tests by Moore [12], Neumaier [26], Kearfott [27], etc. Our exposition follows Shary [28].

Definition 2.1. Let some rules be defined that assign, to any box x ∈ IRn, a point x̃ ∈ x and a nonsingular real n×n-matrix
R, while G ∈ IRn×n is an enclosure for the Jacobian Jf (x) of the function f over the box x. The mapping

K : IRn
× Rn

→ IRn,

defined by the rule

K
(
x, x̃
)

:= x̃ − Rf
(
x̃
)
+ (I − RG)

(
x − x̃

)
, (2)

is called (interval) Krawczyk operator for the function f , where I denotes the identity matrix of order n.

The following important statement concerning Krawczyk operator is valid [11,12,26,27].

Theorem 2.2. Under the assumption of Definition 2.1, for a box x ∈ IRn, if

K
(
x, x̃
)

⊆ x, (3)

then there exists at least one x̂ ∈ x with f (x̂) = 0.

Remark 2.3. According to the working principle of verification methods, for a box x, if the inclusion (3) is rigorously
verified on the computers, then the box x contains a solution to (1). In general, there are no other restrictions on x̃
and R in Krawczyk operator (2). However, in order to make the inclusion (3) easier to satisfy, people usually take x̃ as
an approximate solution to (1) and R = Jf

(
x̃
)−1, where Jf

(
x̃
)−1 denotes the inverse matrix of Jf

(
x̃
)
. Besides, since the

overestimation caused by interval operations can also make the inclusion (3) hard to verify successfully, the narrower the
width of x the better.
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From a practical point of view, it is preferable for x not to include a zero x̂ of f itself but the difference between an
approximate zero x̃ and x̂, because calculating an inclusion of x̂ or x̂ − x̃ requires the same computing time and x̂ − x̃
is more suitable for programming than x̂. To this purpose, in 1983 Rump gave a more practical verification theorem as
follows.

Theorem 2.4 ([8]). Let f : D ⊆ Rn
→ Rn be continuously differentiable functions, and x̃ ∈ Rn, R ∈ Rn×n, x ∈ IRn with 0 ∈ x

and x̃ + x ⊆ D, and define Jf
(
x̃ + x

)
:=
⋂

{M ∈ IRn×n
: ∀x ∈ x̃ + x, Jf (x) ∈ M}. Suppose

S
(
x, x̃
)

:= −Rf
(
x̃
)
+
(
I − RJf

(
x̃ + x

))
x ⊆ int x, (4)

where int x denotes the interior of x.

Then R and all matrices M ∈ Jf
(
x̃ + x

)
are nonsingular, and there is a unique solution x̂ to f (x) = 0 in x̃ + S

(
x, x̃
)
.

For similar considerations as mentioned in Remark 2.3 and based on Theorem 2.4, Rump gave the following verification
algorithm written in executable MATLAB/INTLAB codes. This algorithm computes the inclusion of the solution to (1)
near some numerical approximation x̃. In the algorithm Rump takes R as an approximate inverse of Jf

(
x̃
)
calculated in

floating-point arithmetic.

Algorithm 2.5 [8] Verified bounds for the solution of a nonlinear system:
function XX = VerifyNonLinSys(f,xs)
XX = NaN; % initialization
y = f(gradientinit(xs));
R = inv(y.dx); % approximate inverse of J_f(xs)
Y = f(gradientinit(intval(xs)));
Z = -R*Y.x; % inclusion of -R*f(xs)
X = Z; iter = 0;
while iter< 15
iter = iter+1;
Y = hull(X*infsup(0.9,1.1)+1e-20*infsup(-1,1),0);
YY = f(gradientinit(xs+Y)); % YY.dx inclusion of J_f(xs+Y)
X = Z + (eye(n)-R*YY.dx)*Y; % interval iteration
if all(in0(X,Y)), XX = xs+X; return; end
end

Algorithm 2.5 is the core of verifynlss function.

