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regime-switching jump-diffusion Asian option pricing *

Jingtang Mafand Han Wang?

Abstract

This paper studies the convergence rates of moving mesh methods for a system
of moving boundary partial integro-differential equations (PIDEs) which arise in the
Asian option pricing under the state-dependent regime-switching jump-diffusion models.
The value function of the Asian option under the model is governed by a system of
two-dimensional PIDEs. In this paper, the two-dimensional PIDEs are recast into a
one-dimensional moving boundary problem of the PIDEs. A moving finite difference
method (FDM) is proposed to solve the one-dimensional moving boundary problem
and the convergence rates are proved. Numerical examples are provided to confirm the
theoretical results.
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1 Introduction

Let (2, F,Q) be a complete probability space with risk-neutral measure. Assume that
the price of the underlying asset S(t) follows the state-dependent regime-switching jump-
diffusion model under risk-neutral measure:

ds(t)

S0 [r(B(t)) =6 (B(1)) = A(B(#)) £ (B(1))] dt + o (B(t)) dW; + [n (B(t)) — 1]dR;, (1)
where W, is a standard Brownian motion, B(t) is a continuous-time Markov chain with
the state B(t) € {b; : ¢ = 1,2,...,d}. Assume that at each state, the interest rates
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r(b;) = 7, dividend yields § (b;) = ¢; and volatilities o (b;) = o; for i € D = {1, 2,...,d}
are nonnegative constants. ¥; is a Poisson process with intensity A (B(t)) = A; > 0, the
amplitude 7 (B(t)) — 1 = n; — 1, and the expectation of the random amplitude « (B(t)) =
ki = E(n; — 1), where n; = Y (BM) = ¢Yi and the jump sizes Y; for i € D are independent
random variables with density functions

1 (y — i)

fi(y) ZeXp{— ; (2)
' 0iV 2T 207

where g; > 0 and p; > 0 are the constants depending solely on the regime state b; for i € D.

Let Q = (gi); jep be the generator matrix of the Markov chain process whose elements are

constants satisfying ¢;; > 0 for ¢ # [ and Zle giy = 0 for i € D. Assume that B(t), W; and
N; are conditionally independent.

The study of the Black-Scholes (BS) model is popular, but it has several deficiencies.
One of the important extensions to the BS model is the model of regime-switching and jump-
diffusions. The regime-switching model for the dynamics of stock price is first introduced
by Hamilton [11, 12]. The pricing of Vanilla-type options under regime-switching models
has been well studied in the literature (see e.g., Bollen [2], Duan et al. [9], Khaliq and Liu
[13], Yuen and Yang [23, 24|, Liu [15, 16], Liu and Zhao [17], Ma et al. [21]). The pricing
of Asian options under the regime-switching models is studied by Boyle and Draviam [3],
Ma and Zhou [20].

Dang et al. [8] study the arithmetic Asian option under the state-dependent regime-
switching jump-diffusion models. The governing equation is a system of PIDEs. Dang et
al. [8] construct a monotonic sequence to decouple the PIDE system and prove the limit
is a strong solution of the PIDE system. The sequence contains d single PIDEs, which are
solved by the numerical methods — finite difference methods for discretization of the time
variable and finite element methods for the space variable. The convergence results of the
numerical methods are not given in their paper.

For pricing Asian options using the PDE methods, one of the difficulties is to set up the
boundary conditions. For the Asian options under geometric Brownian motion models, the
two dimensional PDEs are recast into one dimensional PDEs and the boundaries condition
are derived (see e.g., Zvan, Forsyth and Vetzal [25], Vecet [22], Dubois and Lelievre [10]).
Following the similar idea, we derive the one-dimensional moving boundary PIDEs. To be
more specific, the problem is described as follows. Denote

1) = /O S(u) du.

Then the value of the continuous arithmetic average Asian options with payoff: max (I(T")/T —

where K is the fixed strike and T is the expiry time of the option, is given by
V(S(t).1(t),t,i) = e TV E, [max (I(T)/T — K,0)], ieD,

where E; denotes the conditional expectation at ¢ (see e.g., [8]). Also from [8], the value
function of the Asian option is given by the following system of PIDEs:

OV (S,I,t,i) 1 o 0%V(S,1,t,7) oV (S,1,t,1)
T + 50'1- S T + (Tl (51 )\llﬂ)ST
AV (S, 1,t,9) +o d
> I=1
_(T1+)‘Z)V(Sa I,t,Z) 207 { GD’ (3)

K,0),



with terminal condition V' (S, I,T,7) = max (I /T — K,0), boundary condition V (S, —00,t,i) =
0, ¢ € D, where S and I are dummy variables. Each equation in (3) is a two-dimensional
problem and there is no diffusion in the I direction. These facts cause many difficulties in
the numerical solutions and analysis with the standard finite difference methods.

