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Abstract

Mass matrices arise in the numerical solution of time-dependent partial di�erential equations by the Galerkin method.
Since these systems must be inverted at each time step, rapid inversion algorithms for these systems are important. When
nodal �nite elements are used as basis functions, it is known that the mass matrices can be consistently approximated by
a diagonal matrix or solved by a scalable conjugate gradient method. This may not be the case for other basis functions.
In this paper, we show that the preconditioned conjugate gradient method is scalable when used to invert mass matrices
that arise from vector �nite element basis functions. These basis functions are particularly important for solving Maxwell’s
equations on unstructured grids by the Galerkin method. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Mass matrices

The Gram matrix of the linear-independent elements �1; �2; : : : ; �n in an inner product space V is
the symmetric positive-de�nite n× n matrix
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G =



(�1; �1) (�1; �2) · · · (�1; �n)
(�2; �1) (�2; �2) · · · (�2; �n)
...

...
...

...
(�n; �1) (�n; �2) · · · (�n; �n)


 ; (1)

[5]. A classic example of a Gram matrix is the Hilbert matrix given by �(x) = xi−1 and the inner
product (u; v)=

∫ 1
0 u(x)v(x) dx in which case G=[gij]=[(i+ j−1)−1]. Gram matrices naturally arise

in the numerical solution of time-dependent partial di�erential equations by the Galerkin method
[14]. Speci�cally, given the weak di�erential equation(

@u
@t
; v
)
= (L[u]; v); (2)

a function ũ(x; t) =
∑n

i=1 �i(t)�1(x) is sought out in a �nite-dimensional subspace spanned by a lin-
early independent set of basis functions �1(x); �2(x); : : : ; �n(x) that approximates the weak solution
of Eq. (2). The Galerkin method calculates this approximation by de�ning ũ to satisfy(

@
@t
ũ; �j

)
= (L[ũ]; �j); j = 1; 2; : : : ; n: (3)

Then, if we let �(t) = [�1; �2; : : : ; �n]
t , this results in a system of ordinary di�erential equations

G
d�
dt
= F(�); (4)

where G is the Gram matrix of Eq. (1) and is called the mass matrix of the Galerkin procedure.
If one approximates Eq. (4) by any numerical time di�erencing scheme, we see that it is necessary

to invert the mass matrix at each time step. Hence, the ease and rapidity of the mass matrix inversion
process is an important part of any Galerkin method.

2. Numerical inversion of the mass matrix

Since the mass matrix G is symmetric and positive de�nite, the natural choice for its inversion is
the preconditioned conjugate gradient method. The e�ciency of the preconditioned conjugate gradient
method relies on the choice of the preconditioner Q [11]. Examples of preconditioners include the
incomplete Cholesky factorization [9], the SSOR preconditioner [22], multigrid preconditioners [3]
and domain decomposition preconditioners [2].
An e�cient preconditioner must possess three properties:

1. The preconditioner must be relatively easy to solve.
2. The matrix Q−1G must “approximate the identity”.
3. The preconditioner must yield a “scalable” method in the sense that the number of iterations to
convergence must approach a constant as the size of the matrix n approaches in�nity.

For the preconditioned conjugate gradient method, the spectral condition number ratio

�(Q−1G) =
�max(Q−1G)
�min(Q−1G)
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of the largest to the smallest eigenvalue of Q−1G enters into the upper bound for the error

‖ek‖G
‖e0‖G62

[
�1=2 − 1
�1=2 + 1

]k
; (5)

where the G-norm of the error ‖ek‖G, is de�ned as (ek)tGek . The bound in Eq. (5) is not sharp for
the conjugate gradient method. A sharp error bound for the conjugate gradient method is more com-
plicated [10], involving the distribution of the eigenvalues of Q−1G. However, a spectral condition
number close to 1 and bounded from above as the size n approaches in�nity is su�cient to ensure
fast and scalable convergence of the conjugate gradient algorithm.
In this paper we concentrate on determining preconditioners that yield scalable conjugate gradient

algorithms. That is we seek preconditioners such that

lim
n→∞ �(Q

−1G)¡C

for some constant C independent of n.
Condition number bounds can sometimes be achieved by obtaining a bound on the condition

number of an associated matrix and then “comparing” it to the original system. Unfortunately,
there are few theoretical comparison results for the condition number of preconditioned systems. An
exception is the case of diagonal and block diagonal preconditioners. Van der Sluis [19] proved the
following theorem about diagonal scaling of a symmetric positive matrix G.

