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1. Introduction

In this paper, we consider the following third order three-point boundary value problem

@W'(©)) +a®f ) =0,0<t<1, (1.1)
u(0) = pu), WM =0  ¢W0) =38pW"&), '

here ¢ : R — R s an increasing homeomorphism and positive homomorphism and ¢(0) = 0, f, a, 8, 8, & satisfy:

H)0<&E<1,0<B8<1,0<8<1;

(Hy) f : [0, 00) — R iscontinuous,a € C([0, 1], R") and there exists ty € [0, 1] such thata(ty) > 0, where R* = [0, 00).
A projection ¢ : R — R is called an increasing homeomorphism and a positive homomorphism, if the following

conditions are satisfied:

(1) ifx <y,then¢(x) < ¢p(y) forallx,y € R;

(2) ¢ is a continuous bijection and its inverse mapping ¢! is also continuous;

(3) ¢(xy) = p(x)9(y) forallx, y € [0, +00).
In the above definition, we can replace condition (3) by the following stronger condition:

(4) ¢(xy) = ¢()9(y) forallx, y € R.

Remark 1.1. If conditions (1), (2) and (4) hold, then it implies that ¢ is homogeneous, generating a p-Laplacian operator,
ie, ¢(x) = |x|P~2x, for some p > 1.

* Project supported by the National Natural Science Foundation of China (10671012) and SRFDP of China (20050007011).
* Corresponding address: Department of Mathematics, Beijing Institute of Technology, Nan Street, Zhong guan cun, 100081, Beijing, China.
E-mail address: ymwei@gxnu.edu.cn.

0377-0427/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2009.02.001


http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:ymwei@gxnu.edu.cn
http://dx.doi.org/10.1016/j.cam.2009.02.001

Y. Wei / Journal of Computational and Applied Mathematics 231 (2009) 134-142 135

Third order differential equations arise in a variety of different areas of applied mathematics and physics. In recent years,
the existence and multiplicity of positive solutions for nonlinear third order ordinary differential equations with a three-
point boundary value problem (BVP for short) have been studied by several authors. An interest in triple solutions evolved
from the Leggett-Williams multiple fixed points theorem [1]. And lately, two triple-fixed-point theorems due to Avery [2]
and Avery and Peterson [3], have been applied to obtain triple solutions for certain three point boundary value problems of
third order ordinary differential equations. For example, one may see [4-10] and references therein. In [5], D. R. Anderson
considered the the following third order nonlinear boundary value problem

X'(t) =f(t,x(t), t<t<ts,

X(t) =X () =0,  yx(ts) +8x"(t3) = 0.

He used the Krasnoselskii and Leggett-Williams fixed point theorems to prove the existence of solutions to the nonlinear
boundary value problem. In [9], Sun considered the the following third order nonlinear boundary value problem

u"'(t) = a(t)f (¢, ut), v’ (), u"(t)), 0<t <1,
u(0) = su(n), u() =0, u"(1) =0.

He used the fixed point theorems due to Avery and Peterson to establish results on the existence of positive solutions to the
nonlinear boundary value problem.

On the other hand, the boundary value problems with a p-Laplacian operator have also been discussed extensively in the
literature, for example, see [11-17,10]. In [10], Zhou and Ma studied the existence of positive solutions for the following
third order generalized right-focal boundary value problem with a p-Laplacian operator

(@) (t) = q(Of (£, u®) =0, 0<t<T1,
u©0) =Y o), W =0, u'(1)=) pu'®)
i=1 i=1

where ¢,(s) = Is|P=2s, 1 < p < 2. They established a corresponding iterative scheme for the boundary value problem by
using the monotone iterative technique.

However, to the best of our knowledge, for the increasing homeomorphism and positive homomorphism operator the
research has proceeded slowly. In [18], Liu and Zhang studied the existence of positive solutions of quasilinear differential
equation

(@) +a®f(x(t) =0, 0<t<1,
{x(O) —BX(0) =0, x(1)+8X(1) =0,

here ¢ : R — R is an increasing homeomorphism and positive homomorphism and ¢ (0) = 0. They obtained the existence
of one or two positive solutions by using a fixed-point theorem in cones. For other results which involved an increasing
homeomorphism and positive homomorphism operator, the readers are referred to [19-24].

