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Abstract 

The collapse state of a rigid plastic material with the linearized von Mises yield condition is computed. We use an 
infeasible point variant of the dual affine scaling algorithm for linear programming which is extremely efficient for this 
large sparse and ill-conditioned problem. 

For a classical test problem we obtain better results than previously, both for the limit load and for the collapse fields, 
thus setting a new standard for computations in limit analysis. 
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1. Introduct ion  

In limit analysis we consider a rigid plastic material subject to a fixed load distribution. The 
object is to find the maximum multiple of this load distribution that the solid can be subject to 
before collapse occurs. We also want to find the collapse mechanism, i.e. the fields for stresses and 
plastic flow in the collapse state. 

Let f 2 _  R 3 be the domain occupied by the solid. Part of the boundary S G 0t2 is kept 
fixed, i.e. u = 0 on S, where u denotes the plastic flow field. The rest of the boundary 
T G 0f2 is subject  to  surface  forces, g = g(x) for  x E T. T h e  v o l u m e  forces are  d e n o t e d  f = f ( x )  
for  x e f2. T h e  w o r k  ra te  of  the ex te rna l  forces c o m b i n e d  with  a v i r tua l  p las t ic  f low field 
u is 

F(u)= f f ' u d x  + f r g ' u d s .  (1) 

* Corresponding author, e-mail: edc@imada.ou.dk. 

0377-0427/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved 
SSDI 0 3 7 7 - 0 4 2 7 ( 9 4 ) 0 0 0 3  1 -U  



234 K.D. Andersen, E. Christiansen/Journal of Computational and Applied Mathematics 59 (1995) 233-243 

The internal work rate is given by 

a(a, u) = fo ~. • aijeiidx 
l,J 

(2) 

= - f  (V'tr)'udx + fr(v'a)'uds, (3) 

where v is the outward  normal,  tr is the stress tensor, and ~ = g(u) denotes the strain rate tensor 
given by 

1 (~3u~ Ouj'] 
eij = -~ k dxj + Oxi ] (4) 

The equality between (2) and (3) follows from Green's formula. For  the mathemat ical  details of the 
model  we refer to I-7]. 

The equat ion of equil ibrium between the stress tensor tr and the external forces (f,  g) is the 
equat ion of virtual work rate: 

a(a,u)=F(u) for a l l u w i t h u = 0 o n  T. (5) 

If we equate (1) and (3) we get the classical form of the equil ibrium equation.  
In addi t ion to the equil ibrium equat ion the stress tensor must  satisfy the yield condition. 

In this paper  we shall assume the von Mises yield condi t ion for a homogeneous  material 
but  the method  described is completely general. In three space dimensions the von Mises condi t ion 
is 

((711 - -  0"22) 2 + (0"22 - -  0"33) 2 + (0"33 - -  0"11) 2 -[- 6(o'22 + 023  -[- 0 2 1 )  ~ 20 "2, (6) 

where tro is the yield stress in simple tension. The condi t ion (6) must  be satisfied at each point  of the 
solid. Note  that  the yield condi t ion is insensitive to the addi t ion of any tensor of the form ~oL where 
I is the unit  tensor, and tp is any scalar function. Hence the set K of admissible stress tensors is 
unbounded.  This is a general complicat ion in limit analysis. As we shall see below, there is a dual 
property of the plastic flow u: It must  be divergence free, V. u = 0, in order to have finite energy 
dissipation rate. 

The  problem of limit analysis can now be formulated in the following very intuitive way. The 
limit multiplier 2" for the pair of forces (f, g) is the smallest upper  bound  of all values ~, for which 
there exists an admissible stress tensor tr which is in equilibrium with the forces (2f, 2g): 

2" = sup {213o" ~ K: a(tr, u) = 2F(u) Vu} (7) 

= sup min  a(a,u). (8) 
¢r~K F(u)= 1 

Eq. (7) is known as the static principle of limit analysis. The equality between (7) and (8) is 
a consequence of the fact that  the linear map  u ~ a(a, u) is either unbounded  on the affine 
subspace {u IF(u)  = 1} or propor t ional  to F. 
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Reversing the order of maximum and minimum in (8) leads to the dual problem, also known as 
the kinematic principle of limit analysis: 

2" = inf supa(tr,  u) = inf D(u), (9) 
F ( u ) =  1 a~K F ( u ) =  1 

where 

D(u) = sup a(tr, u) (10) 
aEK 

is the total energy dissipation rate associated with the flow field u. 
It is proved in I-7] that the static and the kinematic principles give the same value for the collapse 

multiplier and that there exists a saddle point (a*, u*) such that the following holds for all 
admissible stress tensors, a ~ K, and all u satisfying the boundary  condition u = 0 on S and 
normalized to F(u) = 1: 

a(tr, u*) <~ ~.* = a(tr*, u*) <<, a(tr*, u). (11) 

a* and u* are the collapse fields for stresses and plastic flow. Note that 

2" = D(u*) = max ~ ~ aij~ij(u*)dx. (12) 
a~g JQ i j"  " 

This leads to the principle of complementary slackness: At each point x e f2 where e(u*) is 
non-zero, the collapse stress tensor a* must be at the yield surface at a point with ~(u*) as the 
outward normal. 