Motivated by Dubois and Lelievre [10], we recast (3) into a moving boundary problem
of one-dimensional PIDEs. To this end, we first construct an explicit solution to (3) in the
region I > KT for allt < T as

I S :
N\ — - 77‘2'(T7t) e 7T2‘(T7t) _ 752'(T7L) -
V(S,1,t,1) <T K>e +(5i—7“z')T (e e ), fori e D, (4)

which can be immediately verified by substituting it into (3).
Using transformation of variables, for i € D,

T—-r K-I/T ~ V(S 1,T — 7,1
= — —T_
x T + S b G(x7 T? Z) S Y T t? (5)
formula (4) becomes
T —
G(xa Tj’L) - - (x - T T> 6_”7
1 —rT —0;T _ r—r
+ m<6 —e ), fOI‘.’EG(OO, T :|,

and the PIDEs (3) are re-written into, for ¢ € D,

0G(z,7i) 1 ,( T—1\*0Clz,1,i)
ar 27 \" T T 92

(ri— 8 — M) <:c— T;T) 0G(x,T,1)

Ox

—+o0 T — T—1 T —r
_>\z/ e'G T + 77_7i fl(y)dy + ()\’L + 51 + )\1/{1)0(337 T, Z)

d
T —
- E qilG(:EaTa l) (o 07 forz € (1—‘7—7_{'00) » T E (OvT]v (6)
=1

with initial and boundary conditions,

G(z,0 i) =0, forxe [1 +00), (7)
< ) G =T (e_’"” — 6_5”> , for7T e (0,77, ()
G(+o0,7,i) =0, forT e (0,T]. (9)

Since the problems (6) - (9) contain a moving boundary, it is natural to develop the moving
mesh methods to solve the problem. In this paper, we analyze the convergence rates of
the moving FDMs. Although we derive the one dimensional problem similarly to the work
by Zvan, Forsyth and Vetzal [25], Vecer [22], Dubois and Lelievre [10], the convergence
analysis is not given in these papers. Ma and Zhou [19], [20] study the convergence rates of
the moving FDMs for the Asian option pricing under geometric Brownian motion models
and regime-switching models. In their papers, the governing equations do not contain the



integral terms. The moving FDMs and convergence analysis in this paper will incorporate
the discretization and analysis for the integral terms. Moreover since the PIDEs (6) contain
a Fredholm type integral term, the analysis of moving FDMs is essentially different from
the paper [18] for the partial Volterra integro-differential equations.

The remainder of this paper is arranged as follows: In Section 2, we construct the moving
FDMs and prove the convergence rates. In Section 3, we use numerical examples to confirm
the theoretical results. In the final section, we give the conclusions.

2 Moving FDMs and the convergence rates

For the aim of computation, the semi-infinite domain (T:FT, +oo) is truncated into a finite

one 2, = (T:FT,X) with an appropriate value of X such that G(X,7,i) ~ 0. Denote Q. as

the closure of €2.. We define the uniform mesh for time:

T, n=0,1,..., M, (10)

n T
= =0,1 N 11
Cl'fj T + N J ] ) Ly ’ ’ ( )
and denote the meshsize by A7, = 7,11 — 7, h?“ = a:?“ ;”11, forn=0,1,...,M —1;

7=1,...,N. It is easy to see that

A, =TM™', forn=0,1,...,M —1, (12)

X _ T— Tn+1

n+l __ —

it =S < ON (13)

Obviously the moving mesh in (11) is driven by the time-dependent boundary and there is
no need to use the monitor function. This is often used for the moving boundary problems,
although for some physics problems the moving mesh is generated by the equidistribution
using the monitor function, see e.g., [6] and [7]. Since the locations of the spatial mesh
points 27 depend on the time level 7,,, the standard FDMs to (6) - (9) need to be modified,

which are called moving FDMs.
wn+1 n+1

We first discretize the integral term in (6). To this end, we denote £ = ~ +xptt
Then we have
| e ( B T, ) filw)dy (1)
—0oQ

1o n+1 n+1

T () ' xn—l—l $6L+1
= /TTn+1 (2—7*1) (& a1, 2) fi <1n (2_9%“)) dg

n+1 JIS—H 5 n+1 xn-H_ n+1
Ly G( n+1 o\ e J
T Ty, ) fi [ In | —————
/902+11 (€ — gnt1)2 gpFT — pndd koD ’ ¢ n+1

Q

Lh—1 k — T
n+1 n+1 n+1 n+1 n+1
— T §— 11 . Ty — 2y
45 Gz, i1, 4) f; ln<7) de
(f _ xg-‘rl) xz+1 xzji ( k n+1 ) v £ — x6L+1 ’



where we have used piecewise linear

interpolation for function G:

g _ $n+1 f _ l,Z"Fll
N~ k n+1 . - n+1 .
G i1, 8) g Gl T 1) + o g G T ).
Tp—1 — T T — Tp1
We further derive that
n+1
/xk aft —agt g apt! £ oyt gt d¢ (15)
i | In
" n+1\2 .n+1 n+1J7? < n+1 )
xkt% (5 — Ty ) Tp—1 — Tk §— Z
n+1
/xk x;}-i-l _ a:g'H € — xzﬂ i [ x;jb-l—l _ xg—irl N x;”'l _ a:g'H
= — i | In n{——
n n+1 n+1 n+17J? ( n+1 ) ( n+1 )
ol (E—xg) @ty — oy §—x §—
9 Zn 1 n+1 n+1 il
bt 9 nt1 il ndl ¢ £ — n+1
oy Tp k Lo
xn-&-l xr}+17$g+1
92 :L,n+1 _ m6L+1 fx»nkJr] E ln ( Jf_x"‘*'l ) df
< ] kE—1 0
= exp (,u,- + l> Fi(In(—- ) — ,
+1 n+1 n+1 n+1 )
2 Tr—1 — To T — T

where F;(-) is the distribution function for a normal random variable with expectation y;+ o7

and variance Q?. Similarly, we have

n+1 1 1 1 1
(€= apth2 aptt - et ¢ —apt!
i gntl_pntl
o $§L+1 _ l,g-H fr’,jkf} E; <1n <j§a:g+01>> d&
=—exp(pi+ ) {F | (W> - 27T ]
Combining (15) - (16) into (14) gives that
400 xT.L'H _ 6H~1
/ evG | -2 7 +$8+1,Tn+17@'> fi(y)dy
—00
A
~ exp (m n 5) S0 Gt s, i)
k=1
n+1 nt+l_  n+l
n+1 n+1 fxrﬁrl Fi{In (m] nxfl ) dg
F(In (xj 0 > T £
A\ T
2 N
0; .
—exp (Ni + 2’) ZG(%JF s Tn+1, 1)
k=1
n+1 n+1 n+1
:Ck: ) IE]- —270
x;H'l xg—&-l f:cZﬂ Ei (ln( g—azpt! )) de
Fi | In 2T gt - Gt
k k k—1
= I;?HG(QC?H, Tnt1, 1) (17)



