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Abstract 

Methods for solving the educational testing problem are considered. One approach (Glunt 1995) is to formulate the 
problem as a linear convex programming problem in which the constraint is the intersection of three convex sets. This 
method is globally convergent but the rate of convergence is slow. However, the method does have the capability of 
determining the correct rank of the solution matrix, and this can be done in relatively few iterations. If the correct rank 
of the solution matrix is known, it is shown how to formulate the problem as a smooth nonlinear minimization problem, 
for which a rapid convergence can be obtained by hSQP method [6]. This paper studies hybrid methods that attempt 
to combine the best features of both types of method. An important feature concerns the interfacing of the component 
methods. Thus, it has to be decided which method to use first, and when to switch between methods. Difficulties such 
as these are addressed in the paper. Comparative numerical results are also reported. (~) 1998 Elsevier Science B.V. All 
rights reserved. 
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I. Introduction 

The p rob lem to be cons idered  in this paper  is the educat ional  test ing problem.  Such  opt imiza t ion  

p rob lems  arise in m a n y  practical  situations, par t icular ly  in statistics where  we  are g iven a matr ix 

F which  is usual ly  a covar iance  matr ix with vary ing  elements.  The educat ional  test ing p rob lem is 

this: g iven a real symmet r i c  posi t ive definite n × n matr ix  F ,  h o w  m u c h  can be subtracted f rom the 

d iagonal  o f  F and still retain a pos i t ive-semi-def in i te  matrix.  This can be expressed as 

m a x i m i z e  eX O 0 E A n 

subject  to F - diag 0 >~ 0, 

0 i / > 0 ,  i =  1 , . . . , n ,  (1 .1)  
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where e = (1, 1,. . . ,  1)w. An equivalent form of (I. 1) is 

minimize eV x x E ~n 

subject to P + diag x ~> 0, 

xi <<. vi, i =  1 , . . . , n ,  (1.2) 

where F = F - Diag F,  and diag v = Diag F.  
An early approach in solving the educational testing problem is due to Bentler [2]. He writes 

F -  diag0 = CC v, where C is unknown, and minimizes the trace of (CC-r), subject to certain 
conditions. He found that there are a large number of variables, and also it does not account for the 
bounds 0g ~> 0 Vi. Furthermore, some difficulties in convergence to the optimum solution arise. 

Woodhouse and Jackson [14] have given a method for solving the problem by searching in the 
space of 0. However, their method does not work efficiently and fails for particular examples. 

Fletcher [5] has solved the problem by reducing the semi-definite constraint to an eigenvalue 
constraint, using standard nonlinear programming techniques. However, some difficulties still arise 
with the associated rates of convergence. Also, the presumption that the eigenvalue constraint would 
be smooth at the solution, except in rare cases, is not correct; in fact, a majority of such problems 
are nonsmooth at the solution. 

In [6], Fletcher has developed a different algorithm for solving the educational testing problem. 
He gives various iterative methods for solving the nonlinear programming problem derived from the 
educational testing problem (1.2), using the sequential quadratic programming (SQP) techniques. 
One of these algorithms is the use of the /~-exact penalty function. This algorithm works well with 
second-order convergence and the function converging to the optimal solution. The only problem in 
these algorithms is how to know the exact rank for the matrix A* = P + diag x* where x* solves 
(1.2). 

Glunt [7] describes a projection method for solving the educational testing problem. His idea is 
to construct a hyperplane and then carry out the method of alternating projections [12] between the 
convex set K and the hyperplane. His method converges globally but the order of convergence is 
very slow. 

New methods for solving the educational testing problem are introduced. The methods described 
here depend upon both the projection and the llSQP methods using a hybrid method. The hybrid 
method works in two stages. During the first stage, the projection method converges globally and, 
hence, is potentially reliable but often converges slowly. During the second stage, the l~ SQP method, 
has a second-order convergence rate if the correct rank r* is given. The main disadvantage of the 
II SQP method is that it requires the correct r*. A hybrid method is one which switches between these 
methods and aims to combine their best features. To apply the I~SQP method requires a knowledge 
of the rank r* which can be gained from the progress of the projection method. Hybrid methods 
have often been used successfully in optimization, (e.g., [10, 1]). 