Theorem (Van der Sluis [19]). Let D be the diagonal of the symmetric positive-de�nite matrix G;
and let D̂ be any other positive-de�nite diagonal matrix. Then

�(D−1G)6m�(D̂
−1
G);

where m is the maximum number of nonzeros in any row of G.

When the matrix G has property-A, that is when G can be permuted in the form

G =
[
D1 B
Bt D2

]
;

where D1 and D2 are diagonal matrices, a stronger result holds [8].

Theorem (Forsythe and Strauss [8]). Using the above notation; if the symmetric positive-de�nite
matrix G has property-A; then

�(D−1G)6�(D̂
−1
G):

A generalization of the Van der Sluis theorem has also been proved for block diagonal precondi-
tioners [6].

Theorem (Demmel [6]). Let D be the block diagonal of the symmetric positive-de�nite matrix G;
and let D̂ be any other symmetric positive-de�nite block diagonal matrix with same size blocks.
Then

�(D−1G)6b�(D̂
−1
G);

where b is the number of blocks in D.
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Fig. 1. Numbering con�guration for reference element K0 and quadrilateral element K .

A result similar to that of Forsythe and Strauss has also been proved for block diagonal precon-
ditioners [7], when the matrix G is block 2-cyclic and is permuted in the form

G =
[
D1 C
Ct D2

]
; (6)

where Di; i = 1; 2, is a block diagonal matrix with diagonal blocks Di;j; j = 1; 2; : : : ; ri.

Theorem (Eisenstat et al. [7]). Let G be the form in Eq. (6) and let D be the block diagonal matrix
whose diagonal blocks are {D1;1; : : : ; D1; r1 ; D2;1; : : : ; D2; r2}. Let D̂ be any other block diagonal matrix
with same size blocks. Then

�(D−1G)6�(D̂
−1
G):

3. The �nite element Galerkin method

The �nite element Galerkin method is a systematic technique for constructing the basis functions
�i for the Galerkin method based around a numerical grid. Irregular domains and mixed boundary
conditions are easily accommodated and the resulting equations describing the discrete model are
generally well-conditioned [1].
Formally, a �nite element (K; PK ; AK) is de�ned as follows [4]:

1. K , a quadrilateral domain.
2. PK = (P1)N = P1 ⊗ · · · ⊗ PN , a vector space consisting of the tensor product of a polynomial
vector spaces Pi de�ned on K . PK has a basis {	1; 	2; 	3; 	4}.

3. AK , a set of linear functionals de�ned on PK having a basis �1; �2; �3; �4 (called degrees of
freedom).

Each �nite element (K; PK ; AK) will be isoparametrically equivalent to a single reference �nite element
(K0; P0; A0) where K0 = {−16x; y61}. If we assume the numbering con�guration for the nodes
and edges of a given quadrilateral in Fig. 1, then the isoparametric mapping is given by

FK(�; �) =
[
x
y

]
=

[
x1
y1

]
N1 +

[
x2
y2

]
N2 +

[
x3
y3

]
N3 +

[
x4
y4

]
N4;
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where K is the quadrilateral with vertices {(xi; yi); i = 1; 2; 3; 4} and
N1(�; �) = 1

4(1− �)(1− �);
N2(�; �) = 1

4(1 + �)(1− �);
N3(�; �) = 1

4(1 + �)(1 + �); (7)

N4(�; �) = 1
4(1− �)(1 + �):

Then, PK is de�ned by

PK = {p= p0 · F−1
K : p0 ∈ P0} (8)

and the basis of PK is given by 	i =	
(0)
i · F−1

K where

P0 = span[	
(0)
1 ; 	

(0)
2 ; 	

(0)
3 ; 	

(0)
4 ]:

A �nite element is said to be unisolvent if the set of degrees of freedom AK determines a unique
polynomial in PK . If this is the case, then for any function f de�ned on K , there exists a unique
interpolant �(f) ∈ P such that �(f) = �[�(f)] for all � ∈ AK .
The element mass matrix is de�ned to be the 4× 4 matrix

MK =
[∫

K
	i · 	j dK

]
=

[∫ 1

−1

∫ 1

−1
	(0)
i · 	(0)

j det (JK) d� d�

]
;

where

JK =
[
x� y�
x� y�

]
:

The mass matrix is then given by

M =
∑
K

MK;

where the matrix behind the summation signs are expanded or augmented by zero �lling.