However, there are not many results concerning the existence of triple positive solutions to the third order three-point
boundary value problems of nonlinear differential equations with increasing homeomorphism and positive homomorphism
operator so far. Whether or not we can obtain triple positive solutions to these kinds of boundary value problems still remains
unknown. Motivated greatly by the results mentioned above, especially reference [9], in this paper, we will consider the
existence of positive solutions(at least three) to BVP (1.1) by using fixed-point theorems in cones. We improve and generate
a p-Laplacian operator and establish some criteria for the existence of triple positive solutions to BVP (1.1).

The methods used in our work will depend on applications of a fixed point theorem due to Avery-Peterson [3] which
deals with fixed points of a cone-preserving operator defined on an ordered Banach space, and another fixed point theorem
which can be found in [25]. The emphasis here is the differential equation with increasing homeomorphism and the positive
homomorphism operator.

The paper is planned as follows. In Section 2, for convenience of the readers we give some definitions and lemmas in
order to prove our main results. Section 3 is developed to present and prove our main results. As applications, two examples
are given to demonstrate our results in Section 4.

2. Preliminaries and lemmas

In this section, we provide some background materials cited from the cone theory in Banach spaces, and we then state
two triple fixed points theorem for a cone preserving operator. The following definitions and lemmas can be found in the
monograph by Deimling [26] as well as the monograph by Guo and Lakshmikanthan [25].

Definition 2.1. Let (E, || - ||) be a real Banach space. A nonempty, closed, convex set P C E is said to be a cone provided the
following are satisfied:

(a) ify e Pand A > 0,then Ay € P;

(b) ify € Pand —y € P,theny = 0.
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If P C E is a cone, we denote the order induced by P on E by <, thatis, x < yifand only ify — x € P.
Definition 2.2. A map « is said to be a nonnegative, continuous, concave(resp. convex) functional in a cone P of a real Banach
spaceE,ifa : P — [0, 00) is continuous and

a(tx+ (1 —1t)y) > ta(x) + (1 —t)a(y) forallx,y e Pandt € [0, 1],
(a(tx+ (1 —1t)y) <ta(x)+ (1—t)a(y) forallx,y € Pandt € [0, 1], respectively).

Let ¥ and 6 be nonnegative continuous convex functionals on P, Let « be a nonnegative continuous concave functional
on P, and let ¥ be a nonnegative continuous functional on P. Then for positive numbers a, b, k and ¢, we define the following
convex sets of P :

P(y,c) ={x € Ply(x) < c},
P(a,b;y,c) ={x € PIb < a(x), y(x) <c},
P(a,b; 0,k y,c) ={x € Plb < ax),0(x) <k, y() =<c},

and a closed set

R(Y,a;y,c) ={x€Pla<y®,y <c}.

Theorem 2.1 ([3]). Let P be a cone in a real Banach space E. Let y and 6 be nonnegative continuous convex functionals on P,
let « be a nonnegative continuous concave functional on P, and let  be a nonnegative continuous functional on P satisfying
Y (Ax) < Ap(x)forall 0 < A < 1, such that for some positive numbers M and c,

ax) < ¥, Xl < My(x) forallx € P(y,c).

Suppose that T : P(y,c) — P(y, c) is completely continuous and there exist positive numbers a, b and k with 0 < a < b such
that

(S1) {x € P(a, b; 0, k; v, ©)|a(x) > b} # @ and a(Tx) > b for x € P(«, b; 6, k; v, C);
(S2) «(Tx) > b for x € P(a, b; y, ) with 0(Tx) > k;
(S3) 0 €R(, a; ¥, c)and ¥ (Tx) < afor x € R(Y, a; y, c) with ¥ (x) = a.

Then T has at least three fixed points x1, x5, and x3 € P(y, c) such that

y(x) <c, i=1,2,3; b < a(xy); a< ¥(x) witha(xy) <b; v(x3) < a.

Theorem 2.2 ([25]). Let A be a bounded closed convex subset of a Banach space E. Assume that A1, A, are disjoint closed convex
subsets of A and Uy, U, are nonempty open subsets of A with U; C Ay and U, C A,. Suppose that T : A — A is completely
continuous and the following conditions hold:

(i) T(A1) C Aq, T(A2) C Ay;
(ii) T has no fixed points in (A1 \ U1) U (A2 \ Us).