%

Let G;‘(z) be the approximation of G(x,7,i) at point z = al, T = Ty, le., G?(z)
G(x7,7n,1), for i € D. Then the moving mesh FDM is defined by, for i € D, n
0,1,....M—1;j=1,...,N -1,

G (1) - GTH ()

T _ :
’ (1 — 0 — Aiki) <$T-L+l - Tn+1) hs

n+1l~_AnZ~
G~ () -GjO

—1ﬁ<ﬂHL_T—MH)2 2 [Grl@ -crta) 6t - Gl
¢ n+1 n+1 n+1 n+1
2 ’ T hi ™+ hyy hii hj
d
= NG + ) quGrTH D) = (N + 6 + Xk G (i), (18)

=1

with

nis TﬁTn . _ 1 —TriTn __ *51'7'71 —
Go(z)—G< ,Tn,l)—( )T<e e ), n=0,1,..., M, (19)

T (52 — T3
Gy(i)=G(X,1,1) =0, n=0,1,..., M, (20)
Gi(i)=0, j=0,1,...,N, (21)
where, CA?? (i), i € D, is the quadratic interpolation of the computational solutions at time-
level 7,:
1 1 1
én(z) _ (a’jjﬁ_ — :IZ?)(CE?—"_ B x?—l-l) n (Z) + (a:;H— B 37?_1)(1’?—"_1 B ng-Fl)Gn(Z‘)
, = Y .
! (33?—1 - x?)@?& - x?ﬂ) j (1’? - 37?—1)(37? - x?ﬂ) !
n+1 n+1 n
s I ) )
($?+1 - :r?)(x?ﬂ - w?—1) "
and
2\ v
I'MG(i) = exp (uz + 5) DGR (23)
k=1
n+1 n+1 n+1
Ifk ) l’] —IO
Ny x;ﬂrl _ ngrl - flzfi F; (ln <4£7x8+1 )> df
AR o o]
2\
—exp (uz + 5) DGRt
k=1
n+1 n+1 n+1
:Bk ) l’] 7I0
. x;ﬂrl _ ngrl - fzzi_i F; (ln (457%?4.1 )> dg
v l,TkLJrl _ $6L+1 $Z+1 _ wzji

In (18), we use the central difference to discretize the first-order term. However it is noted
that it can be done for the upwind difference, see e.g., [5]. To investigate the error analysis,
we need to define and estimate the local truncation error for the scheme. Define the local
truncation error for the scheme (18) fori €e D;n=0,1,.... M —1;57=1,...,N — 1, as



G(acnﬂ, Tn+1,1) — G(a:r-”“l, Tny 1)

n+1,, — J J
A = 24
G ) — 24
5 A n+1 T — Tn+1 G(x?illv Tn+1,1° ) - G(°U;L+117 Tn+1, Z)
- (Ti R i“i) xj - T hn+1 hn—H
j j+1
Lo T Thn ’ 2 G} mna, 1) = G T4, 0)
27 5 i
G a1, i) — G2 s, i
e ;Ln+1 o i) — NG T, 6)

— 3 @G EI T, 1)+ N+ 8 i) G ),

where the integral term I;HIG(:):?H, Tn+1,1) is defined by (17).
The local truncation error is estimated as follows.

Lemma 2.1 The local truncation error (24) is estimated by
G @) =0 (N)+0 (M), forieD;n=0,1,....,M—1;j=1,...,N—1. (25)

Proof We use Taylor’s theorem to expand the finite difference terms in (24) at point
("1 7,11) and obtain the following results (The details of the derivation can be referred
to Ma and Zhou [19)):

G Tog1,0) — Gl 70, 4) oG
j 5 ) 7 ) _ n+1
AT, B E(ma’ Tt 1,8) + O (A7), (26)
G(aj, ne1,d) = G i) 9G o)
h;H_l—’—h;lill Ox 7 7 n+1;
+ o(mr) o (mythy). e
and
9 G Tor1,i) — Gl 71, d)
ntl n+1 n+l
G(L7+1 Tni1,%) — G(x?ffﬁnﬂﬂ)
_ T
T a2 (z +1aTn+1J) +0 ((th)Q) +0 (ULJE) ) ' (28)

Now we derive the disretization of the term I"+1G( nHl ri1,4) in (24). To this end, using
Taylor expansion gives that

OG ()], Tog, 1)