The statistical background involved in the educational testing problem is described in Section 2. 
In Section 3 the educational testing problem is solved using the von Neumann algorithm. Section 
4 contains a brief description of the /~SQP method for solving (1.2). In Section 5 two new hybrid 
methods are described. Firstly, there is the projection-/~ SQP method, which starts with the projection 
method to determine the rank r ~k) and continues with the /1SQP method. Secondly, the / jSQP- 
projection method is described which solves the problem by the l~ SQP method and uses the projection 
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method to update the rank. Finally, in Section 6 numerical comparisons of  these methods are carried 
out. 

2. The educational testing problem 

This section explains the educational testing problem which arises from statistics and gives rise 
to the nonlinear programming problem (1.1). The problem is to find lower bounds for the reliability 
of  the total score on a test (or subtests) whose items are not parallel using data from a single 
test administration. The educational testing problem consists of  a number of  student (N) taking a 
test or examination consisting of  (n) subtests. The problem is to find how reliable is the students's 
total score in the sense of  being able to reproduce the same total on two independent occasions. 
Specifically, it is required to know what evidence about reliability can be obtained by carrying out 
a test on one occasion only. The discussion will closely follow that of  Fletcher [5]. 

The given data for the problem is an N × n table of  scores [X,7] (e.g., [5]) such that X~j gives 
the observed score of  student i on subject j .  The student's total score is Xi = E jX ,  j, and X is the 

vector of  total scores. The mean score for subject j is Xj  = 1IN ~iX~j, and the mean total score is 
X = ~ / X / .  These observed scores are regarded as having been sampled from a universe of  test, 
and E[.] denotes the expected value on this universe. Then it is assumed that 

X~j = T,j +Eij  Vi , j ,  (2.1) 

where 

~[Eij] = 0 Vi, j. (2.2) 

The quantities T~j represent the hypothetical true scores where T, T--j, and T are defined as for X, 
and are the expected values of  the corresponding quantities for the true scores. 

The variance of  the total scores from the expected mean scores is 

2 1 1 
0.x - N -  1 Z ~ [ X / -  g [ ~ ] ) 2 ] _  N ~  Z ~[(Xg - T ) 2 ] .  (2.3) 

i i 

Reliability of  the test may be regarded as the correlation in the student's total scores from two 
indepenent tests. Let X °) and X (2) represent two such tests and X (j) and X ~2) be the corresponding 
total scores. Guttman [9] defines the reliability coefficient p by 

p2 _ 1 ~ i  ~[(X,. 0 ) - T)(X/(2) - T)] (2.4) 

N - 1  4 

This is a correlation in the observed scores. In a completely reliable test, X t~) = X (2) and it fol- 
lows from (2.1) that p = 1. Assuming that the errors are uncorrelated such that g[E} I). E) 2)] = 
g[E~I)]~[E~ 2)] it follows that 

p2= (2.5) o-2 '  

where 0.2 = [ 1 / ( N -  1)] ~ i ( T i -  T)  2. To determine how much information about p can be deduced 
from a single set of  test scores, one can relate 0.~ and 0.2 to certain variance-covariance matrices. 
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The variance-covariance matrix Zx of observed scores from the expected mean observed scores is 
defined as 

1 
[Y]x]Jt - -  S - 1 ~ g[(X'7 - ° x ~ [ Y J ] ) ( Y / k  - ° x ~ [ Y k ] )  

i 

1 
- -  U - 1 Z g[(X~j - Tj)(Xik - Tk]). (2.6) 

i 

Similarly for ET and EE 

1 
[~r]jk -- N -  1 ~-~(T~j - T j ) ( T , k  - Tk), (2.7) 

i 

and [Ee]jk = [ 1 / ( N -  1 )] ~ i  g[E~jE~]. If we assume uncorrelated errors in the sense that 

g[E~jT~k] = ~[E~j]Tik V i, j , k ,  (2.8) 

and 

E[EijEik] = g[Eij]8[Eik] Vi ,  j , k ,  j # k, (2.9) 

then it follows from (2.2) that EE is diagonal and from (2.7) and (2.1) that 

~x = ~ r  + EE. (2.10) 