3. Main theoretical results

In accordance with the second part, in the current dominant verification methods for nonlinear systems of equations
the interval operator S

(
x, x̃
)
can be written as

− Jf
(
x̃
)−1 f

(
x̃
)
+

(
I − Jf

(
x̃
)−1 Jf

(
x̃ + x

))
x ≜ SR

(
x, x̃
)
, (5)

where x ∈ IRn with 0 ∈ x.
For continuously differentiable functions f : D ⊆ Rn

→ Rn, if Jf
(
x̃
)
, x̃ ∈ D is nonsingular, then Jf (x) is also

nonsingular for x close to x̃ sufficiently. Therefore, we may assume that Jf is nonsingular thereafter. In this paper we
take R =

(
mid Jf

(
x̃ + x

))−1, and the interval operator S
(
x, x̃
)
can be rewritten as

−
(
mid Jf

(
x̃ + x

))−1 f
(
x̃
)
+

(
I −

(
mid Jf

(
x̃ + x

))−1 Jf
(
x̃ + x

))
x ≜ SH

(
x, x̃
)
.

Noted that Jf
(
x̃ + x

)
= mid Jf

(
x̃ + x

)
+

1
2wid Jf

(
x̃ + x

)
[−1, 1] and x = mid x +

1
2wid x [−1, 1], SH

(
x, x̃
)
can be

formulated as

SH
(
x, x̃
)

= −
(
mid Jf

(
x̃ + x

))−1 f
(
x̃
)
+

(
I −

(
mid Jf

(
x̃ + x

))−1 Jf
(
x̃ + x

))
x

= −
(
mid Jf

(
x̃ + x

))−1 f
(
x̃
)
+

1
4

⏐⏐⏐(mid Jf
(
x̃ + x

))−1
⏐⏐⏐wid Jf

(
x̃ + x

)
wid x [−1, 1]

+
1
2

⏐⏐⏐(mid Jf
(
x̃ + x

))−1
⏐⏐⏐wid Jf

(
x̃ + x

)
|mid x| [−1, 1].

(6)

Comparing the expressions

SH
(
x, x̃
)

= −
(
mid Jf

(
x̃ + x

))−1 f
(
x̃
)
+

1
4

⏐⏐⏐(mid Jf
(
x̃ + x

))−1
⏐⏐⏐wid Jf

(
x̃ + x

)
wid x [−1, 1]

+
1
2

⏐⏐⏐(mid Jf
(
x̃ + x

))−1
⏐⏐⏐wid Jf

(
x̃ + x

)
|mid x| [−1, 1]
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with

SR
(
x, x̃
)

= −Jf
(
x̃
)−1 f

(
x̃
)
+

(
I − Jf

(
x̃
)−1 Jf

(
x̃ + x

))
x,

we can see that, in SH
(
x, x̃
)
, Jf
(
x̃
)
does not need to be computed and mid Jf

(
x̃ + x

)
can be obtained directly from Jf

(
x̃ + x

)
,

and interval multiplication is not involved because of
(
mid Jf

(
x̃ + x

))−1, wid Jf
(
x̃ + x

)
∈ Rn×n and mid x, wid x ∈ Rn,

i.e., they are point matrices and point vectors, whereas I − Jf
(
x̃
)−1 Jf

(
x̃ + x

)
and x presented in SR

(
x, x̃
)
are interval

matrix and interval vector, respectively. Hence, the verification algorithm with SH
(
x, x̃
)
instead of SR

(
x, x̃
)
will spend less

calculations.
In addition to the advantages mentioned above, the inclusion SH

(
x, x̂
)

⊆ SR
(
x, x̂
)
can be satisfied under some

assumptions, where x̂ denotes a true solution to (1). For an easier theoretical analysis, in the following theorems
(i.e., Theorem 3.1 and its Corollary 3.3) we took x as symmetric (i.e., mid x = 0) because of 0 ∈ x.

