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a b s t r a c t

In this paper, we consider the existence of multiple positive solutions for some nonlinear
m-point boundary value problems on the half-line

(ϕ(u′))′ + a(t)f (t, u(t)) = 0, 0 < t < +∞,

u(0) =
m−2∑
i=1

αiu(ξi), u′(∞) = 0,

where ϕ : R → R is an increasing homeomorphism and positive homomorphism and
ϕ(0) = 0. Using a fixed-point theorem for operator on a cone, we provide sufficient
conditions for the existence of multiple positive solutions to the above boundary value
problem.
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1. Introduction

In this paper we study the existence ofmultiple positive solutions of the following boundary value problem on a half-line

(ϕ(u′))′ + a(t)f (t, u(t)) = 0, 0 < t < +∞, (1.1)

u(0) =
m−2∑
i=1

αiu(ξi), u′(∞) = 0, (1.2)

where ϕ : R → R is an increasing homeomorphism and positive homomorphism and ϕ(0) = 0, ξi ∈ (0,+∞) with
0 < ξ1 < ξ2 < · · · < ξm−2 < +∞ and αi satisfy αi ∈ [0,+∞), 0 <

∑m−2
i=1 αi < 1.
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A projection ϕ : R→ R is called an increasing homeomorphism and positive homomorphism, if the following conditions
are satisfied:

(1) if x ≤ y, then ϕ(x) ≤ ϕ(y), for all x, y ∈ R;

(2) ϕ is a continuous bijection and its inverse mapping is also continuous;

(3) ϕ(xy) = ϕ(x)ϕ(y), for all x, y ∈ [0,+∞).
In above definition, we can replace the condition (3) by the following stronger condition:

(4) ϕ(xy) = ϕ(x)ϕ(y), for all x, y ∈ R,where R = (−∞,+∞).

Remark 1.1. If conditions (1), (2) and (4) hold, then it implies that ϕ is homogeneous generating a p-Laplace operator,
i.e., ϕ(x) = |x|p−2x, for some p > 1.
In this paper, we assume that the following conditions are satisfied:

(C1) f ∈ C([0,+∞)×[0,+∞), [0,+∞)), f (t, 0) 6≡ 0 on any subinterval of [0,+∞) and,when u is bounded, f (t, (1+t)u)
is bounded on [0,+∞)× [0,+∞);

(C2) a(t) is a nonnegative measurable function defined in (0,+∞) and a(t) does not identically vanish on any subinterval
of (0,+∞) and

0 <
∫
+∞

0
a(t)dt < +∞.

Themulti-point boundary value problems for ordinary differential equations arise in a variety of different areas of applied
mathematics and physics. The study of multi-point boundary value problems for linear second-order ordinary differential
equations was initiated in [3]. Since then, nonlinear multi-point boundary value problems have been studied by several
authors. We refer the reader to [1–14] and the references therein. Recently, Liu and Zhang [2] studied the existence of
positive solutions of quasi-linear differential equation{

(ϕ(x′))′ + a(t)f (x(t)) = 0, t ∈ (0, 1),
x(0)− βx′(0) = 0, x(1)+ δx′(1) = 0,

subject to linear mixed boundary value conditions by a simple application of a fixed-point index theorem in cones, where
ϕ : R→ R is an increasing homeomorphism and positive homomorphism and ϕ(0) = 0.
Wang and Hou [9] studied the following boundary value problem

(φp(u′))′(t)+ a(t)f (t, u) = 0, 0 < t < 1,

φ(u′(0)) =
n−2∑
i=1

aiφp(u′(ξi)), u(1) =
n−2∑
i=1

biu(ξi),

where φp(s) = |s|p−2s, p > 1, the authors proved that the existence of multiple positive solutions to the above boundary
value problem by using a fixed-point theorem for operator on a cone.
Lian [17] studied the following boundary value problemof second-order differential equationwith a p-Laplacian operator

on a half-line{
(ϕp(u′(t)))′ + φ(t)f (t, u(t), u′) = 0, 0 < t < +∞,
αu(0)− βu′(0) = 0, u′(∞) = 0.