It also follows from (2.3) and (2.7) that a~ = ~j,k[Ee]jk = eT~re  where e = (1, 1 . . . .  1) v, and that 
~2 r = eXEve.  So writing Oi = (ZE)ii, (2.5) becomes 

p2 = 1 E i  Oi a], (2.11) 

Guttman [9] shows that for large values of  N, Ex may be estimated by 

1 
fj~ = [~x]jk ~ N ~ -  ~-~,(X~j - Xj)(Xik - Xk). (2.12) 

i 

~ r  and EE are unknown, but being variance-covariance matrices, they are positive semi-definite. 
Using (2.10), these conditions may be written as 

Zx - ~E ~> 0, YI, E ~> 0, (2.13) 

and may be regarded as constraints on the 0~. 
Obviously, the 0~ satisfy 

Oi <<. max ~ Oi , (2.14) 
0i 

i i 

where the max is taken over all 0i satifying (2.13). By (2.11), 

q~ (2.15) p2 /> 1 -  a-~x . 

So by solving the optimization problem in (2.14) or equivalently (1.1), one obtains a lower bound 
on the value of  p. This is the best that can be done on the basis of  a single test. 
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3. A projection method 

In this section a projection algorithm due to [7] for solving the educational testing problem is 
described. The method described here depends on the basic iterated projection algorithm by [12]. 

It is convenient to define three convex sets for the purpose of constructing the probem. The set 
of  all n × n symmetric positive-semi-definite matrices 

K~ = {A "A E ~"×~, A T = A  and zTAz >~0 VZ C ~"} (3.1) 

is a convex cone of  dimension n(n + 1 )/2. If F E ~"×" is any given symmetric positive-definite 
matrix, then define 

Ko~r = {A" A E ~"×", A - Diag A =/~}. (3.2) 

where/~ = F - Diag F. This is the set of  matrices whose off-diagonal elements are equal to those 
of  F. Also, let diag v = Diag F, then define 

Kb = {A "A E ~"×",A =.4 + diag x, xi <~ vi i =  1,2,. . .n}, (3.3) 

where .~ = A - D i a g  A. This is the set of  matrices that is obtained by reducing the diagonal of  A. 
Kofr and Kb are subspaces. Then (1.2) can be expressed as 

minimize eTx x E ~" 
X 

subject to P + diag x c K~ A Kofr M Kb. (3.4) 

Let K~ and K~ be supspaces of Hilbert space and P~ and P2 be, respectively, the orthogonal 
projections onto K~ and K2. Then, the von Neumann method is given by 

Algorithm 3.1. Given a point f ,  

Set xt°) = f 

For k -- 0, 1,2,... 

x tk+l) = P2PI (x~k)). 

The sequence in Algorithm 3.1 converges to P~,~K2(f), which is the orthogonal projection onto 
the intersection of  K~ and/£2. 

Glunt's idea is to take account of the function eXx by defining the hyperplane 

L~ : {Y : I 7 + diag y E ~n×~leTy = ~} 

= {Y E ~"×"ltr(Y) = ~}, (3.5) 

where Diag Y = diag y and "c is chosen such that 

r < rain e T x. (3.6) 
xEK 
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Then the sets K = K~NKo~NKb and L~ are disjoint. Given a matrix F E N,×n, with F = F + d i a g  f 
and A = _A + diag x, Glunt applies Algorithm 3.1 to the problem 

minimize I I f  - xl12 
X 

subject to A E K N L ~  (3.7) 

which has no feasible solution. Now (3.7) generates the sequences {y(k)} E L~ and {A (k)} E K 
converges to the points Y* E L~, and A* c K such that IIY -Al l2  attains the minimum distance 
between K and L~ [3]. It can then be deduced from the relationship of L~ and eTx that A* solves 
(3.4). 

The von Neumann algorithm involves computing alternately the projections onto L~ and K. The 
projection onto L~ is straightforward and is given by 

Phi(Y)  = Y + r - tr(Y)i, (3.8) 
n 

see [7]. For (1.2), we need the projection PIe(A) where K = K~ n Kofr n Kb for any matrix A. The 
projection on K = n~=l Ki is computed using an inner iteration based on the Dykstra algorithm [4] 
and is included as an inner iteration inside Algorithm 3.2, Eqs. (3.9) and (3.10). It follows from [4] 
that the resulting method is globally convergent. 