Theorem 3.1. Let f : D ⊆ Rn
→ Rn be continuously differentiable functions and x̂ ∈ Rn be a simple zero of f , x ∈ IRn be

symmetric with x̂ + x ⊆ D such that any matrix in Jf
(
x̂ + x

)
is nonsingular. If

⏐⏐⏐Jf (x̂)−1
⏐⏐⏐ ≥

⏐⏐⏐(mid Jf
(
x̂ + x

))−1
⏐⏐⏐, then

SH
(
x, x̂
)

⊆ SR
(
x, x̂
)
. (7)

Proof. Since
⏐⏐⏐Jf (x̂)−1

⏐⏐⏐ ≥

⏐⏐⏐(mid Jf
(
x̂ + x

))−1
⏐⏐⏐, we have

1
4

⏐⏐⏐Jf (x̂)−1
⏐⏐⏐wid Jf

(
x̂ + x

)
wid x ≥

1
4

⏐⏐⏐(mid Jf
(
x̂ + x

))−1
⏐⏐⏐wid Jf

(
x̂ + x

)
wid x,

subsequently, we get
1
4

⏐⏐⏐(mid Jf
(
x̂ + x

))−1
⏐⏐⏐wid Jf

(
x̂ + x

)
wid x [−1, 1] ⊆

1
4

⏐⏐⏐Jf (x̂)−1
⏐⏐⏐wid Jf

(
x̂ + x

)
wid x [−1, 1].

Moreover, using f
(
x̂
)

= 0 we have

SH
(
x, x̂
)

=
1
4

⏐⏐⏐(mid Jf
(
x̂ + x

))−1
⏐⏐⏐wid Jf

(
x̂ + x

)
wid x [−1, 1] ⊆ SR

(
x, x̂
)

=
1
4

⏐⏐⏐Jf (x̂)−1
⏐⏐⏐wid Jf

(
x̂ + x

)
wid x [−1, 1] + y,

where y =
1
2

⏐⏐⏐Jf (x̂)−1 (Jf (x̂)− mid Jf
(
x̂ + x

))⏐⏐⏐wid x [−1, 1].

Lemma 3.2. Let A, B ∈ Rn×n be nonsingular, and A ≥ B, A−1
≥ 0, B−1

≥ 0. Then

B−1
≥ A−1.

Proof. Because A − B ≥ 0 (A ≥ B), A−1
≥ 0 and B−1

≥ 0, simple calculation yields

B−1
− A−1

= A−1(A − B)B−1
≥ 0,

i.e.,

B−1
≥ A−1.

Corollary 3.3. Let f : D ⊆ Rn
→ Rn be continuously differentiable functions and x̂ ∈ Rn be a simple zero of f , x ∈ IRn

be symmetric with x̂ + x ⊆ D such that any matrix in Jf
(
x̂ + x

)
is nonsingular. If Jf

(
x̂
)−1

≥ 0,
(
mid Jf

(
x̂ + x

))−1
≥ 0 and

mid Jf
(
x̂ + x

)
≥ Jf

(
x̂
)
, then the inclusion (7) is valid.

Proof. According to Lemma 3.2, we get

Jf
(
x̂
)−1

≥
(
mid Jf

(
x̂ + x

))−1

from Jf
(
x̂
)−1

≥ 0,
(
mid Jf

(
x̂ + x

))−1
≥ 0 and mid Jf

(
x̂ + x

)
≥ Jf

(
x̂
)
. And we have⏐⏐⏐Jf (x̂)−1

⏐⏐⏐ ≥

⏐⏐⏐(mid Jf
(
x̂ + x

))−1
⏐⏐⏐

because of Jf
(
x̂
)−1

≥ 0 and
(
mid Jf

(
x̂ + x

))−1
≥ 0, which, by Theorem 3.1, implies

SH
(
x, x̂
)

⊆ SR
(
x, x̂
)
.



G. Hou and S. Zhang / Journal of Computational and Applied Mathematics 359 (2019) 145–152 149

In practice there exists functions f that satisfy conditions Jf
(
x̂
)−1

≥ 0,
(
mid Jf

(
x̂ + x

))−1
≥ 0 and mid Jf

(
x̂ + x

)
≥ Jf

(
x̂
)

presented in Corollary 3.3, for example, the inverse isotone mappings f with convex-like derivatives. Moreover, numerical
experiments presented in Section 5 have shown that the inclusion SH

(
x, x̂
)

⊆ SR
(
x, x̂
)
holds true for a wider class of

functions.