They showed the existence of at least three positive solutions by using a fixed-point theorem in a cone due to
Avery–Peterson.
In the past few years there have been many papers investigated the positive solutions of boundary value problem on

the half-line, see [15–18]. They discuss the existence and multiplicity positive solutions to nonlinear differential equations.
However, there is few papers concerned with the existence of multiple positive solutions to boundary value problems of
differential equation on infinite intervals so far by using fixed-point theorem for operator on a cone. The goal of present
paper is to fill the gap in this area.
Motivated by all the works above, the purpose of this paper is to study the existence of multiple positive solutions for

some boundary value problems on the half-line by using a fixed-point theorem for operator on a cone. We emphasize that
the results in the paper are new even for the case of ϕ(u) = u and ϕ(u) = |u|p−2u, p > 1.
By the positive solution of (1.1) and (1.2) one means a function u(t) which is positive on 0 < t < +∞ and satisfies the

differential equation (1.1) and the boundary value conditions (1.2).
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2. The preliminary lemmas

To obtain positive solutions of (1.1) and (1.2) the following fixed-point theorem in cones is fundamental.

Lemma 2.1 ([6]). Let K be a cone in a Banach space X. Let D be an open bounded set with Dk = D ∩ K 6= ∅ and Dk 6= K . Let
T : Dk → K be a compact map such that x 6= Tx for x ∈ ∂Dk. Then the following results hold.

(1) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Dk, then ik(T ,Dk) = 1.
(2) Suppose there is e ∈ K , e 6= 0 such that x 6= Tx+ λe for all x ∈ ∂Dk and all λ > 0, then ik(T ,Dk) = 0.
(3) Let D1 be open in X such that D1 ⊂ Dk. If ik(T ,Dk) = 1 and ik(T ,D1k) = 0, then T has a fixed point in Dk \ D

1
k . Then same

result holds if ik(T ,Dk) = 0 and ik(T ,D1k) = 1.

Lemma 2.2. For any x ∈ C[0, 1], x(t) ≥ 0, the problem

(ϕ(x′))′ + a(t)f (t, x(t)) = 0, 0 < t < +∞, (2.1)

x(0) =
m−2∑
i=1

αix(ξi), x′(∞) = 0 (2.2)

has a unique solution

x(t) =
∫ t

0
ϕ−1

(∫
+∞

s
a(τ )f (τ , x(τ ))dτ

)
ds+

m−2∑
i=1

αi
∫ ξi
0 ϕ
−1
(∫
+∞

s a(τ )f (τ , x(τ ))dτ
)
ds

1−
m−2∑
i=1

αi

.

Proof. It is easy to prove, so we omit it here. �

In this paper we will use the following space E which is denoted by

E =
{
u ∈ C[0,+∞) : sup

0≤t<+∞

|u(t)|
1+ t

< +∞

}
to study (1.1) and (1.2). Then E is a Banach space, equipped with the norm ‖u‖ = sup0≤t<+∞

|u(t)|
1+t < +∞.

Define cone K ⊂ E by

K =
{
u ∈ E : u(t)is a nonnegative concave function on [0,+∞) and lim

t→+∞
u′(t) = 0

}
.

Now we define an operator T : K → C[0,+∞) by

(Tu)(t) =
∫ t

0
ϕ−1

(∫
+∞

s
a(τ )f (τ , u(τ ))dτ

)
ds+

m−2∑
i=1

αi
∫ ξi
0 ϕ
−1
(∫
+∞

s a(τ )f (τ , u(τ ))dτ
)
ds

1−
m−2∑
i=1

αi

. (2.3)

Obviously (Tu)(t) ≥ 0 for t ∈ (0,+∞) and (Tu)′(t) = ϕ−1
(∫
+∞

t a(τ )f (τ , u(τ ))dτ
)
≥ 0, furthermore (ϕ(Tu)′(t))′ =

−a(t)f (t, u(t)) ≤ 0. This shows (TK) ⊂ K .
To obtain the complete continuity of T the following lemma is still needed.