Algorithm 3.2. Given any positive-definite matrix F,  let F (°) = F 

For k = 1,2,... 

B (k+l) = pL~(F ~k)) 

For  l = 1,2,.. .  (3.9) 

A (0) = B (k+*) 

A (l+~) = A (z) + PbPogPR(A (z)) - Pa(A (l)) (3.10) 

F (~+1) = PbPoffP~(A (*)) 

where A* is the solution for the inner iteration. 
The projection map PR(A) formula on to Ka is given by [1 1] 

P ~ ( F )  = UA+U T. (3.11) 

where 

and Ar = diag[21,22,..., )~r] is the diagonal matrix formed from the positive eigenvalues of  F. Since 
Ko~ consists of  all real symmetric n x n matrices, in which the off-diagonal elements are fixed to F 
(the given matrix), therefore, 

Port(A) = P ÷ Diag A. (3.13) 
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Also, since Kb consists of  all real symmetric n x n matrices, in which the diagonal elements are not 
greater than diag v = Diag F,  we have 

Pb(A) = A + diag [h~,h2,... ,hn], (3.14) 

where 

f hi = a i i  i f  aii ~ Ui 
h = [ hi = ui  i f  aii > Ui J " 

4. The l l S Q P  method 

This section contains a brief description of the /1SQP method for solving the educational testing 
problem [6]. 

Problem (1.2) can be expressed as 

minimize eTx X E Nn 
x 

subject to ~ i+d iag  xcK~NKo~,X<<, v (4.1) 

where diag v = Diag A ~°). We can follow [6] for full details in solving (4.1). However in this section 
we give a summary of what has been given. 

The first-order necessary conditions can be stated as follows: If x* solves (4.1), then x* is feasible 
and there exists a matrix/~* E ~(KRNKofr)(A*) where O(K~AKo~)(A*) is the normal cone to K~AKofr 
at A* and a vector n* >~ 0(n* E ~") such that 

e + b* + n* = 0, (4.2a) 

n*r(v - x*) = 0, (4.2b) 

where diag b* = Diag/~*. This gives a characterization of  the first-order conditions for (4.1). How- 
ever, it does not take into account second-order effects, although it may be important to do this in 
order to obtain a second-order rate of  convergence in an algorithm. It is difficult to deal with the 
matrix cone constraints in (4.1) since it is not easy to specify if the elements are feasible or not. 
Using partial LDL T factorization of  A, this difficulty is rectified. Assume that r, the rank of  A*, is 
known, then for A sufficiently close to A*, the partial factors A = LDL v can be calculated where 

[A1, A~, 1 
D2] ,A = [A21 A22 " 

[Lll l [Dl 
L =  [L21 I , D =  

Then 

- -1  T 
D2(A) = A22 - A21AII A21, (4.3) 

and D 2 ( x ) =  D2(~i + diagx)--D2(A).  Therefore, an equivalent problem to (4.1) with the constraint 
D2 = 0 is considered and expressed as 

minimize eTx X E ~" 
x 

subject to D2(x) = 0,x ~< v. (4.4) 
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The Lagrangian for this problem is 5~(x, A, n) = eXx - A : D2(x )  + nV(x - v). To eliminate the 
variables xi, i = r + 1,... ,n, (4.3) is exploited by using the diagonal elements of D2(x)  

dii(x)  = xi - ~ aik[A~ll]ktait = O, i = r + 1 , . . . , n ,  (4.5) 
k,l=l 

where aik and ai/ are elements in A2~. Therefore, the unknown variables are reduced to x = 
[xl,xz . . . .  ,xr] v C W. This formulation will enable us to derive algorithms with a second-order rate 
of  convergence. Now, using the constraint D2 = 0, will produce an equivalent problem to (4.4). The 
number of  variables in this new problem can be reduced to r variables which gives the new reduced 
problem 

minimize f ( x ) = ~--~ xk + ~ x~( x ) 
x 

k=l i=r+l 

subject to di j (x)  = O, i C j ,  x<<. v, i , j  = r + l , . . . , n  (4.6) 

where x , (x )  indicates that x~ is the function of x determined by 

x i (x )  = ~ aik[ATll]kt all, i : r + 1 , . . . , n .  
k,l=l 

The expressions for the derivatives Odgj/OXs and 02dij/~3xsOx, are given in [6] which enable us 
to find expressions for ~7f, ~72f and W = ~ 7 2 ~ ( x , A , n ) .  Then using these expressions the QP 
subproblem 