2. The discrete problem 

The discretization of the saddle point problem (8)-(9) by the finite element method is described in 
[6]. Finite element spaces are chosen for stresses and flow. Let h > 0 indicate the linear mesh size of 
the grid. The discrete stress tensor ah and flow uh are then represented through their nodal values, 
i.e. coordinates w.r.t, the usual finite element bases. Let x = (x,)~: 1 and y = (Ym)~: 1 denote the 
coordinates representing trh and Uh, respectively. Then the external and internal work rates may be 
written 

M N 

a(ah,  U h ) :  ~ ~, ymX. am.=yTAx=xTATy, ( 1 3 )  

m = l  n = l  

M 

F(Uh) = ~ ymbm = bTy. (14) 
m = l  

The discrete form of the yield condition ah E K becomes x ~ Kd, where Kd is a closed convex, in 
general unbounded,  subset of ~N. The corresponding energy dissipation rate of uh is 

Dd(y) = max xTATy. (15) 
xe Ka 
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With this notation the discrete form of the static principle (7) is a finite dimensional optimization 
problem: 

2~' = max 2, (16) 
A x  = 2 b  

xEK a 

while the kinematic principle takes the form 

2~' = min Dd(y). (17) 
bTy = 1 

The optimization problems (16) and (17) are dual problems and yield the same value. 
We focus on the static form (16) and use the classical approach of linearizing the yield condition, 

in spite of the fact that it is now feasible to approach (16) by convex programming methods. At the 
cost of the linearization we shall be able to solve with a finer grid and hence obtain a more detailed 
collapse solution than seen before. One reason for this is that the efficiency of the algorithm used 
here shows very little sensitivity to the addition of sparse linear constraints. 

After linearization of the yield condition the discrete static formulation (16) becomes a linear 
programming problem of the form 

2* = max 2. (18) 
.4x = b). 

B x ~ < c  

The equality constraints correspond to the equilibrium equation. The M x N matrix A has the 
usual finite element structure, although non-symmetric, while the M-vector b may be a "full" 
vector, depending on the load. The inequality constraints Bx <~ c are the linearized yield condition. 
They are very sparse and of a particularly simple block diagonal structure: Each inequality involves 
only the nodal values corresponding to a single node in the finite element grid. 

The simplex method has been an important factor in the development of limit analysis (see for 
example [2, 4, 6]) for use with mixed finite elements and the discussion in I-5, p. 172]. However, in 
our experience the simplex method is not well suited for continuum problems, because of its 
extreme-point property. If a whole face is optimal, or if the feasible set is very "flat" near the 
optimum, then the simplex method will always choose an extreme-point solution (a basis solution 
in LP-terminology). This solution need not be physically consistent from node to node. This means 
that the optimal value, the collapse multiplier, is well determined, but that the collapse fields are 
poorly determined in the case of non-uniqueness or ill-conditioning, both of which typically occur 
in limit analysis. This is reported in [6]. 

Starting with Karmarkar's polynomial-time algorithm [11] several efficient interior-point 
methods for linear programming have been introduced. In [8, 9] the primal affine scaling algorithm 
was applied to (18) transformed to LP-standard form. It was known then that the dual affine scaling 
algorithm, which essentially approaches the dual form of (18) by the primal algorithm, offers several 
computational advantages for most problems (see below). However, in the problem (18) most of the 
variables are free, i.e. without upper or lower bound. This means that the feasible set for the dual 
problem has empty interior, preventing use of the dual algorithm. 
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3. Solution algorithm 

We rewrite the discrete static formulation (18) in LP-standard form by introducing slack 
variables and duplicating free variables: 

m inc tx ,  X p = { x ~ n l A x = b , x > > , O } .  (19) 
x~ Xp 

In (19)A and b are not the same as in (18). An interior point for (19) is a vector x ~ ~", which satisfies 
Ax = b and xj > 0 for all j. The dual problem is 

max bTy, Yd = { y ~ R m l A t y + s  = c, s >~ 0} (20) 
yE Yd 

where s is a vector of slack variables. 
An interior point for (20) is a vectory e R m satisfying ATy + s = c and sj  > 0 for allj. (20) is of the 

same form as (19), except that only the slack variables s are restricted to be positive. The 
components ofy are free. Hence only the slack variables are subject to scaling in each step of the 
algorithm. An obvious advantage of (20) over (19) is that it suffices to compute a new y at each 
iteration, which satisfies A X y  < c. Then we may put s = c - ATy ,  and the linear constraints will be 
satisfied without accumulated loss of accuracy. 