Lemma 2.3 ([18]). Let W be a bounded subset of K . ThenW is relatively compact in E if
{
W (t)
1+t

}
are equicontinuous on any finite

subinterval of [0,+∞) and for any ε > 0 there exists N > 0 such that∣∣∣∣ x(t1)1+ t1
−
x(t2)
1+ t2

∣∣∣∣ < ε

uniformly with respect to x ∈ W as t1, t2 ≥ N, where W (t) = {x(t) : x ∈ W } , t ∈ [0,+∞).

Lemma 2.4. Let (C1) and (C2) hold. Then T : K → K is completely continuous.
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Proof. Firstly it is easy to check that T : K → K is well defined. From the definition of E, we can choose r0 such that
supn∈N\{0} ‖un‖ < r0. Let Br0 = sup{f (t, (1 + t)u), (t, u) ∈ [0,+∞) × [0, r0]} and Ω be any bounded subset of K . Then
there exists r > 0 such that ‖u‖ ≤ r for all u ∈ Ω . Therefore we have

‖Tu‖ = sup
t∈[0,+∞)

1
1+ t

∣∣∣∣∣∣∣∣∣
∫ t

0
ϕ−1

(∫
+∞

s
a(τ )f (τ , u(τ ))dτ

)
ds+

m−2∑
i=1

αi
∫ ξi
0 ϕ
−1
(∫
+∞

s a(τ )f (τ , u(τ ))dτ
)
ds

1−
m−2∑
i=1

αi

∣∣∣∣∣∣∣∣∣
≤ sup
t∈[0,+∞)

1
1+ t

∫ t

0
ϕ−1

(∫
+∞

s
a(τ )f (τ , u(τ ))dτ

)
ds

+ sup
t∈[0,+∞)

1
1+ t

m−2∑
i=1

αi
∫ ξm−2
0 ϕ−1

(∫
+∞

s a(τ )f (τ , u(τ ))dτ
)
ds

1−
m−2∑
i=1

αi

≤ ϕ−1
(∫

+∞

0
a(τ )f (τ , u(τ ))dτ

)1+
m−2∑
i=1

αiξm−2

1−
m−2∑
i=1

αi


≤ c1ϕ−1(Br), ∀ u ∈ Ω,

where

c1 = ϕ−1
(∫

+∞

0
a(τ )dτ

)1+
m−2∑
i=1

αiξm−2

1−
m−2∑
i=1

αi

 .
So TΩ is bounded. Moreover for any T ∈ (0,+∞) and t1, t2 ∈ [0, T ], we have

∣∣∣∣ (Tu)(t1)1+ t1
−
(Tu)(t2)
1+ t2

∣∣∣∣ ≤
m−2∑
i=1

αi
∫ ξi
0 ϕ
−1
(∫
+∞

s a(τ )f (τ , u(τ ))dτ
)
ds(

1−
m−2∑
i=1

αi

) ∣∣∣∣ 1
1+ t1

−
1

1+ t2

∣∣∣∣
+

∣∣∣∣ 1
1+ t1

∫ t1

0
ϕ−1

(∫
+∞

τ

a(s)f (s, u(s))ds
)
dτ

−
1

1+ t2

∫ t2

0
ϕ−1

(∫
+∞

τ

a(s)f (s, u(s))ds
)
dτ
∣∣∣∣

≤ c2ϕ−1(Br)
∣∣∣∣ 1
1+ t1

−
1

1+ t2

∣∣∣∣+ c3ϕ−1(Br) |t1 − t2|
→ 0, uniformly as t1 → t2,

where

c2 =

m−2∑
i=1

αi
∫ ξi
0 ϕ
−1
(∫
+∞

s a(τ )dτ
)
ds(

1−
m−2∑
i=1

αi

) + Tϕ−1
(∫

+∞

0
a(s)ds

)

and

c3 = ϕ−1
(∫

+∞

0
a(s)ds

)
.