1 T (k) ~ r  
minimizea f~k) + ~Tf(~) 6 + ~ W 6, 6 C 

d (k) Urd(k)T)i subject to --ij + --- i j  - = 0 ,  i C j ,  i , j  = r + l . . . .  ,n 

x ~k) + 6 ~< v (4.7) 

is defined. Thus, the SQP method applied to (4.6) requires the solution of  the QP subproblem (4.7). 
The matrix W (k) is positive semi-definite see [6]. 

5. Hybrid methods 

In this section, new methods for solving the educational testing problem are introduced. The 
methods described here depend upon both the projection and Ii SQP methods using a hybrid method. 
The hybrid method works in two stages. During the first stage, the projection method converges 
globally and, hence, is potentially reliable but often converges slowly. During the second stage, the 
/1SQP method and the method, described in Section 4, has a second-order convergence rate if the 
correct rank r* is given. The main disadvantage of the /ISQP method is that it requires the correct 
r*. A hybrid method is one which switches between these methods and aims to combine their best 
features. To apply the llSQP method requires a knowledge of  the rank r* which can be gained 
from the progress of  the projection method. This hybrid method can work well but there is one 
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Table 1 
Numerical comparisons for some example with different z 

z NOI TNII ~ xi* r ~°) r* 

-30.0 2 2679 15 0 2 
-20.0 2 2215 15 1 2 
-10.0 2 1734 15 2 2 
-5.0 2 1571 15 2 2 

0.0 2 1291 15 2 2 
5.0 3 1308 15 2 2 

10.0 3 960 15 2 2 
14.0 6 787 15 2 2 
14.9 15 891 15 2 2 
15.0 30 792 15.0051 2 2 

disadvantage: if  the positive-definite matrix has the same rank as the optimal positive-semi-definite 
matrix in which the 11SQP method works well, then most of  the time will be taken up in the first 
stage, using the projection method. If  this converges slowly, then the hybrid method will not solve 
the problem effectively. Thus, it is important to ensure that the second-stage method is used to 
maximum effect. Hence, in the algorithm of  Section 5.2, the 11SQP method is applied first. 

5.1. P r o j e c t i o n - l l S Q P  me t hod  

The main disadvantage of  the Ii SQP method is finding the exact rank r*. Since it is not known 
in advance, it is necessary to estimate it by an integer r ~k). It is suggested that the best estimate of  
the matrix rank r ~k) is obtained by carrying out some iterations of  the projection method given in 
Section 3. This is because the projection method is a globally convergent method. 

Considering Ar in (3.12), then at the solution, the number of  eigenvalues in Ar is equal to the 
rank r*. Thus, 

* ( 5 . 1 )  No. A~ = r , 

where No. A is the number of  positive eigenvalues in A. An equation similar to (5.1) is used to 
calculate an estimated rank r ~k), given by 

No. A~ k) = r ~k), 

where Ar is given by (3.12). Then, the llSQP method will be applied to solve the problem as 
described in Section 4. 

Another consideration is how to choose z. If  z is close to the boundary of  (3.6), then the equation 
No. A~ k) = r* may be satisfied during the first few iterations. Experiments have proved this fact as 
shown in Table 1. 

The projection-ll SQP algorithm can now be described as follows. 
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Algorithm 5.1. Given any positive-definite matrix F = F v E ~nxn, let s be a positive integer. Then 
the following algorithm solves (1.2) 

(i) Let F (°) := F. 