Remark 3.4. Although we can only prove that SH
(
x, x̂
)

⊆ SR
(
x, x̂
)
, in fact, the inclusion SH

(
x, x̃
)

⊆ SR
(
x, x̃
)
is also

observed provided that
⏐⏐⏐Jf (x̃)−1

⏐⏐⏐ ≥

⏐⏐⏐(mid Jf
(
x̃ + x

))−1
⏐⏐⏐ or Jf (x̃)−1

≥ 0,
(
mid Jf

(
x̃ + x

))−1
≥ 0 and mid Jf

(
x̃ + x

)
≥ Jf

(
x̃
)

for x̃ with f (x̃) ≈ 0. Indeed, all the numerical examples that we have encountered support this observation.

4. An improved verification algorithm

In this section we describe a new verification algorithm for simple solutions to nonlinear systems of equations based
on the interval operator SH

(
x, x̃
)
(6) and Theorem 2.4. Like algorithm 2.5, the new verification algorithm is presented as

executable MATLAB/INTLAB codes. In the algorithm we take R as an approximate inverse of mid Jf
(
x̃ + x

)
calculated in

floating-point arithmetic.

Algorithm 4.1
function XX = ImpVerifyNonLinSys(f,xs)
XX = NaN;
Y0 = f(gradientinit(intval(xs))); % inclusion of f(xs)
M = mid(Y0.dx);
R = inv(M);
Y = -R*Y0.x;
X = hull(Y*infsup(0.9,1.1) + 1e-20*infsup(-1,1) , 0 );

% interval vector X satisfying requirements
YY = f(gradientinit(xs+X));
M = mid(YY.dx);
R = inv(M); % approximate inverse of m(J_f(xs+X))
M = abs(R);
x = inf(X); y = sup(X); z = max(abs(x),abs(y));
Y = -R*Y0.x + 0.5*M*diam(YY.dx)*z*infsup(-1,1); % X ⊆ z*infsup(-1,1)
if all(in0(Y,X))
XX = xs+Y;
end

5. Numerical experiments

The following experiments are done using MATLAB R2012a and INTLAB V6 under Windows 7 on a Lenovo PC (1.70 GHz
Intel(R) Core(TM) i5-3317U processor, 4 GB of memory).

Example 5.1. Consider

f (x) =

⎛⎜⎜⎝
3x1 − cos(x2x3) −

1
2

x21 − 81(x2 + 0.1)2 + sinx3 + 1.06

e−x1x2 + 20x3 +
10π − 3

3

⎞⎟⎟⎠ = 0. (8)

We use algorithm 4.1 and algorithm 2.5, with only one verification step executed, to compute the inclusion of the solution

to (8) near some numerical approximation x̃ =

( 0.500000002581808
−0.000028492129453
−0.523599487583918

)
∈ R3, where the numerical solution x̃ is obtained

by Newton’s methods. Table 5.1 displays the computational results and computing times (second) of the algorithms.
In the following numerical examples, the numerical solution x̃ is first obtained by Newton’s methods with the given

initial approximation for each dimension and then the inclusion of the solution near x̃ is computed by algorithm 4.1
and algorithm 2.5. We use XX1, XX2 to denote the inclusions provided by algorithm 2.5 with only one verification step
executed, algorithm 4.1, respectively in Examples 5.2–5.4. From the relevant computation results, it can be seen that
although the functions f presented in (9), (10) and (11) do not have the properties

⏐⏐⏐Jf (x̃)−1
⏐⏐⏐ ≥

⏐⏐⏐(mid Jf
(
x̃ + x

))−1
⏐⏐⏐ or

Jf
(
x̃
)−1

≥ 0,
(
mid Jf

(
x̃ + x

))−1
≥ 0 and mid Jf

(
x̃ + x

)
≥ Jf

(
x̃
)
, there is still XX1 = XX2 for each dimension. Because of

the large number of data, we use the maximum relative error to describe the relationship between XX1 and XX2.
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Table 5.1
Results and computing times for (8).

Inclusion Time (s)

Algorithm 4.1 XX1 :=

⎛⎝ [0.49999999995138, 0.50000000004119]
[−0.00000000533052, 0.00000000451574]
[−0.52359877573822, −0.52359877547977]

⎞⎠ t1 = 0.049925

Algorithm 2.5 XX2 :=

⎛⎝ [0.49999999994728, 0.50000000008202]
[−0.00000000577963, 0.00000000899207]
[−0.52359877575001, −0.52359877536227]

⎞⎠ t2 = 0.052508

Where t2 : t1 = 1.0517 and it is easy to see that XX1 ⊆ XX2.