G&mrnyd) = Glaply T d) + P E (R AEY
1 826;(«r 7Tn+17 ) n n
R (€= 22D + O (™)) (29)



and

. n . 0G SUn+1,Tn 1,i n
G(gaTnerZ) = G($k+177n+17 Z) + ( L o &S )(g - xk+1)
102G (2} Tgn, 1) 1
— ) mrls n prth3Y
ST Tl D (¢ gt 4 0 () (30)
. . §_$Z+1 57 7];L+1
Multiplying (29) and (30) by T and P respectively, and then adding them,
-1 1
we obtain that
. f - xZ-H n+1 . OG(ij}, Tn+1, Z) n+1
G(§, Thr1,0) = x;ﬁ_} xZ_H G(xk_1,7n+1al)+ O (ffl'k;_l)
102G (z}H ], T, 9) n+1 n+1\3
T 3 022 (€ =235 + O ((hp')°)
£ — 'IZJrll n+1 . 8G('/I;Z+17 Tn+1, Z) n+1
g |Gl e ) T )
102(;( i1, 1) (.,
n-i n hn+l 3 . 1
A A () (31)
Using (31), we derive that
Z/ n+1 _ $8+1 l,n+1 x8+1
- j
o ClE T, (m (nﬂ)> ¢
S - )? § — g
- Iy+10<xj i) + (1) + (10, (32)
with
i / Tt — et € - (€ - 2t 06 (et e, 1)
= Japtt (€—2pT) rply -t Oz
L6 "“)(5 Tit) 0GR ma )| (5 ”“> i (39
o gntl Oz i € — a0t J
and

N xn+1

k=1"%k-1
2 n+1 .
18 G(xp "), Ty, 1)

0z2

1 n+1

(5 n+1 2-|—O

wt n1+1 ))
() )]

n+1

n+
" Z Lo §— 1
Lt n+1) n+l n+1
k—1

Z,

162G(xk
2 Ox?

> 1 e
K3
nt1 (g_zSLJrl) l,TkLJrll n+1

7T7L+17i>(€_ n+1 2+O hn+1 )]

" 1
n+
n 1 +1
In
5_ n+1 )>

(34)



Now we estimate term (I) as follows:

|(I)| _ n+1 61+1 (5 o ﬂfz—i_%)(f _ xz—&-l)fi <ln x;LJrl o ngrl >

1 1 1 1
P (€oagT) ah € —ai"
aG(l‘kflaTn%»laZ) . aG($Z+1,Tn+1,i) dg (35)
ox ox
+1 +1 +1 +1 +1 +1
3 R Sty Y A P O
— xk 1 n+1) $Z+% xz+1 ? § _Tngl
(xZJrl ZJrl)df Ha G($7Tn+1vi)
1
0z2 -
n+1 n+1 n+1 n+1 .
< f (3? — Xy ) df H <x77—n+171) ‘ (hn+1)2
— 1 4 1 k '
] zy ) §—apt Oz -

Now we derive that
n+1 n+1 n+1 n+1
i — @
prEstoRl ) | 4 (36)
Z /x’,jﬂ +1) ( §— $0+1 )

n+1 n+1 n+1 n+1
WAPEE SNEAE O\
ot (€ —agth2 £ —apt!

0

xn+17 n+1 2
j 0
n+1 n+1 In ( T ) — Mg n+1 n+1
/X B L exp § — ( il Z dln (7% — %0
n+1 2 n+1 :
aptt -z V2T 20; § — g

. . aptl—ag ™\ i A n+1
Using the transform of variables y = In (ﬁ) Yy = In (W) and y," =



n+1 n+1
. Zy

limgﬁzg+1 In (Ijgi,ﬁl), we calculate that

x;_H’l g+l 2
/X _x;l-i-l x8+1 1 ol In <W) — Wi m (x?—f—l l’gﬂ
ot E—agtt o2m 207 ¢ —aptt
n+1
N /yN — exp(y) —— exp )’ y
yo ! 0iV 2T 207
n+1
Yo 1 2
_ / exp (y — ) 200y | ,
gt Qz\/ﬂ 2
n+1 2
(1 (y—ui—@i) — (pi+07)" + 4
= ) exp{ — 52 dy
pas Qi\/ﬂ 9;
2 yn+1 . L 2 2
02 0 1 (y — pi — o)
= €xp M'+>/ expy ————-5 ¢ dY
< 2 ) g on/2r { 207
92
< exp (ui + 2’) . (37)
So we have
0 DG, 1oy,
(D] < exp <,uz + 2’) H&L;) (h}z-&-l)z =0 ((hZ"‘l)?) . (38)
o0

Similarly we estimate that

2 2 ;
0; 0°G(x, Tpa1,1 n n
|(H)| < exp (Mi + 2) H(axQ—H) (hk+1)2 + 0 ((hk+1)3)
= O ((hp*h?), (39)
where
M = max OG(@, 7ni1,1)
81-2 o - we@TnJrl 8x2 .

Since the equation is parabolic, from PDE theory [14], the solution G is sufficiently smooth,
i.e., the second derivatives of G are bounded. Incorporating (26) - (39) into (24) gives that
oG n+1

T — Tn+1 282G

1
n+1/.: _ A n+l n+1 .
Cj (Z) - E(lg » Tn+1,7? ) 201 (:U T ) 2 (‘rj » Tn+1, Z)
n T—1Tp+1.,0G, .
+ (Ti o 61 o Aiﬂi)(xj+1 o T—i_l) ax (Q? '+17 Tn+1, Z)
+ O\i +5i+)\ilﬁsi)G( ] Tn+1, ZqzlG Tn+1,l)
n+1 n+1 n+1 n+1
_ 70 N f Y "%
)\ Z/ﬂﬂk 1 n+1) (f?Tn-i-laZ)fl (ln( g_ x6L+1 >> d€
+ O ((hpth)? )+0 ((RH?) + O (A7) (40)

10



From (6) with z = :L';H—l, T = Tpn+1, (40) becomes
G ) =0 (()?) + 0 ((E)?) + 0 (Ar). (41)
Further using (12) and (13) for (41), we complete the proof of this lemma. [
In the following, we shall use the following mesh-dependent norm

1/2

[l = {3 (@) 2= ) (42)
J

and denote C as a generic positive constant which is independent of the grids for space and
time.
To prove the convergence rates, we need the following Lemma 2.2 and Lemma 2.3.