Therefore, we can get TΩ is equicontinuous on any finite subinterval of [0,+∞).
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Next we prove for any ε > 0, there exists sufficiently large N > 0 such that∣∣∣∣ (Tu)(t1)1+ t1
−
(Tu)(t2)
1+ t2

∣∣∣∣ < ε for all t1, t2 ≥ N, ∀ u ∈ Ω. (2.4)

Since
∫
+∞

0 a(τ )f (u(τ )dτ) < +∞, we can choose N1 > 0 such that

m−2∑
i=1

αi
∫ ξi
0 ϕ
−1
(∫
+∞

s a(τ )f (u(τ ))dτ
)
ds

N1

(
1−

m−2∑
i=1

αi

) <
ε

5
.

We can also select N2,N3 > 0 large enough so that

N2 >
5
∫
+∞

0 ϕ−1
(∫
+∞

s a(τ )f (u(τ ))dτ
)
ds

ε
, ϕ−1

(∫
+∞

N3
a(τ )f (u(τ ))dτ

)
<
ε

5

are satisfied respectively. Then let N = max{N1,N2,N3}. Without loss of generality, we assume t2 > t1 ≥ N . So it follows
that ∣∣∣∣ (Tu)(t1)1+ t1

−
(Tu)(t2)
1+ t2

∣∣∣∣ ≤ ∫ +∞
0

ϕ−1
(∫

+∞

s
a(τ )f (u(τ ))dτ

)
ds
∣∣∣∣ 1
1+ t1

−
1

1+ t2

∣∣∣∣
+

∫ t2
t1
ϕ−1

(∫
+∞

t1
a(s)f (u(s))ds

)
ds

1+ t2
+

m−2∑
i=1

αi
∫ ξi
0 ϕ
−1
(∫
+∞

s a(τ )f (u(τ ))dτ
)
ds

(1+ t1)
(
1−

m−2∑
i=1

αi

)

+

m−2∑
i=1

αi
∫ ξi
0 ϕ
−1
(∫
+∞

s a(τ )f (u(τ ))dτ
)
ds

(1+ t2)
(
1−

m−2∑
i=1

αi

)
≤
2ε
5
+
ε

5
+
ε

5
+
ε

5
= ε.

That is, (3.4) holds. By Lemma 2.3 TΩ is relatively compact. Therefore we know that T is a compact operator.
Thirdly we prove that T is continuous. Let un → u as n → +∞ in K . Then by the Lebesgue dominated convergence

theorem and continuity of f , we can get∣∣∣∣∫ +∞
t

a(s)f (un(s))ds−
∫
+∞

t
a(s)f (u(s))ds

∣∣∣∣ ≤ ∫ +∞
t

a(s) |f (un(s))− f (u(s))| ds→ 0 as n→+∞,

i.e., ∫
+∞

t
a(s)f (un(s))ds→

∫
+∞

t
a(s)f (u(s))ds as n→+∞.

Moreover

ϕ−1
(∫

+∞

t
a(s)f (un(s))ds

)
→ ϕ−1

(∫
+∞

t
a(s)f (u(s))ds

)
as n→+∞.

So

‖Tun − Tu‖ ≤ sup
t∈[0,+∞)

1
1+ t

∫ t

0

∣∣∣∣ϕ−1 (∫ +∞
τ

a(s)f (un(s))ds
)
− ϕ−1

(∫
+∞

τ

a(s)f (u(s))ds
)∣∣∣∣ dτ

+

m−2∑
i=1

αiξm−2

1−
m−2∑
i=1

αi

∣∣∣∣ϕ−1 (∫ +∞
s

a(τ )f (un(τ ))dτ
)
− ϕ−1

(∫
+∞

s
a(τ )f (u(τ ))dτ

)∣∣∣∣
→ 0 as n→+∞.