Table 5.2
Solution of (9) using algorithm 2.5 and algorithm 4.1.
Dim Algorithm 2.5 Algorithm 4.1 t1 : t2 mrelerr (x)

Computing time t1 (s) Computing time t2 (s)

50 0.061858 0.060962 1.0147 3.818 · 10−16

100 0.078813 0.068845 1.1448 3.826 · 10−16

200 0.081962 0.061697 1.3285 3.954 · 10−16

500 0.113260 0.092930 1.2188 4.246 · 10−16

1000 0.249051 0.182910 1.3616 4.593 · 10−16

2000 0.753223 0.508220 1.4821 4.438 · 10−16

Where x = XX1 or XX2, i.e., mrelerr (XX1)=mrelerr (XX2).

The relative error for x ∈ IR denoted by relerr (x) is defined in [8] by

relerr (x) :=

⎧⎨⎩
⏐⏐⏐⏐ rad x
mid x

⏐⏐⏐⏐ , if 0 /∈ x

rad x, otherwise
.

And the maximum relative error for x ∈ IRn denoted by mrelerr (x) is defined by

mrelerr (x) = max
i

{relerr (xi)} ,

where xi ∈ IR, i = 1, 2, . . . , n is the ith entry of x.

Example 5.2. Consider the two point boundary value problem

3ÿy + ẏ2 = 0, with y(0) = 0, y(1) = 20,

given by Abbott and Brent [29]. The true solution is y = 20x0.75. The above equation can be discretized as⎧⎨⎩fk(y) ≡ 3yk (yk+1 − 2yk + yk−1) +

(
yk+1 − yk−1

2

)2

= 0, 1 ≤ k ≤ n

y0 = 0, yn+1 = 20,
. (9)

As initial approximation we use the values at the equally spaced points in [0, 20]. The results outputted by both
algorithms for different dimensions, with only one verification step executed, are displayed in Table 5.2.

Example 5.3 ([30]). Consider the discretization of

u′′(t) =
1
2

(u(t) + t + 1)3 , 0 < t < 1, u(0) = u(1) = 0.

Denote uk = u (tk), we have{
fk(u) ≡ uk+1 − 2uk + uk−1 −

1
2
h2 (uk + tk + 1)3 = 0, 1 ≤ k ≤ n

u0 = un+1 = 0, tk = k · h; h = (n + 1)−1,
. (10)

Take initial guess u ≡ (ξi), ξi = ti (ti − 1), 1 ≤ i ≤ n. The results outputted by both algorithms for different dimensions,
with only one verification step executed, are displayed in Table 5.3.

Example 5.4 ([30]).

u(t) +

∫ 1

0
H(s, t) (u(s) + s + 1)3 ds = 0,
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Table 5.3
Solution of (10) using algorithm 2.5 and algorithm 4.1.
Dim Algorithm 2.5 Algorithm 4.1 t1 : t2 mrelerr (x)

Computing time t1 (s) Computing time t2 (s)

50 0.683220 0.593479 1.1512 1.450 · 10−15

100 1.530358 1.187107 1.2892 2.917 · 10−15

200 3.037722 2.472819 1.2285 8.018 · 10−15

500 7.266109 6.235905 1.1652 8.542 · 10−15

1000 14.799065 12.831169 1.1534 4.058 · 10−14

2000 34.824131 27.656904 1.2592 8.523 · 10−14

Where x = XX1 or XX2, i.e., mrelerr (XX1)=mrelerr (XX2).