Lemma 2.2 Denote, forieD; j=0,1,...,N;n=0,1,... ., M —1,

i) = G T, 1) — G, () = Gl ) — GIG).

~ ~ ~ 1—./L
and assume that N < CM where C is a positive constant satisfying C < (X —1).

2
Then we have

=

anrl l,nJrl 1/2 " " 1/2
o2 Y+l T -1 nson2 Yi41 T L1
> (@) 5 < (14 CAm) Y () 5=
J J
+ CAm (M2 +N72). (43)

Proof The proof of this lemma follows from Ma and Zhou [19, Lemma 4.1]. O

Lemma 2.3 Let A7, > 0 and oy, fn, ¢n > 0, for 1 < n < m, with A1, < 1/2 and
B8 = maxB,. Then, if
n

(1 - /gnATn)(Jn < ATnan + (1 + /BnATn)Qn—la

there exists a positive constant C,, such that

m
<C A
Dg}langQn_ m{q0+zan Tn}a

n=1
where
"1+ B AT, m
o H [~ Bur, = OO <an_15nATn> < Cexp (efT),

where ¢ and C' are some positive constants.

Proof The proof is provided by Bank and Santos[l, Lemma 2.1]. O
Now it is ready to present the main convergence theorem.

11



Theorem 2.1 The error of the moving FDM (18) is estimated by

1/2
max lle"(@)]]l, = max Z (e”(z))QM
1<n " 1<n<m |42 MY 2
j
< O(M*+N7?), forieD;m=1,...,M. (44)
Proof Subtracting (18) by (24), fori € D; n=0,1,...,.M —1; j=1,...,N — 1, gives
that
105 _ an(s +1 +1
GO -GG | e T GHO - G0
T T
ATy, J T RO 4 h?jrrl
1 2( n+l _ T — Tn+1)2 2 6?1—11(1) - 6?“@) N ?H(Z) - G?fll(i)
i T ol +1 +1
2 T hi™ + hy hi h
Zqzle"“ + (i 0+ ik )ef TH(E) = (). (45)

n+1

By multiplying (45) by e”‘H( ) (xj o ) /2 and summing up for all the allowable
index i, we derive that, for i € D,
2 mT_Hrl _ $r_erl
Z [(6?+1(l)> Jj+1 5 Jj—1
J
gt - g gt - gl
. 4 i— S A Lix -
= ATnZ [C;l+1(z)e?+1(z) ] > ! + Z e?(z)e}‘“(z) ! 5 ! ]
J J
+1 n+1 n+1. n+1g;
1 2 +1 4 —Tntl ;l+1 (Z) —€ ( ) €, (2> — € (Z) 41
+ QATnO’ Z [( n A W — prEs e (1)
J
I T — T +1 . . .
_ §A7n(7ﬂz’ —0; — )\z'/ii) Z |:<xj +1 _ T"‘) (e?ill (Z) 6?1_11(1)) €?+1(Z):|
J
9 :EnJrl xnirl
_ ATn()\z + (51 -+ )\ll’%) Z |:(e?+1(@)) J+1 5 j—1
J
x”i'll — a:m'll
+Amzq@lz g
x’”’ll — af-”ll
ATy T e(i)ef (1) ]
J
= (i) + (i), (46)
where
it -y
n+1 n+1 -
(i) = Am Y [T e(o)e) () L
j
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and (i) the remaining terms on the right-hand side of (46). The estimation of (i) can
obtained by following Ma and Zhou [20] as

1/2 1/
2 2" — gt 9 gl _ pntl
i nt+1(; J+1 Jj—1 nt+lg, J+1 Jj—1
O < an 3 (GH0) g X (gH0) g
J J
9 x”jr'll _ xn+11 1/2 ) x”i‘ll B 1;7?+11 1/2
S M G I D GO
J j
1 N2 :LJH-l xn«H
+ 5Am (Iri = 6 = Nikil +07) [ (egm(z)) %
j
2 wn—l—l o xnj»l
+ A+ 6 +MZ|Z ( nt1( )) %
d g g+l gntl 1/2
+ ATnZ |gi] Z (e?“(l)) %
=1 j
y gl gt 1/2
3 (e;.lﬂ(i)) ST )

J

Now we estimate (ii) as follows:

B n xn+1 _ x(l)hLl £ — n+1 w'r}—l—l _ 1,614-1
()] = |ATa): ZZ [/n+1 — a2 gt l,n+1 fi (é_n—i—l) dg
Ty,

k-1

. n+1( ) n-‘rl(i)xj‘f'l T

n+1 n+1
€k j 4

" 77+1 n+1

RNy [/ W (ln( ) )%

k 0
Tn—l-l — n+1
~€Z+%(2)en+1(z) J+1 Jj—1
4
< lamx / n xn-i—l xg-i—lf | x;ﬁ-l _ xg-&-l d§
= |5 ZZ T2 /i n( 1 )
n“ 5 $6L+ )2 £_$6L+
xn—i—l o I‘~j_1
.€Z+1(Z)69L+1(2~) J+1 7 Jj—1