4. Nodal �nite elements

Here, the polynomial space PK = P = span[1; x; y; xy]. The four degrees of freedom are

AK = span[�i(p) = p(xi; yi); p ∈ PK; i = 1; 2; 3; 4]; (9)

where (xi; yi) are the coordinates of the nodes of K . Clearly, the �nite element is unisolvent under
the degrees of freedom in Eq. (9). For the reference element, P0 = span[N1; N2; N3; N4] (the Ni are
de�ned in Eq. (7)). An important result regarding the scalability of the conjugate gradient method
for solving mass matrix systems arising from nodal �nite elements is the following.

Theorem (Ciarlet [4]). Assume

• 
 a polynomial domain in R2.
• � the boundary of 
.
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• Gh a quadrilateral decomposition of 
; i.e.; a decomposition of 
 into a set Gh=K1; K2; : : : ; Km
of nonoverlapping quadrilaterals Ki such that 
=

⋃
K∈Gh K and no vertex of one quadrilateral

lies on the edge of another quadrilateral.
• h=maxK∈Gh diam(K) where diam(K) is the longest side of quadrilateral K .
• There exists positive constants �1; �2 independent of h such that for all K ∈ Gh;

�1h6hK = diam(K)6�2h:

• �1; �2; : : : ; �n are a nodal basis functions of Vh.

Then if M =matrix(
∫

 �i�jd
) is the mass matrix; there exist constants C1; C2 depending only

on �1; �2 such that

�(M)6
C2
C1
:

Hence, we see that if a sequence of grids satis�es the previous theorem, then the preconditioned
conjugate gradient will attain a constant number of iterations as the number of grid points increases
whenever the preconditioner satis�es any of the theorems in Section 2.
Another important property of nodal mass matrices is that they can be consistently “lumped” [15].

That is, they can be consistently approximated by a diagonal matrix.

5. Motivation – the vector wave equation

The two-dimensional Maxwell’s equations consist of two equations that relate the vector electric
�eld E = [E1; E2], a scalar magnetic �eld H and a divergence condition [12].

3 × E =−@H
@t
; (10)

*
3 ×H = @D

@t
; (11)

3 · D = 0; (12)

where
*
3 ×H =

[
@H
@y
;−@H
@x

]t
; 3 × E = @E2

@x
− @E1
@y
:

Two constitutive relations are required to close Maxwell’s equations,

D = �E ; B= �H; (13)

where the dielectric permittivity � and the magnetic permeability � are scalar functions of position.

The magnetic �eld is eliminated by applying the operation
*
3 × to Eq. (10) and applying the

identities Eqs. (11) and (13) to obtain the vector wave equation for the electric �eld

�
@2E
@t2

=−*3 ×1
�
3 × E (14)
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The Galerkin method for solving Eq. (14) computes an approximation

Ẽ = [Ẽ1; Ẽ2]
t =

n∑
i=1

�i(t)
*
�(x; y);

such that∫


�

[
@2

@t2
Ẽ

]t
*
�jd
=−

∫



[
*
3 ×1

�
3 × Ẽ

]t
*
�j d


=−
∫



1
�
[3 × E]t[3 × *

�j] d
;

where the second equality follows from Green’s second vector theorem [20]. Substituting the expan-
sion for E we get a square system of equations

∑
i

(∫



*
� t
i

*
�j d


)
@2�i
@t2

=−
∑
i

(∫


[3 × *

�i]
t[3 × *

�j] d

)
�i

yielding the system of ordinary di�erential equations in Eq. (4) where the mass matrix G is given
by

G =
[∫




*
� t
i

*
�j d


]
:

One could, of course, use the nodal �nite elements to provide Galerkin vector approximations to
the vector wave equation in Eq. (14). This has the advantage that the mass matrices can be consis-
tently lumped or be solved by a scalable preconditioned conjugate gradient algorithm. Unfortunately,
the continuity of the nodal �nite element approximations turns out to be a liability when applied
to the vector wave equation when the dielectric � has a jump discontinuity. In this case, it is known
that the tangential component of the electric �eld is continuous across the discontinuity while its
normal component may be discontinuous. Consequently, an important property of electric �elds that
should be preserved in any numerical approximation is the following: The tangential component of
E across an interface is continuous but the normal component f E across the same interface may
be discontinuous. To ensure this, the tangential component of the numerical approximation Ẽ should
be continuous along the edges of each quadrilateral of the grid but its normal component need not
be. More speci�cally, if K1 and K2 are two elements with a common edge e then the tangential
components of �1(u) and �2(u) are the same on e for all u ∈ C∞(K1 ∪ K2) [16]. Finite elements
with this property are said to be conformal. Since the tangential and normal components of the
Galerkin approximation provided by the nodal �nite elements are continuous, nonphysical spurious
oscillations have been observed when they are used to solve Eq. (14) [13].