Table 5.4
Solution of (11) using algorithm 2.5 and algorithm 4.1.
Dim Algorithm 2.5 Algorithm 4.1 t1 : t2 mrelerr (x)

Computing time t1 (s) Computing time t2 (s)

10 0.864388 0.774734 1.1157 4.7 · 10−15

20 3.520333 2.983376 1.1800 1.7 · 10−14

50 25.508979 18.800986 1.3568 2.3 · 10−13

100 105.427856 66.999370 1.5736 9.1 · 10−13

Where x = XX1 or XX2, i.e., mrelerr (XX1)=mrelerr (XX2).

where H(s, t) =

{
s(1 − t), s ≤ t
t(1 − s), s > t .⎧⎪⎪⎨⎪⎪⎩fk(u) ≡ uk +

1
2

⎧⎨⎩(1 − tk)
k∑

j=1

tj
(
uj + tj + 1

)3
+ tk

n∑
j=k+1

(
1 − tj

) (
uj + tj + 1

)3⎫⎬⎭ = 0

u0 = un+1 = 0, tj = j · h; h = (n + 1)−1

, (11)

where uk = u (tk) , 1 ≤ k ≤ n.
Take initial guess ui = ti (ti − 1), 1 ≤ i ≤ n. The results outputted by both algorithms for different dimensions, with

only one verification step executed, are displayed in Table 5.4.

6. Conclusion

In this paper, we provided an improved method for the verification algorithm of nonlinear systems. The new method
is based on a modified version of Krawczyk operator, and is faster than the classic one and gives also narrower inclusion
of the solution in some cases.

Because Krawczyk operator (2) is nothing but the centered form of the interval extension [10,26,27] of the mapping

φ(x) = x − Rf (x)

from the function interval extension [9,10,26] point of view, in this direction our future research will be to develop more
efficient and effective algorithms for verified solutions to nonlinear systems with the idea of bicentered interval extension
of functions and/or the boundary Krawczyk operator first presented in [28].

Acknowledgments

The authors would like to thank the Editors and the Reviewers for the warm work earnestly and the valuable
suggestions and comments.

References

[1] N. Yamamoto, Numerical verification method for solutions of boundary value problems with local uniqueness by Banach’s fixed-point theorem,
SIAM J. Numer. Anal. 35 (5) (1998) 2004–2013.

[2] P. Zgliczynski, K. Mischaikow, Rigorous numerics for partial differential equations: the Kuramoto-Sivashinsky equation, Found. Comput. Math.
1 (3) (2001) 255–288.

[3] Z. Galias, Interval methods for rigorous investigations of periodic orbits, Int. J. Bifurcation Chaos 11 (9) (2001) 2427–2450.
[4] S. Day, O. Junge, K. Mischaikow, A rigorous numerical method for the global analysis of infinite-dimensional discrete dynamical systems, SIAM

J. Appl. Dyn. Syst. 3 (2) (2004) 117–160.
[5] H. Wang, D. Cao, S. Li, Interval entropy method for equality constrained multiobjective optimization problems, Siberian J. Numer. Math. 11 (1)

(2008) 29–39.

http://refhub.elsevier.com/S0377-0427(19)30159-1/sb1
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb1
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb1
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb2
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb2
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb2
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb3
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb4
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb4
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb4
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb5
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb5
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb5


152 G. Hou and S. Zhang / Journal of Computational and Applied Mathematics 359 (2019) 145–152

[6] M.D. Stuber, V. Kumar, P.I. Barton, Nonsmooth exclusion test for finding all solutions of nonlinear equations, BIT Numer. Math. 50 (4) (2010)
885–917.

[7] B. Hu, K. Xie, H. Tai, Inverse problem of power system reliability evaluation: analytical model and solution method, IEEE Trans. Power Syst. 33
(6) (2018) 6569–6578.

[8] S.M. Rump, Verification methods: Rigorous results using floating-point arithmetic, Acta Numer. 19 (2010) 287–449.
[9] T. Sunaga, Theory of an interval algebra and its application to numerical analysis, Res. Assoc. Appl. Geom. (RAAG) Mem. 2 (1958) 29–46.