The original problem (18) has many free variables which are duplicated in the standard form (19). 
The corresponding pairs of slack variables must equal zero, and thus, for this particular problem, 
there are no interior points for the dual form (20). 

In analogy with the simplex method the scaling methods begin by finding a feasible starting 
point, i.e. by searching for an interior point for the form (20). This is done by solving the associated 
problem 

m a x { -  YarlATy -- eyar + S = C, S >1 0} (21) 

where e e ~" has all coordinates equal to 1. This is the so-called phase 1. For any y we get an 
interior starting point for (21) by choosing Yar sufficiently large. If there are interior points for (20), 
phase 1 is stopped with Yar < 0. However, if there are no interior points, phase 1 will converge 
towards a feasible, but not necessarily optimal point for (20), and phase 2 will never start. The trick 
is to modify phase 1 in order to obtain convergence towards a feasible and optimal point for (20). In 
[1] the objective function for the original problem is included with some weight in phase 1 in order 
to produce a 9ood  starting point such that fewer iteractions are necessary in phase 2: 

max { b r y  --  M y a r  IhTy -- ey~r + S = c, s >i 0}. (22) 

This is the so-called "big-M" method. In [3] the following modification is suggested: 

max {bTy -- M y ~ r I A T y  --  eyar + s = c, s >1 O, Yar >>" 0}. (23) 

In (23) scaling is also applied to Yar with the effect of adjusting the weight on the artificial variable 
y~r. While the dual of (22) contains the constraint e T x  = M ,  which may be inconsistent, the dual of 
(23) only requires e r x  <~ M .  It is shown in I-3] that (23) is an improvement, both theoretically and 
computationally. It is proved that for a problem without interior points convergence is achieved in 
phase 1, i.e. by solving the associated problem (23). Phase 2 never starts. 
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V 
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Fig. 1. Geometry and symmetry reduction for the test problem in plane strain. 

4. Computat iona l  results  

The test problem is described in [9]. In the plane strain model a rectangular block of material is 
given infinitely thin symmetric external cuts of various depths. Fig. 1 shows an orthogonal cross 
section of the rectangular block. The load distribution consists of a uniform tensile force applied at 
the end faces of the material. The von Mises yield condition in plane strain is linearized using 16 
linear inequality constraints at each node, introducing a linearization error of less than 2% on the 
collapse multiplier. The components of the stress tensor are discretized using piecewise constant 
functions, and the velocity components by piecewise bilinear functions, both over a uniform square 
grid. The problem size is reduced using the 2 symmetry axes. 

The largest case solved here corresponds to a 201 × 201 grid, compared to a 30 x 30 grid in [9]. 
Our solutions are more accurately determined in addition to being closer to the continuous solution 
due to the finer grid. They provide discrete collapse fields with more detail than seen before. 

Table 1 lists some computed values for the collapse multiplier for three different depths of the 
cut, experimental convergence orders based on these values and the extrapolated values to order 1. 
(For precise definition and method see [10].) The results indicate that the error in the collapse 
multiplier satisfies 

12~' -- 2* I ~ c h  (24) 

where h is the mesh size. However, it does not hold that 

,~" - 2* 
lim - -  - c. (25) 
h--*O h 

This is due to the fact that the solutions are non-smooth and is in agreement with [6]. Fig. 2 shows 
the computed collapse multipliers for L = 2. (Triangles are used to indicate that the values based 
on the linearized yield condition constitute an upper bound relative to the exact convex von Mises 
condition.) 
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Table 1 
Results for L = 1, a = 3 i, a = ½ and a = 23 

239 

a = {  a =½ a =23 

h- 1 2* Order Extr. ).~' Order Extr. 2~' Order Extr. 

12 0.9826 1.2117 1.4826 
24 0.9584 0.9342 1.1776 1.1434 1.4400 1.3973 
36 0.9493 0.79 0.9311 1.1656 0.90 1.1415 1.4250 0.90 1.3949 
48 0.9448 1.01 0.9312 1.1596 1.03 1.1417 1.4177 1.11 1.3960 
60 0.9421 0.97 0.9311 1.1561 1.07 1.1421 1.4134 1.03 1.3962 
72 0.9403 1.19 0.9315 1.1537 0.82 1.1416 1.4104 0.73 1.3952 
84 0.9391 1.08 0.9316 1.1519 0.97 1.1415 1.4082 1.08 1.3954 
96 0.9381 1.08 0.9317 1.1506 0.96 1.1414 1.4066 1.00 1.3954 

150 0.9359 1.10 0.9319 1.1473 1.02 1.1415 1.4025 0.90 1.3951 
198 0.9349 1.06 0.9320 
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W 
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Fig. 2. Computed values for the collapse multiplier for L = 2, a = ½, a = ½ and a = 23. 