(vii) 
(viii) 

(ii) Choose z to be close to the boundary of  the condition (3.6). 
(iii) Apply Algorithm 3.2 until 

No. A~ ~) No. A~k+j) j = 1,2, .,S. 
i I .  F , • .  

(iv) r (k> = No. A~ k). 

(v) Use the result vector x from Algorithm 3.2 as an initial vector for the ll SQP method. 
(vi) Apply the Ii SQP method to solve the problem with r = r (k). 

IfllD2(x)[[ ~< e for some small e, then 

F* := F (~), r* := r (k) and the algorithm is terminated 

Apply one inner iteration of  Algorithm 3.2 
Go to (iv). 

(5.2) 

The integer s in Algorithm 5.1 can be any positive number. If  s is small, then the rank r (k) may 
not be accurately estimated, but the number of  iterations taken by projection method is small. On 
the other hand, if s is large, then a more accurate rank is obtained but the projection method needs 
more iterations. 

The advantage of  using the projection method as the first stage of  the projection-/1SQP method is 
that if F (°) is positive semi-definite and singular of  rank r*, then the projection method terminates 
at the first iteration. Moreover, it gives the best estimate for r (k). The singularity plays an important 
role here, for if the matrix F has rank r, this means there is n - r  zeros eigenvalues. So, subtracting 
a small value from the diagonal leads to a matrix F which is indefinite. This implies that F is the 
optimal. 

5.2. l lSQP-Pro jec t ion  me thod  

Starting with the projection method has the advantage that, if  the given matrix is positive semi- 
definite and singular, the projection method converges in one step. However, sometimes it takes 
many iterations before eq. (5.2) is satisfied, especially if z is chosen to be small. This means slow 
convergence since the projection method is a slowly convergent method. In this method, an algorithm 
starting with the I~SQP method with an estimated rank r (k) is considered. Then, one iteration of  
the projection method will be calculated after every stage of  the l~SQP-projection algorithm. The 
resulting vector x (k) will be used as an initial vector for the next stage; thus the vector x (k) is updated 
at every stage from the previous one. 

Now, the llSQP-projection algorithm can be described as follows: 

Algorithm 5.2. Given any positive definite matrix F = F x E ~nxn the following algorithm solves 
the educational testing problem: 

(i) Let F (°) = F.  
(ii) Choose r (k) (as small as possible based on one of  Section 5.1 strategies). 
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(iii) Apply the llSQP method. When [[O2(x)[[ ~< e,  for some small c, then the algorithm is termi- 
nated. 

(iv) Use the result x ~k) as an initial vector for the projection method (Algorithm 3.2). 
(v) Choose T to be close to the boundary of the condition (3.6), (~ = ~x~k)). 

(vi) Apply one iteration of  the projection method. 
(vii) r ~k) = No. A~ k). 

(viii) Use the result x ~k) as an initial vector for the ll SQP method. 
(ix) Go to (iii). 

Another advantage of  this algorithm is that if the rank is not correct, then instead of adding one 
to r ~k), it goes back to the projection method to provide a better estimate to r ~k). This will increase 
or decrease r tk), gives with the resulting value being nearer to r*; therefore, variables will be added 
to or subtracted from the problem. The new variables are estimated using the projection method. 
Another advantage is that at every stage only one iteration of projection method is used, giving a 
faster converging algorithm. 

6. Numerical results and comparisons 

In this section, numerical problems are obtained from the data given by [13]. The Woodhouse 
data set is a 64 × 20 data which corresponds to 64 students and 20 subtests. Various selections from 
the set of  subsets of  columns are used to give various test problems to form the matrix A. These 
subsets are given in the first columns of  Tables 2-4, the value of  n being the number of  elements 
in each subset. Eq. (2.12) gives the formula for calculating the educational testing problem. 

In Algorithm 3.2, z must satisl~ condition (3.6). Since x* is not known in advance and with 

elements f i j  > 100, therefore it is clear that the diagonal elements P + diagx ~k) are greater than 

about 100 so eTx > 100n as F is positive definite. Therefore from (3.6), the choice r = 100 is 

Table 2 
Results for the educational testing problem from the projection-llSQP method 
of  Section 5.1 

Columns which 
determine F z TNII r ~°) r* NQP ~ 0 ? 