6. Edge elements

Finite elements that enforce continuity of the electric �eld across edges have been recently dis-
covered and analyzed [16,17]. Basically, these “vector �nite element” assign degrees of freedom to
the edges rather than to the nodes of the elements. For this reason, they are called edge elements.
Although these types of elements were described in [21], as early as 35 years ago, their use and
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importance in electromagnetics was not realized until recently. Extensive investigations as well as
some very successful applications have been carried over the past few years [18,20]. In this section,
we introduce the edge elements (K; PK ; AK) in two dimensions and analyze the mass matrices that
arise from their use in the Galerkin procedure.
The degrees of freedom AK for the edge elements are the line integrals

�i( p) =
∫
eii

p · ti dei; p ∈ P

where ti is the unit tangent along edge ei; i = 1; 2; 3; 4 [13]. The fact that these elements are con-
forming is found in [17]. On the reference element,

P0 = {a+ b�} ⊗ {c + d�}

and the conditions

�i(p) =
∫
eij

p · tj d� = �ij; p ∈ P0

yields the basis functions

	(0)
1 (�; �) =

1
4
(1− �)

[
1
0

]
;

	(0)
2 (�; �) =

1
4
(1 + �)

[
1
0

]
;

	(0)
3 (�; �) =

1
4
(1− �)

[
0
1

]
;

	(0)
4 (�; �) =

1
4
(1 + �)

[
0
1

]
:

Then, PK = span[	1; 	2; 	3; 	4] where 	i(x; y) =	
(0)
i [F

−1
K (x; y)]. Note that if tj is the unit tangent

vector along edge ej; then∫
ej
(	i(x; y) · tj) dej = �ij:

The element mass matrix is given by

∫
K
	t
i	j dK =

∫ 1

−1

∫ 1

−1
(	0

i )
t	(0)

j det(JK) d� d�:



J. Koning et al. / Journal of Computational and Applied Mathematics 123 (2000) 307–321 315

Table 1
Mass matrix condition number for n edge elements

n �(M)

12 2.37
40 3.87
144 3.92
544 3.97
2112 4.0
5320 4.0
33024 4.07

7. Edge element mass matrices

7.1. Uniform grid

We �rst consider the edge element mass matrices generated on a uniform grid of grid size h.
Here, K = {(xi6x6xi + h; yi6y6yi + h)} and the element matrix is given by

MK =
h2

6



2 1 0 0
1 2 0 0
0 0 2 1
0 0 1 2


 :

This yields a block diagonal mass matrix

M =
h2

6




A1
A2

. . .
An−1

An


 ; Ai =


 2 1 0
1 4 1
0 1 2


 :

If we estimate the eigenvalues of the mass matrix M using Gerschgorin discs, we get the following
result.

Theorem 1. If M is the mass matrix generated from vector edge elements on a uniform rectangular
grid; then

�(M)66: (15)

Table 1 tabulates the actual condition number for a variety of matrix sizes. We see that the bound
on the condition number in Eq. (15) appears to be an over-estimate.
Of course, a natural question to ask would be whether the mass matrix can be consistently

approximated by a diagonal matrix much in the same manner as is commonly done using mass
lumping techniques for nodal elements. In this regard, if the trapezoid rule is used to evaluate the
inner product integrals, we get the following result.
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Table 2
Condition number of element mass matrix for f = 0:44

n f = 0:49 f = 0:47 f = 0:44 f = 0:35

144 3.86 4.41 5.27 10.31
544 3.92 4.95 6.76 20.28
2112 3.97 5.49 8.35 45.35
5320 3.99 6.15 10.69 86.18
33024 4.0 7.2 15.72 230

Table 3
Condition number calculations for diagonally preconditioned systems

n f = 0:49 f = 0:47 f = 0:44 f = 0:35

40 3.0 3.15 3.33 4.08
144 3.0 3.18 3.43 4.43
544 3.0 3.28 3.64 5.58
2112 3.0 3.43 3.95 10.87
5320 3.0 3.63 4.3 16.28

Theorem 2.
h
64
I =MK +O(h2): (16)

A corollary to Theorem 2 is that the diagonal approximation in Eq. (16) yields the well-known
Yee’s method which is totally consistent with the vector wave equation [13].