Therefore T is continuous. In sum, T : K → K is completely continuous. �
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Lemma 2.5. Let u ∈ K and [a, b] be any finite closed interval of (0,+∞). Then u(t) ≥ λ(t)‖u‖, where

λ(t) =
{
σ , t ≥ σ ,
t, t ≤ σ ,

and σ = inf
{
ξ ∈ [0,+∞) : supt∈[0,+∞)

|u(t)|
1+t =

u(ξ)
1+ξ

}
.

Proof. From the definition of K we know that u(t) is increasing on [0,+∞). Moreover u′(∞) = 0 implies that the function
u(t)
1+t achieves its maximum at ξ ∈ [0,+∞). We divide the proof into three steps:

Step (1). If σ ∈ [0, a], then we have t ≥ σ , for t ∈ [a, b]. Since u(t) is increasing on [0,+∞). So, we have

u(t) ≥ u(σ ) = (1+ σ)‖u‖ > σ‖u‖, for t ∈ [a, b].

Step (2). If σ ∈ [a, b], then we have t ≤ σ , for t ∈ [a, σ ]. By the concavity of u(t)we can obtain

u(t)− u(0)
t

≥
u(σ )− u(0)

σ
,

i.e.
u(t)
t
≥
u(σ )
σ
−
u(0)
σ
+
u(0)
t
≥
u(σ )
1+ σ

= ‖u‖.

Therefore u(t) ≥ t‖u‖, for a ≤ t ≤ σ . If t ∈ [σ , b], similarly to Step (1), we have

u(t) ≥ σ‖u‖ for σ ≤ t ≤ b.

Step (3). If σ ∈ [b,+∞), similarly by the concavity of u(t)we also have

u(t)− u(0)
t

≥
u(σ )− u(0)

σ
,

which yields u(t) ≥ t‖u‖, for a ≤ t ≤ b ≤ σ . The proof is complete. �

Remark 2.1. It is easy to see that
(i) λ(t) is nondecreasing on [a, b];
(ii) 0 < λ(t) < 1, for t ∈ [a, b] ⊂ (0, 1).
For any k > 1 be a fixed constant and we choose a = 1

k , b = k. We define

γ = λ

(
1
k

) λ
( 1
k

) 1
1+ 1k

∫ 1
k
0 ϕ

−1
(∫ k

1
k
a(τ )dτ

)
ds

ϕ−1
(∫
+∞

0 a(τ )dτ
)1+ m−2∑

i=1
αiξm−2

1−
m−2∑
i=1

αi


,

γ1 =

λ
( 1
k

) 1
1+ 1k

∫ 1
k
0 ϕ

−1
(∫ k

1
k
a(τ )dτ

)
ds

ϕ−1
(∫
+∞

0 a(τ )dτ
)1+ m−2∑

i=1
αiξm−2

1−
m−2∑
i=1

αi


,

Kρ = {u ∈ K : ‖u‖ ≤ ρ},

Ωρ = {u ∈ K : min
t∈
[
1
k ,k
] u(t)1+ t

< γρ} = {u ∈ K : γ ‖u‖ ≤ min
t∈
[
1
k ,k
] u(t)1+ t

< γρ}.

Lemma 2.6 ([6]). Ωρ has the following properties:

(a) Ωρ is open relative to K .
(b) Kγ ρ ⊂ Ωρ ⊂ Kρ .
(c) u ∈ ∂Ωρ if and only if mint∈

[
1
k ,k
] u(t)
1+t = γ ρ .

(d) u ∈ ∂Ωρ , then γ ρ ≤ u(t)
1+t ≤ ρ for t ∈

[ 1
k , k

]
.
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Now, we introduce the following notations. Let

f ργρ = min
{
f (t, (1+ t)u)

ϕ(ρ)
: t ∈

[
1
k
, k
]
, u ∈ [γ ρ, ρ]

}
,

f ρ0 = sup
{
f (t, (1+ t)u)

ϕ(ρ)
: t ∈ [0,+∞), u ∈ [0, ρ]

}
,

f α = lim
u→α
sup

{
f (t, (1+ t)u)

ϕ(ρ)
: t ∈ [0,+∞)

}
,

fα = lim
u→α
min

{
f (t, (1+ t)u)

ϕ(ρ)
: t ∈

[
1
k
, k
]}

(α := ∞ or 0+),

1
m
= ϕ−1

(∫
+∞

0
a(τ )dτ

)1+
m−2∑
i=1

αiξm−2

1−
m−2∑
i=1

αi

 ,
1
M
= λ

(
1
k

)
1

1+ 1
k

∫ 1
k

0
ϕ−1

(∫ k

1
k

a(τ )dτ

)
ds.