1,2,5,6 400 4 3 3 
1,3,4,5 400 2 2 2 
1,2,3,6,8,10 600 11 4 5 
1,2,4,5,6,8 600 4 4 4 

11 542.77356 
12 633.15784 
8 305.48170 

13 564.46331 
10 535.36227 
14 641.83848 
21 690.78040 

9 747.48921 
34 671.27506 
44 663.46204 
27 747.50574 
39 820.34265 

1~5 600 6 4 4 
1 8 800 13 5 6 
1-10 1000 15 7 8 
1-12 1200 23 9 9 
1-14 1400 25 10 12 
1-16 1600 22 11 14 
1-18 1800 20 12 15 
1-20 2000 29 14 18 
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Table 3 
Results for the educational testing problem from the liSQP-projection method 
of Section 7.3. (PMr (~) :rank r updated from the projection method) 

Columns which r (°) NQP PMr (k) NQP ~-~0~ 
determine F 

1,2,5,6 2 5 3 6 542.77356 
1,3,4,5 2 12 633.15784 
1,2,3,6,8,10 3 4 5 5 305.48170 
1,2,4,5,6,8 3 6 4 4 564.46331 
1-6 3 7 4 4 535.36227 
1-8 5 7 6 6 641.83848 
1-10 6 9 8 11 690.78040 
1-12 8 3 10 9 747.48921 
1-14 10 6 12 9 671.27506 
1-16 11 9 14 10 663.46204 
1-18 13 7 15 16 747.50574 
1-20 15 5 18 21 820.34265 

Table 4 
Comparing the four methods. PltSQP: the projection-hSQP method. IISQPP: the llSQP- 
projection method. TNQP: total number of NQP 

Columns which r* PM Ii SQP Pll SQP /1SQPP 
determine F 

TNII r (°) NQP TNII r (°) NQP r (°) TNQP 

1,2,5,6 3 197 2 14 4 3 11 2 11 
1,3,4,5 2 224 2 12 2 2 12 2 12 
1,2,3,6,8,10 5 580 3 9 11 4 8 3 9 
1,2,4,5,6,8 4 4994 3 13 4 4 13 3 10 
1-6 4 1351 3 14 6 4 10 3 11 
1-8 6 1948 5 29 13 5 14 5 13 
1-10 8 2918 6 34 15 7 21 6 20 
1-12 9 2403 8 29 23 9 9 8 12 
1-14 12 3196 10 36 25 10 34 10 15 
1-16 14 5215 11 42 22 11 44 11 19 
1-18 15 14043 13 27 20 12 27 13 23 
1-20 18 8255 15 39 29 14 39 15 26 

r ecommended .  In fact, we  r e c o m m e n d  this choice  since the e lements  f i j  are close to each either 
in magni tude .  However ,  in general ,  the off-diagonal  e lements  can p lay  a role in mak ing  a better  

est imate for r. I f  T is chosen  r a n d o m l y  and does  not  satisfy the condi t ion  (3.6) ,  then the matr ix 
F -  d i a g x  <kl is indefinite and the me thod  is rerun with a different ~. 

Glunt  [7] and Fletcher  [6] tested their me thods  on the 12 test p rob lems  or iginal ly  due to W o o d -  

house  [13]. The  same test p rob lems  are appl ied for  the me thods  in this paper.  In  all the tables o f  

this section,  N O I  gives  the n u m b e r  o f  outer  iteration. W h e n  solved by  the von  N e u m a n n  Algor i thm,  
T N I I  gives  the total n u m b e r  o f  inner  i teration used  by  von  N e u m a n n  a lgor i thm in Algor i thm 3.2, 
and r (°) gives  the n u m b e r  o f  posi t ive e igenvalues  in the first i teration o f  Algor i thm 3.2. 
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The projection method is very expensive in the sense that it consumes a large number of iterations, 
while the 11SQP method takes a very small number of iterations. 