[10] R.E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966.
[11] R. Krawczyk, Newton-Algorithmen zur bestimmung von nullstellen mit fehlerschranken, Computing 4 (1969) 187–201.
[12] R.E. Moore, A test for existence of solutions to nonlinear systems, SIAM J. Numer. Anal. 14 (4) (1977) 611–615.
[13] S.M. Rump, Solving algebraic problems with high accuracy, habilitationsschrift, in: U.W. Kulisch, W.L. Miranker (Eds.), A New Approach to

Scientific Computation, Academic Press, New York, 1983, pp. 51–120.
[14] S.M. Rump, INTLAB-Interval laboratory, in: Tibor Csendes (Ed.), Developments in Reliable Computing, Kluwer Academic Publishers, Dordrecht,

1999, pp. 77–104.
[15] Z. Yang, L. Zhi, Y. Zhu, Verified error bounds for real solutions of positive-dimensional polynomial systems, in: Proceedings of the 38th

international symposium on symbolic and algebraic computation, ACM, 2013, pp. 371–378.
[16] X. Chen, R.S. Womersley, Existence of solutions to systems of underdetermined equations and spherical designs, SIAM J. Numer. Anal. 44 (6)

(2006) 2326–2341.
[17] X. Chen, A. Frommer, B. Bruno Lang, Computational existence proofs for spherical t-designs, Numer. Math. 117 (2011) 289–305.
[18] S.M. Rump, S. Oishi, Verified error bounds for double roots of nonlinear equations, in: 2009 International Symposium on Nonlinear Theory and

Its Applications, NOLTA’09, Sapporo, Japan, 2009.
[19] S.M. Rump, S. Graillat, Verified error bounds for multiple roots of systems of nonlinear equations, Numer. Algorithms 54 (2010) 359–377.
[20] N. Li, L. Zhi, Verified error bounds for isolated singular solutions of polynomial systems: case of breadth one, Theoret. Comput. Sci. 479 (2013)

163–173.
[21] N. Li, L. Zhi, Verified error bounds for isolated singular solutions of polynomial systems, SIAM J. Numer. Anal. 52 (4) (2014) 1623–1640.
[22] Z. Li, H. Sang, Verified error bounds for singular solutions of nonlinear systems, Numer. Algorithms 30 (2015) 309–331.
[23] A. Frommer, B. Hashemi, Verified computation of square roots of a matrix, SIAM J. Matrix Anal. Appl. 31 (3) (2009) 1279–1302.
[24] Tayyebe Haqiri, Federico Poloni, Methods for verified stabilizing solutions to continuous-time algebraic Riccati equations, J. Comput. Appl. Math.

313 (2017) 515–535.
[25] R.B. Kearfott, M. Nakao, A. Neumaier, S.M. Rump, S.P. Shary, P. van Hentenryck, Standardized notation in interval analysis, Comput. Technol.

15 (1) (2010) 7–13.
[26] A. Neumaier, Interval methods for systems of equations, Cambridge University Press, Cambridge, UK, 1990.
[27] R.B. Kearfott, Rigorous Global Search: Continuos Problems, Kluwer, Dordrecht, Netherlands, 1996.
[28] S.P. Shary, Krawczyk operator revised, in: Proceedings of International Conference on Computational Mathematics ICCM-2004. Workshops, ICM

& MG Publisher, Novosibirsk, 2004, pp. 307–313.
[29] J.P. Abbott, R.P. Brent, Fast local convergence with single and multistep methods for nonlinear equations, Austr. Math. Soc. 19 (Series B) (1975)

173–199.
[30] J.J. Moré, M.Y. Cosnard, Numerical solution of non-linear equations, ACM Trans. Math. Softw. 5 (1) (1979) 64–85.

http://refhub.elsevier.com/S0377-0427(19)30159-1/sb6
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb6
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb6
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb7
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb7
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb7
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb8
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb9
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb10
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb11
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb12
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb13
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb13
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb13
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb14
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb14
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb14
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb15
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb15
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb15
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb16
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb16
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb16
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb17
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb18
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb18
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb18
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb19
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb20
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb20
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb20
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb21
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb22
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb23
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb24
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb24
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb24
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb25
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb25
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb25
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb26
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb27
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb28
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb28
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb28
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb29
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb29
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb29
http://refhub.elsevier.com/S0377-0427(19)30159-1/sb30

	An improved verification algorithm for nonlinear systems of equations based on Krawczyk operator
	Introduction
	Notation and preliminaries
	Main theoretical results
	An improved verification algorithm
	Numerical experiments
	Conclusion
	Acknowledgments
	References