Remark 2.2. It is easy to see that 0 < m,M <∞ andMγ = Mγ1λ
( 1
k

)
= λ

( 1
k

)
m < m.

Lemma 2.7. If f satisfies the condition

f ρ0 ≤ ϕ(m) and u 6= Tu for u ∈ ∂Kρ, (2.5)

then ik(T , Kρ) = 1.

Proof. By (2.3) and (2.5), we have for u(t) ∈ ∂Kρ , then ‖u‖ = sup0≤t<+∞
|u(t)|
1+t = ρ, from the definition of f

ρ

0 we have

f (t, u) ≤ ϕ(ρ)ϕ(m) = ϕ(ρm).

Therefore,

‖Tu‖ = sup
t∈[0,+∞)

1
1+ t

∣∣∣∣∣∣∣∣∣
∫ t

0
ϕ−1

(∫
+∞

s
a(τ )f (τ , u(τ ))dτ

)
ds+

m−2∑
i=1

αi
∫ ξi
0 ϕ
−1
(∫
+∞

s a(τ )f (τ , u(τ ))dτ
)
ds

1−
m−2∑
i=1

αi

∣∣∣∣∣∣∣∣∣
≤ sup
t∈[0,+∞)

1
1+ t

∫ t

0
ϕ−1

(∫
+∞

s
a(τ )f (τ , u(τ ))dτ

)
ds

+ sup
t∈[0,+∞)

1
1+ t

m−2∑
i=1

αi
∫ ξm−2
0 ϕ−1

(∫
+∞

s a(τ )f (τ , u(τ ))dτ
)
ds

1−
m−2∑
i=1

αi

≤ ϕ−1
(∫

+∞

0
a(τ )f (τ , u(τ ))dτ

)1+
m−2∑
i=1

αiξm−2

1−
m−2∑
i=1

αi



< ϕ−1(ϕ(m)ϕ(ρ))ϕ−1
(∫

+∞

0
a(τ )dτ

)1+
m−2∑
i=1

αiξm−2

1−
m−2∑
i=1

αi



= mρϕ−1
(∫

+∞

0
a(τ )dτ

)1+
m−2∑
i=1

αiξm−2

1−
m−2∑
i=1

αi

 = ρ = ‖u‖.
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This implies that ‖Tu‖ < ‖u‖ for u(t) ∈ ∂Kρ . By Lemma 2.1(1) we have ik(T , Kρ) = 1. �

Lemma 2.8. If f satisfies the condition

f ργρ ≥ ϕ(Mγ ) and u 6= Tu for u ∈ ∂Ωρ, (2.6)

then ik(T ,Ωρ) = 0.

Proof. Let e(t) ≡ 1 for t ∈ [0,+∞). Then e ∈ ∂K1, we claim that

u 6= Tu+ λe, u ∈ ∂Ωρ, λ > 0.

In fact, if not, there exist u0 ∈ ∂Ωρ and λ0 > 0 such that u0 = Tu0 + λ0e. By (2.3) and (2.6) we have

u0 = Tu0(t)+ λ0e ≥ λ
(
1
k

)
‖Tu0‖ + λ0

= λ

(
1
k

)
sup

t∈[0,+∞)