T h e  co l l apse  fields for  s o m e  r e p r e s e n t a t i v e  s o l u t i o n s  a re  s h o w n  in Figs.  3 - 5 .  I n  e a c h  f igure  p a r t  
(a) v isual izes  the  co l l apse  d e f o r m a t i o n  as fol lows:  the  co l l apse  ve loc i ty  at  e a c h  n o d e  has  been  
m u l t i p l i e d  b y  a su i t ab le  t ime  scale,  a n d  the  r e su l t ing  d e f o r m e d  g r id  is d r a w n .  In  p a r t  (b) o f  the  

f igures  a d o t  is u sed  t o  i nd i ca t e  the  e l e m e n t s  in w h i c h  the  s tress  t e n s o r  ( c o n s t a n t  w i th in  e a c h  
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(a) 

Fig. 3. Collapse deformation (a) and plastified region (b) for L = 1, a = ½ and h = 1/198. 

element) is at the yield surface, i.e. where the yield condi t ion is active. This is the plastified region. In 
I-9-1 a digit was used to indicate the direction of the stress tensor in the plastified region. Our  grid is 
too fine for this, but  the stresses are consistent with those of I-9]. The main improvement  in the 
solution fields is the higher resolution and detail. The deformation zone appears to be very thin, 
possibly infinitely thin, near the end of the cuts and then to spread somewhat,  as it propagates  into 



(a) 

(b) 
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L 

Fig. 4. Col lapse deformat ion  (a) and  plastified region (b) for L = 1, a = ] and  h = 1/150. 

the material. In some cases non-plastified elements appear inside the plastified region. We believe 
this to be an artefact of the algorithm in combination with non-uniqueness and ill-conditioning. 

There appears to be an oscillatory pattern of small deformations in the large non-plastified 
region which is known to be rigid by complementary slackness. This phenomenon was also seen in 
[6, 9]. It is due to the non-uniqueness of solutions to the discrete problem. For the continuous 
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(a) 

(b) 

Fig. 5. Collapse deformation (a) and plastified region (b) for L = 2, a = ½ and h = 1/100. 

problem it follows from (12) that ~(u*) = 0, whenever tr* is not at the yield surface. In the discrete 
analogue of (12) the maximum is taken only over those ~rh which are constant within each element, 
and hence the discrete version of the principle of complementary slackness only implies that , (u*) 
vanishes in average over each element. The region is "discretely rigid". 

It is apparent from these collapse fields that adaptive mesh generation must be used in practical 
applications. In limit analysis this is more tricky than an elasticity. In elasticity problems the 
deformation is uniquely determined and relatively smoothly distributed and serves as an excellent 
indicator for mesh refinement. In the case of non-unique or poorly determined fields the mesh 
refinement algorithm can be expected to influence the final solution and thereby hide information. 
This point needs further investigation. In this paper our main objective has been to examine the 
power of the optimization algorithm. 

In [3] the efficiency of our optimization algorithm is documented on the standard netlib set of 
test problems. For the problem in limit analysis presented here we can compare with the results in 
[9]. However, it must be emphasized that in [9] only little priority was given to efficiency; the 
qualitative properties of interior point methods, mainly the handling of ill-conditioning and the 
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ability to determine the collapse fields, was given first priority. For all other algorithms, which we 
have tested on this problem, the factor limiting the grid size has been loss of accuracy due to 
ill-conditioning, not cpu-time. The largest case solved in [9] was on a 30 x 30 grid, resulting in 9901 
columns, 7280 rows and 52888 non-zeros. This took 18 iterations of the primal affine scaling 
method (using the conjugate gradient method in the projection step) and about 65 cpu-hours on 
a SUN-3/180 workstation with a Weiteck 1164/1165 floating point accelerator board. Here we 
have solved the same problem on a 201 x 201 grid. After dualization this gave 687 353 columns, 
121 204 rows, (81 338 free variables in the primal problem), 2 301 985 non-zeros in the initial matrix 
and about 10 times as many nonzeros in the Cholesky factor. The optimizer used 98 iterations and 
about 32 cpu-hours on a CONVEX C3240 (compiled with the full vectorization option). The 
accuracy, measured in feasibility and duality gap of the optimal solution, was of the order 10- 7. 

5. Conclusion 

The suggested solution algorithm, based on the dual affine scaling algorithm, allows computa- 
tions in limit analysis with much finer grids than previously. This enables us to present solutions 
with a high degree of details, even with a uniform grid, and confirms the expected first-order 
convergence of the collapse multiplier. 
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