7.2. Non-uniform grid

We now examine the edge element mass matrices based upon a nonuniform grid. In this case,
no consistent mass lumping procedure is known to exist and matrix inversion of the mass matrix is
necessary to use the Galerkin procedure. In this section, we examine the condition numbers of the
preconditioned mass matrices to determine if a scalable preconditioned conjugate gradient method
exists.
The nonuniform grids were constructed by recursively forming four new quadrilaterals out of one

initial quadrilateral. Along each edge of the quad, a random position is chosen using: xnewnode =
sxnode i + (1− s)xnode j; ynewnode = synode i + (1− s)ynode j; where s is de�ned by a user chosen variable
f as s = f + (1 − 2f) rand( · ) and rand( · ) is a random number between 0 and 1. These four
new nodes are used to de�ne the center by �nding random positions between the new left and right
nodes, as well as the new top and bottom nodes, thus giving four new quadrilaterals. This operation
is performed on each new quadrilateral until the desired number of elements is reached (see Fig. 2).
Tables 2 and 3 list the condition number of the unconditioned and diagonally preconditioned mass

matrices. Inner product integrations were performed using a four-point Gaussian quadrature rule.
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Fig. 2. 32× 32 numerical grids for di�erent f values.

Table 4
Number of preconditioned conj. grad. iterations for f = 0:44

n Jacobi ILU

144 14 5
544 15 6
2112 16 6
33024 16 7

Table 4 list the number of iterations for convergence of the preconditioned conjugate gradient
algorithm for the mass matrices generated on the unstructured grids generated when f = 0:44. The
preconditioners used were Jacobi diagonal scaling and the Incomplete-LU.
As one can be seen from the condition number computations for f=0:35 in Table 3, the condition

number of the preconditioned does not seem to be approaching a constant as would be hoped. The



318 J. Koning et al. / Journal of Computational and Applied Mathematics 123 (2000) 307–321

Fig. 3. 16× 16 numerical grid for f = 0:35.

Table 5
Ratio of maximum zone area to minimum zone area for di�erent grid sizes

n f = 0:47 f = 0:44 f = 0:35

40 0.86 0.72 0.44
144 0.77 0.59 0.24
544 0.69 0.47 0.12
2112 0.62 0.37 0.07
5320 0.54 0.29 0.03
33024 0.48 0.23 0.01

Table 6
Ratio of maximum edge length to minimum edge length for di�erent grid sizes

n f = 0:47 f = 0:44 f = 0:35

40 0.856 0.733 0.441
144 0.796 0.626 0.293
544 0.719 0.509 0.172
2112 0.657 0.424 0.107
5320 0.597 0.351 0.069
33024 0.547 0.294 0.42

reason for this is that, unlike uniform grids, the fundamental structure of the grid is not the same
as the number of grid points is increased, compare the grids in Figs. 2 and 3. This becomes evident
when one compares the zone sizes and edge lengths of the di�erent grids. Tables 5 and 6 list ratios
of maximum to minimum zone sizes and edge lengths of the di�erent grid sizes. In this case, n
refers to the number of edges in the grid.
In order to determine if a result holds that is similar to the Ciarlet Theorem for nodal �nite

elements, the previous computations were carried out on a sequence of grids whose diameters are
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Fig. 4. 2n−1 + 1× 2n−1 + 1 grids.

related (see Fig. 4). The initial coarse grid was constructed using a seed of f = 0:35. Mesh met-
rics, condition numbers and preconditioned conjugate gradient iterations are given in Tables 7–9,
respectively.

8. Conclusions

In this paper we have established computationally that the condition number of the diagonally
preconditioned mass edge element matrix essentially remains constant as the size of a grid increases
provided the ratio of the mesh lengths remains constant. This is useful when the preconditioned
conjugate gradient algorithm is used to invert the edge element mass matrix in Galerkin procedures
for solving Maxwell’s equations.
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Table 7
Mesh metrics

n max(area)
min(area)

max(diam)
min(diam)

4 0.237794 0.293104
5 0.217542 0.293099
6 0.207517 0.293091
7 0.197316 0.293072
8 0.192447 0.293035

Table 8
Condition numbers of mass matrix M and diagonally preconditioned matrix Q−1M

n �(M) �(Q−1M)

4 20.29 4.44
5 25.32 4.56
6 30.05 4.71
7 34.1 4.91
8 36.75 5.17

Table 9
Number of iterations for diagonally scaled conj. grad. and ILU conj. grad.

n Jacobi ILU

4 17 7
5 17 8
6 18 9
7 18 9
8 18 9
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