1
1+ t

∣∣∣∣∣∣∣∣∣
∫ t

0
ϕ−1

(∫
+∞

s
a(τ )f (τ , u0(τ ))dτ

)
ds

+

m−2∑
i=1

αi
∫ ξi
0 ϕ
−1
(∫
+∞

s a(τ )f (τ , u0(τ ))dτ
)
ds

1−
m−2∑
i=1

αi

∣∣∣∣∣∣∣∣∣+ λ0
≥ λ

(
1
k

)
1

1+ 1
k

∫ 1
k

0
ϕ−1

(∫ k

1
k

a(τ )f (τ , u0(τ ))dτ

)
ds+ λ0

> λ

(
1
k

)
1

1+ 1
k

ϕ−1(ϕ(Mγ )ϕ(ρ))
∫ 1

k

0
ϕ−1

(∫ k

1
k

a(τ )dτ

)
ds+ λ0

= λ

(
1
k

)
1

1+ 1
k

Mγ ρ
∫ 1

k

0
ϕ−1

(∫ k

1
k

a(τ )dτ

)
ds+ λ0

= γ ρ + λ0.

This implies that γ ρ ≥ γ ρ + λ0 which is a contradiction. Hence by Lemma 2.2(2), we have ik(T ,Ωρ) = 0. �

3. Main results

The main results in this paper are the following.

Theorem 3.1. Assume that one of the following conditions holds:
(C3) There exist ρ1, ρ2, ρ3 ∈ (0,∞) with ρ1 < γρ2 and ρ2 < ρ3 such that

f ρ10 ≤ ϕ(m), f ρ2γ ρ2 ≥ ϕ(Mγ ), u 6= Tu for u ∈ ∂Ωρ2 and f ρ30 ≤ ϕ(m).

(C4) There exist ρ1, ρ2, ρ3 ∈ (0,∞) with ρ1 < ρ2 < γρ3 such that

f ρ1γ ρ1 ≥ ϕ(Mγ ), f ρ20 ≤ ϕ(m), u 6= Tu for u ∈ ∂Kρ2 and f ρ3γ ρ3 ≥ ϕ(Mγ ).

Then (1.1) and (1.2) have two positive solutions in K . Moreover if in (C3) f
ρ1
0 ≤ ϕ(m) is replaced by f

ρ1
0 < ϕ(m), then (1.1) and

(1.2) have a third positive solution u3 ∈ Kρ1 .

Proof. The proof is similar to that given for Theorem 2.10 in [6]. We omit it here. �

As a special case of Theorem 3.1 we obtain the following result.

Corollary 3.1. If there exists ρ > 0 such that one of the following conditions holds:
(C5) 0 ≤ f 0 < ϕ(m), f ργρ ≥ ϕ(Mγ ), u 6= Tu for u ∈ ∂Ωρ and 0 ≤ f∞ < ϕ(m),
(C6) ϕ(M) < f0 ≤ ∞, f

ρ

0 ≥ ϕ(m), u 6= Tu for u ∈ ∂Kρ and ϕ(M) < f∞ ≤ ∞,

then (1.1) and (1.2) has two positive solutions in K .
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Proof. We show that (C5) implies (C3). It is easy to verify that 0 ≤ f 0 < ϕ(m) implies that there exists ρ1 ∈ (0, γ ρ) such
that f ρ10 < ϕ(m). Let a ∈ (f∞, ϕ(m)). Then there exists r > ρ such that supt∈[0,+∞) f (t, (1 + t)u) ≤ aϕ(u) for u ∈ [r,∞)
since 0 ≤ f 0 < ϕ(m). Let

β = max
{
sup

t∈[0,+∞)
f (t, (1+ t)u) : 0 ≤ u ≤ r

}
and ρ3 > ϕ−1

(
β

ϕ(m)− a

)
.

Then we have

sup
t∈[0,+∞)

f (t, (1+ t)u) ≤ kϕ(u)+ β ≤ kϕ(ρ3)+ β < ϕ(m)ϕ(ρ3) for u ∈ [0, ρ3].

This implies that f ρ30 < ϕ(m) and (C3) holds. Similarly, (C6) implies (C4). �

By an argument similar to that of Theorem 3.1 we obtain the following results.

Theorem 3.2. Assume that one of the following conditions holds:

(C7) There exist ρ1, ρ2 ∈ (0,∞) with ρ1 < γρ2 such that f
ρ1
0 ≤ ϕ(m) and f

ρ2
γ ρ2 ≥ ϕ(Mγ ).