0

n $nJrl :EnJrl :EnJrl _ :En+1
+ AT / 7n0f2 (-2 ) | e
n+1 n+1
n el Lja1 zi
€k+11 (1)€] ) L——— 1 ’ ]

A1y Ai [(Term 1) 4 (Term 2)], (48)
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where the meaning of (Term 1) and (Term 2) is obvious. To continue the estimation, we
denote

L 7_gcm-l 5 - s T =7
9(1; &) = ﬁﬁ <1H (§—QH)> ;o VEQL, = <T’X>' (49)

The maximum of g(v;€) on Q,,, is achieved at v* = 2 + (€ — 20 ™) exp(u; + 07). Now
we define ( ) [ 1y
~ 9(v*58), YENWLY +HhT),

yS) = n * n n 50

9(7;€) { g(y — hk+1§§)7 v e+ th,X + hk—H}' (50)

We then derive that

8

n+1 n—+1 n+1 n+1

. —m x — X

J 0 n+l _  n+l
niT)2 fl( ( s )) (@i =)

(€ — o §—x
= > gy @ -
J

7" X
S/ 19(7;£)d'y+/ g(y: &)dy

,Y*

’Y* ’y*+h2+l X+hn+1
=/ lg(v;ﬁ)dwr/ d7+/ §)dy
z Y

'Y* *+ n+1
'7* ,y*+hz+1 X
= ;€)dy + g(v; &)dy + ;8)d
/n+1 9(v; €)dy L 9(v; €)dy A*g(v)v
/ 9(y: €)dy + g(v: hp ™

X exp(pi + )
< E)dy 4 —— 27 51
/xgﬂg(v §)dy e (51)

Moreover we calculate

X
/n+1 9(v; §)dy
Zo
[ (n () - )

= exp — dy (52)
(e 8“) 0iV2m 207
(i (=) )
_ /X (v = x8+1)2 1 expd n it Hi . (’Y _ :E6L+1).
ot (E—agt)? g2 207 §—agt!
n+1 _nt+l _ntl
Denote z = In <ﬂ/ IELH), ZR,—H In (X_ =0 ) and z"+1 = lim__, n+1ln (7_r2+1> Then
£E— §—x; v £z
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(52) is further estimated as

y—zgt! 2
Xo(ymagth)? (m (5*9@8“) B ”i> v —zgt!
eS| exp{ — 3 dln PS——
antt (§—ap" )% 0iV/2m 20; §—xg
n+1 2
N 1 (2 — i)
= exp(2z exp i — dz
/zn“ 3 )Qi\/27T p{ 207
n+1
_ /ZN 1 expd (z — /Ll)Q — 402z J
20t 00V 27 2 12
n+1 2 2
o i 20) - (i 208) |
S o221 P 207
0
n+1
N 1 (Z — i — 20 )
=exp (2u; + 2 / exp < — ! dz
p(2pi+20) | e { 37
< exp (2 + 207) (53)

Using (36), (37), (51), (52) and (53), we derive that

(Term 1)
R e A A ARy
SB[ e L et i (e ) )
Z Z n+1 9 :L,;Lill _ $§L+11 k :L,;L+1 _ l,nJrl P $n+1 $n+1 "
XX (g70) L e ()
8 el (E—apt T ¢ —xptt

n+1 n+1 n+1 n+1 n+1

1 w2 [T T — ) o — g
_ +1 j j +1 +1
3o [ S (m () et -

k Tr—1 J 0 0

1 Z n+1( ) 9 x;@ill l,;LJrll Z gcz’+1 l’;LJrl _ $n+lf anrl _ $6L+1 "
[y B [ () ]

Sl 2 o Japtt (- apth)? £ —zpt!

j
2 + A

1 0 o, P (“i 7) , 41~ Tj-1
<= S Uty +202) 4 —~ 7 Z( n+1 ) A S
<7 {exp <,ul+ 2>+exp( i + 207) + = €5 (4) 5

Similarly, we can obtain that

(Term 2)
n+1

n+1 n+l  n41 n+1 n+1 n+1
ZZ nLG)en L ( Tjt1 —Fj1 [T Ty T %o i~ %0
= ,L) 4 1 n+1 fi n+1 dg
x2+ (5 — Xy ) 5 -

. ﬁ) n+1 n+1
exp (Mz + 3 Z (e”“(z))z A

<1 lexp m+9j + exp (2 + 207) + — :
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So we estimate (48) as

2
7

. 1 0? o exp(u; + %)

i) < AN |exp(u; + 28 + exp(2u; + 202) + ——1 27

|(i)] < 5 ATnAi p(pi 2) pP(2u; + 207) o
n+1 n+1

22—l
, +1 -1
() (54)
J
Incorporating the estimations (47) and (54) into (46) and applying Lemma 2.1 and Lem-
ma 2.2 give that

d 9 xn—i—l _
(1= Cam) 30 |2 (g m) et
=1 i

1/2

=1

14 CA™,) zd: [Z )? Tin — i ; 51
J
)-

+ CAT (M~ + N2 (55)

Finally using Lemma 2.3 for (55), we complete the proof of this theorem. [

3 Numerical examples

In this section, we carry out several numerical examples to verify the convergence rates of
the moving FDM (18). The values of parameters used in the computation are listed in the
corresponding examples. Since the exact solution of the problem is not known, we shall use
the following formulas (57) and (58), which are given by Ma and Zhou [19], to calculate the
convergence rates for time and space.