The NAG routine is used to find the eigenvalues and eigenvectors for the matrix P + diagx ~k). 
This matrix is reduced to a real symmetric tridiagonal matrix by Householder's method. Then the 
eigenvalues and eigenvectors are calculated using the QL algorithm. The amount of  work required 
by these algorithms is approximately gn2 3 multiplications per one inner iteration [8]. Again, the NAG 
routine is used for solving the QP subproblem (4.7) as one iteration of the SQP method. The NAG 
routine is used in our method to solve the QP subproblem which requires the solution for the system 

Z ¢k) WZ¢k)Tp (k) = --z(k)T(c ÷ WX (k)), ( 6 . 1 )  

where c = ~Tf and Z Ck) is a matrix whose columns form a basis for the null space of A ~k) (the 
matrix of  coefficients of  the bounds and active constraints), pCk) is a search direction. The matrix 
Z Ik) is obtained from the TQ factorization of  A Ck), in which A Ck) is represented as 

A'k)[ZQ )] = [ 0  T~k)]. (6.2) 

The Lagrange multipliers 2 Ck) are defined as the solution of the system 

A~k)2 ~k) = c + W x  ~k). (6.3) 

Eqs. (6.1) and (6.2) cost approximately ~n7 3 multiplications to be solved while (6.3) costs approx- 
8 3 multiplications to be solved, see [8]. Thus, one iteration of  the SQP method costs imately gn 

approximately ~ n  3 multiplications. Hence, one iteration of the SQP method costs about 7 times as 
much as one iteration of  the projection method. Nonetheless, the SQP method is much better than 
the projection method since the number of  iterations taken by the projection method is about 60 
times greater than that taken by the SQP method. However, the Hybrid methods, as shown in Table 
4, use even fewer iterations. 

Table 1 investigates the effect of  varying z. It shows the outcome from Algorithm 3.2 for the 
following example: 

P = 
2 3 

- 2  2 

with a different z. 

0 1 2 - 2  
1 0 3 2 

0 1 
1 0 

V = 

2 

From Table 1, it is clear that small z increases the total number of  iterations 
performed by the von Neumann algorithm, while a bigger r decreases the total number of  inner 
iterations and increases the number of  outer iterations which are very cheap to calculate using 
the projection (3.8) which costs approximately n multiplications while one inner iteration costs 
approximately ~n2 3 multiplications. Hence, it is recommended to increase z to be close to the boundary 
of condition (3.6) which is compatible with the choice in Table 1. The results obtained by the new 
method of  Section 5.1 are tabulated in Table 2. In Table 2, the columns headed by NQP give the 
number of times the 11SQP is solved. 

In the projection-l~SQP method, "c needs to be estimated very close to ~ x * .  This will give us a 
very good estimate of  the rank. Since the average size of  the educational testing problem elements 
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is more than 100, z = n x 100 is chosen as an initial value. In Table 2, it is clear that when n > 10, 
then r becomes very small compared with ~ x [ ,  which makes the projection method estimate r ~k) 
very small compared with the correct r*. The results obtained by the new method of  Section 5.2 
are tabulated in Table 3. In the /~SQP-projection method, r (k) is updated using one iteration of  the 
projection method. In the projection method, r is estimated using the result from the /~SQP method. 
In the 1-10 case, the projection method estimates r (~) = 10 instead of  r (k) = 9. In Tables 2 and 3, 
it can be seen that the our results are exactly the same as those of  [6]. Also, one or two of  the 
variables are adjusted so that the matrix F -  diag 0 is exactly singular. 

Finally, in Table 4, the four methods are compared. It clear from the data in Table 4 that the 
/~SQP-projection method is the best for the problems considered since it requires fewer iterations 
in each problem for solving the QP subproblem. 

7. Conclusions 

In this paper we have studied certain problems involving the positive-semi-definite matrix con- 
straint. Two methods are used for solving the educational testing problem. One is the l~ SQP method 
[6], and the other is the projection method [7]. The hybrid methods developed in Section 5 give a 
good rate of  convergence, especially the l~ SQP-projection method, as compared with the methods o f  
Section 4. The projection method is not very effective in determining the rank when n ~> 12. This is 
because a small value of  s is chosen in Algorithms 5.1 and 5.2. On the other hand, i f  s is increased 
then a large number o f  iterations are consumed by the projection method. Hence, a suitable way of  
chosing the integer s needs further investigation. 
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