(C8) There exist ρ1, ρ2 ∈ (0,∞) with ρ1 < ρ2 such that f
ρ1
γ ρ1 ≥ ϕ(Mγ ) and f

ρ2
0 ≤ ϕ(m).

Then (1.1) and (1.2) have a positive solution in K .

As a special case of Theorem 3.2 we obtain the following result.

Corollary 3.2. Assume that one of the following conditions holds:

(C9) 0 ≤ f 0 < ϕ(m) and ϕ(M) < f∞ ≤ ∞.
(C10) 0 ≤ f∞ < ϕ(m) and ϕ(M) < f0 ≤ ∞.

Then (1.1) and (1.2) have a positive solution in K .

Remark 3.1. If ϕ(u) = u, the problem is second boundary value problem. If ϕ(u) = |u|p−2u, p > 1, the problem is boundary
value problem with p-Laplacian. Then our results of Theorems 3.1 and 3.2 are also new.

4. Example

Example 4.1. As an example we mention the boundary value problem{
(ϕ(u′))′ + a(t)f (t, u(t)) = 0, 0 < t < 1,

u(0) =
1
6
u(1)+

1
6
u(3), u′(∞) = 0,

(4.1)

where

ϕ(u) =

 u5

1+ u2
, u ≤ 0,

u2, u > 0,

and

f (t, u) =


10−5| sin t| +

(
u
1+ t

)8
, u ≤ 2,

10−5| sin t| +
(
2
1+ t

)8
, u ≥ 2,

we take k = 2, λ(t) = t and
∫
+∞

0 a(t)dt = 4,
∫ 2
1
2
a(t)dt = 1. It is easy to see by calculating that

1
m
= ϕ−1

(∫
+∞

0
a(τ )dτ

)1+
m−2∑
i=1

αiξm−2

1−
m−2∑
i=1

αi

 = 72 ,
1
M
= λ

(
1
k

)
1

1+ 1
k

∫ 1
k

0
ϕ−1

(∫ k

1
k

a(τ )dτ

)
ds =

1
6
,
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γ = λ

(
1
k

) λ
( 1
k

) 1
1+ 1k

∫ 1
k
0 ϕ

−1
(∫ k

1
k
a(τ )dτ

)
ds

ϕ−1
(∫
+∞

0 a(τ )dτ
)1+ m−2∑

i=1
αiξm−2

1−
m−2∑
i=1

αi


=
2
21
,

thusm = 2
7 ,M = 6 and let ρ1 =

1
2 , ρ2 = 21, ρ3 = 70. After some simple calculation we have

f (t, (1+ t)u) ≤ 10−5 +
1
256

<
1
49
= ϕ(mρ1) = ϕ(m)ϕ(ρ1), (t, u) ∈ [0,+∞)×

[
0,
1
2

]
;

this shows f ρ10 < ϕ(m). On the other hand,

f (t, (1+ t)u) ≥ 28 = 256 > 144 = ϕ(Mγ ρ2) = ϕ(M)ϕ(γ ρ2), (t, u) ∈
[
1
2
, 2
]
× [2, 21];

we have f ρ2γ ρ2 > ϕ(Mγ ). At last

f (t, (1+ t)u) ≤ 10−5 + 28 < 257 < 400 = ϕ(mρ3) = ϕ(m)ϕ(ρ3), (t, u) ∈ [0,+∞)× [0, 70];

so we have f ρ30 < ϕ(m). Then the condition (C3) in Theorem 3.1 is satisfied. So boundary value problem (4.1) has at least
three positive solutions in K .

Remark 4.1. From the Example 4.1, we can see that ϕ is not odd, then the boundary value problem with p-Laplacian
operator [8,9,12,18] do not apply to Example 4.1. So, we generalize a p-Laplace operator for some p > 1 and the function ϕ
which we defined above is more comprehensive and general than p-Laplace operator.
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