Let G*(x,i), i € D (state of regime), be the continuous form of the computational
solutions at 7 =T of scheme (18) for Example 3.1 with respect to the number of time and
space mesh points My, Ns (s =1, 2,...). Denote the error between two adjacent levels of
computational values by

Error(s,s+1) = ||G° — GSHHMsa

where the norm is defined by (42).
Let the sequence of Mg, Ny (s =1, 2,...) satisfy

MS+1—M5:M5+2—MS+1, NS+1—NS:NS+Q—NS+1, SIl, 2,.... (56)

Then the convergence rates can be roughly estimated by, fixing the number of space mesh
points Ny =N, s=1,2,...,

log [MError(s,s + 1)/(Ms41Error(s 4+ 1, s + 2))]

Rate for time = , 57
log(Msy2/Mgy1) (57)
and, fixing the number of time mesh points M; = M, s=1, 2,...,
log [N,E 1)/(Ns 1 E 1, 2
Rate for space — og [NsError(s,s + 1)/(Ngy1Error(s + 1,s + ))] (58)

10g s+2/Ns+1)
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The codes for the examples in this section are run in MATLAB R2014a on a PC with the
configuration: Intel(R)Core(TM), CPU i7-8550U@1.80 GHz 2.0GHz and 8.0 GB RAM.

Example 3.1 In this example, we compare the moving mesh methods in this paper with
that in Dang et al. [8] for 2-state regime-switching jump-diffusion model. In this example,
the jump size Y; (i = 1,2) follow double-exponential distributions, whose probability density
functions (pdfs) are

fi(y) = pierie” V>0 + (1 — pi)ezie®?yo, @ =1, 2, (59)

where Kk; = piefil_il +(1 —p,-)@i?j_l — 1, €11 = €12 = 3.0465, €91 = €99 = 3.0775, p1 = py =
0.3445. The parameters of the hidden process are taken as K = 100, X = 2.3, r1 =ro =
0.05, g1 = 0.15, 09 = 0.25, 51 = (52 = 0, T = 1, )\1 = 5, )\2 = 2, — {11 — 412 = @21 =

—q22 = 0.5.

Tables 1 presents numerical results for the prices of Asian options at time ¢ = 0. Columns
3 and 4 in Table 1 are from Dang et al [8] who use 1000 time steps and a 50 by 50 grids of
cubic finite elements in the S- and I-directions to obtain the results. In column 5 of Table 1,
the moving mesh methods of this paper only use 600 time steps and 200 spatial mesh points
to obtain the results that have two digit accuracy after decimal point, the average CPU
time spent by the moving mesh methods is 89.56 seconds for regime 1, and 90.33 seconds
for regime 2. The moving mesh methods of this paper use less mesh nodes while obtain
almost the same accuracy as the approach of Dang et al. [8].

Table 1: Prices for Asian options at ¢ = 0 for Example 3.1.

So Regime  Dang et al. Alg.1a Dang et al. Alg.2 Moving mesh Alg.

92 17.45 17.42 17.42
100 Regime 1 21.55 21.52 21.55
108 26.25 26.21 26.27
92 11.78 11.75 11.79
100 Regime 2 15.67 15.63 15.68
108 20.42 20.39 20.44

Example 3.2 In this example, we compare the moving mesh methods in this paper with
that in Dang et al. [8] for the 3-state regime-switching jump-diffusion model.

For regime 1, the pdf of the jump size is given by (2) with i =1, o1 = 0.3, pu3 = —0.1.
For regime 2, the pdf of the jump size is given by (59) with i = 2, €12 = 3.0465, €2 =
3.0775, po = 0.3445. For regime 3, the pdf of the jump size is given by

1 (y — a13)? } 1 { (y — ag3)? }
= exp {4 — gt b+ (1 — expd —~2 20 4
fsly) =ps V2mu13 P { 2035 (1 =ps) V2mug3 P 2033

where k3 = p36a13+%”?3+(1—p3)ea23+%”§3—1, a13 = 0.3753, vz = 0.18, a3 = —0.5503, vy3 =
0.6944, p3 = 0.3445. The parameters of the hidden process are taken as K = 100, X =
23, 11 =19 =13 =005 61 =0 =93 =0, \f =1, g =5, \3 =2, 01 =0.2, 09 =
0.15, 03 =0.25, T =1, qi2 = q13 = q21 = @23 = @31 = @32 = 1/3, qu1 = q22 = q33 = —2/3.
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Columns 3 and 4 in Table 2 are from Dang et al [8] who use 2000 time steps and a
100 by 100 grids of cubic finite elements to obtain the results. In column 5 of Table 2, the
moving mesh methods of this paper only use 600 time steps and 200 spatial mesh points
to obtain the results that have two digit accuracy after decimal point, the average CPU
time spent by the moving mesh methods is 277.27 seconds for regime 1, 278.64 seconds for
regime 2, and 277.85 seconds for regime 3. The moving mesh methods of this paper use less
mesh nodes while obtain almost the same accuracy as the approach of Dang et al. [8].

Table 2: Prices for Asian options at ¢t = 0 for Example 3.2.

So Regime  Dang et al. Alg.1a Dang et al. Alg.2 Moving mesh Alg.

92 6.62 6.61 6.65
96 8.46 8.44 8.48
100 Regime 1 10.63 10.62 10.66
104 13.13 13.11 13.15
108 15.90 15.88 15.92
92 17.02 16.99 17.01
96 19.01 18.98 19.01
100 Regime 2 21.16 21.13 21.18
104 23.47 23.43 23.50
108 25.93 25.88 25.97
92 14.09 14.08 14.16
96 16.25 16.23 16.32
100 Regime 3 18.59 18.57 18.68
104 21.12 21.09 21.22
108 23.80 23.78 23.92

Example 3.3 Consider the system of PIDEs (6) with initial and boundary conditions (7)
~ (9). Functions f; (i = 1,2) are given by (2) and the values of parameters are given by
X=15,r1=r9=0.05, 01 =0.15, 00 =025, 61=02=0, T=1, A1 =1, Ma=2, 1 =
p2=—01, 01 =02=03, —qi1 = 12 = g1 = —q2 = 1.

Tables 3 and 4 show that the convergence rates are 1 in time and 2 in space, which are
consistent with the theoretical results of Theorem 2.1.

Example 3.4 Consider the system of PIDEs (6) with initial and boundary conditions (7)
—(9). Functions f; (i = 1,2,3) are given by (2) and the values of parameters are given by
X=15,rm=r9=1r3=0.05 00 =02, 09 =0.15, 03 =025, 1 = =03=0, T =1,
)\1 = 1, )\2 = 5, )\3 = 2, H1 = —0.1, Mo = —0.15, M3 = —0.05, 01 = 0.3, 02 = 0.25, 03 =
0.35, g12 = q13 = @21 = G23 = g31 = q32 = 1/3, qu1 = q22 = q33 = —2/3.

Tables 5 and 6 show that the convergence rates are 1 in time and 2 in space, which are
consistent with the theoretical results of Theorem 2.1.

4 Conclusions

The value function of the Asian option under the state-dependent regime-switching jump-
diffusion models satisfies a system of two-dimensional PIDEs. The simple boundary con-
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Table 3: Convergence rates for time for Example 3.3.

N =200
Regime 1 Regime 2

M  Error(j,j+1) Rate Error(j,j+1) Rate
400  1.426254e-04  0.99  1.444959e-04  1.00
450 1.141044e-04 0.99 1.155678e-04  1.00
500  9.336132e-05  0.99  9.453640e-05  1.00
550  7.780361e-05  0.99  7.876727e-05  1.00
600 6.583578e-05 0.99  6.663996e-05  1.00
650  5.643220e-05  0.99  5.711323e-05  1.00
700  4.890913e-05  0.99  4.949310e-05  1.00
750  4.279646e-05 — 4.330264e-05 —

Table 4: Convergence rates for space for Example 3.3.

M = 2000
Regime 1 Regime 2

N  Error(j,j+1) Rate Error(j,7+1) Rate
100 3.523968e-05 ~ 2.26  2.011614e-05  2.25
150  1.228002e-05  2.17  7.026342e-06  2.17
200 5.675010e-06  2.13  3.249841e-06  2.13
250  3.080402¢-06  2.10  1.764733e-06  2.10
300 1.856605e-06  2.08 1.063874e-06  2.08
350  1.204698e-06  2.07  6.904139e-07  2.07
400  8.257972e-07  2.06  4.733093e-07  2.06
450  5.906188e-07 — 3.385376e-07 —

Table 5: Convergence rates for time for Example 3.4.

N =200
Regime 1 Regime 2 Regime 3

M  FError(j,j+1) Rate Error(j,7+1) Rate Error(j,j+1) Rate
400 1.593156e-04  1.00 1.857532e-04 1.00 1.669601e-04  1.00
450 = 1.274482e-04  1.00  1.485454e-04 1.00 1.335273e-04  1.00
500  1.042732e-04 1.00 1.214992e-04 1.00 1.092227e-04 1.00
550  8.689262e-05  1.00 1.012232¢-04 1.00  9.100034e-05  1.00
600  7.352340e-05 1.00  8.563173e-05 1.00 7.698711e-05 1.00
650 6.301927e-05  1.00  7.338499e-05 1.00 6.597933e-05  1.00
700 5.461614e-05 1.00  6.359013e-05  1.00  5.717490e-05  1.00
750  4.778872e-05 — 5.563358e-05 — 5.002256e-05 —
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Table 6: Convergence rates for space for Example 3.4.

M = 2000
Regime 1 Regime 2 Regime 3

N  Error(j,j+1) Rate Error(j,7+1) Rate Error(j,j+1) Rate
100 2.728436e-05  2.25  2.628736e-05  2.28  1.459717e-05  2.24
150 9.525623e-06  2.17  9.100082¢-06  2.19  5.101504e-06  2.17
200  4.405026e-06  2.13  4.191181e-06 2.14  2.360008e-06  2.12
250  2.391816e-06  2.10  2.270508e-06  2.11  1.281653e-06  2.10
300 1.441841e-06  2.08  1.366750e-06  2.09  7.726880e-07  2.08
350  9.356722¢-07  2.07  8.860789e-07  2.08  5.014616e-07  2.07
400  6.414318e-07  2.06  6.070095e-07  2.07  3.437815e-07  2.06
450  4.587819e-07 — 4.339341e-07 — 2.458957e-07 —

ditions for these two-dimensional PIDEs are difficult to be constructed. This fact causes
difficulty in the numerical solutions. In this paper, the two-dimensional PIDEs are con-
verted into a moving boundary problem of one-dimensional PIDEs and the exact moving
boundary conditions are derived. Moving FDMs are constructed to solve the moving bound-
ary problem. The convergence rates of the moving FDMs are proved. Compared to Dang
et al. [8], this paper solves one-dimensional problems instead of two-dimensional problems
and analyzes the convergence rates. To the best of our knowledge, for Asian option pricing
using PDE approach, only the moving mesh methods’ convergence theory has been proved
in the literature.
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