Then T has at least three fixed points x1, x, and x3 such that x; € Uy, x, € Uyandx3 € A\ (A UA).

Lemma 2.1. If condition (Hy) holds, then for h € C([0, 1], R), the boundary value problem

')+ h(t)=0, 0<t<l, @1
u(0) = u(§), U(1)=0 '
has a unique solution
t §1
u(t) = / (1= 9)h(s) + ﬁf‘)(llsl;h(s)ds. (2.2)
0 _

Proof. By calculating, we can easily get (2.2). So we omitit. O
Lemma 2.2. If condition (Hy) holds, then for h € C([0, 1], R), the boundary value problem

@' () +ht)=0, 0<t<1, 23)
u(0) = Bu(§), u'(1) =0, pu"(0)) = Sp(u"(§)) '
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has a unique solution

t s 51 1S
u(t)Z/ (1-99"" (/ h(r)dr—i—C) as 4 PR =99 1(f‘;3h(r)dr+c)ds,
i .

8 [0 h(r)dr

where C = , ¢~ 1(s) is the inverse function to ¢(s).

Proof. Integratmg both sides of equation in (2.3) on [0, t], we have

t
p" (1) = ¢u"(0)) — / h(r)dr, (24)
0
)
&
dW" (&) = ¢u"(0)) —/ h(r)dr.
0
By the boundary value condition ¢ (u”(0)) = 8¢ (u”(€)), we have

8 5 h(ryd
p'(0) = —f‘;%;”.

By (2.4) and (2.5) we know

§ t
u//(t) — _¢*1 (W(")dr +/ h(r)dr) .
0

(2.5)

1-96

This together with Lemma 2.1 imply that

t -1 S
u(t) = / (1—s)¢"! (/ h(rydr + C) '8 fo (1= 997 (Jo hnydr + C)ds,
0

1-p

8 [5 h(ryr

where € = —%—

. The proof is complete. O

Lemma 2.3. Let condition (H;) hold. If h € C([0, 1], R™Y), then the unique solution u(t) of (2.3) satisfies
u(t) >0, tel0,1].

Proof. By u”(t) = —¢~! 8[0 h(r)dr

+ fo h(r)dr) < 0, we know that the graph of u(t) is concave down on (0,1) and u/(t)

is nonincreasing on [0,1]. This together with the assumption that the boundary condition u'(1) = 0 implies that u’(t) > 0
fort € [0, 1]. This implies that

lull = u(1), min u(t) = u(0).
te[0,1]

So we only prove u(0) > 0. By condition (H;) we have

B foé(l — )¢~ (fy h(r)dr + C) ds -
1—8 =

u(0) = O

3. Main results

In this section, two existence results of triple positive solutions to BVP (1.1) are established by imposing some conditions
on f and defining a suitable Banach space and a cone.

Let E = C([O, 1]) be endowed with the ordering x < y if x(t) < y(t) forall t € [0, 1], and ||u]| = maxe[o,17 [u(t)| is
defined as usual by maximum norm. Clearly, it follows that (E, ||u||) is a Banach space.

We define a cone P C E by

P = {u: u € E, u(t) is concave, nondecreasing and nonnegative on [0,1], u'(1) = 0}.

Letn > % and fix I € [0, 1] such that 0 < n < [ < 1, and define the nonnegative continuous convex functionals y and
6, the nonnegative continuous concave functional o, and the nonnegative continuous functional ¥ on the cone P by

y () = 0(u) = max u(t) = u(l),
tel[0,1]

a(u) = min u(t) = u(n), Yu) = [max = = u(n).
ten,1] 0,7]
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For notational convenience, denote by

¢ = e andr
1-34
1 3 ) 5]()5(1 — 5! (fos a(r)dr—l—é) ds
m, = / (1—s5)¢p~"! (/ a(rydr + c) ds. m=
0 0 1— ﬂ
! [ ) By (1 =967 (fy atrydr + ) ds
M, = / (1—-29)¢~ (f a(r)dr+c> ds +
0 0 1-5
n ) s . B fof(l — )¢ ! (fos a(rydr + 6) ds
My, =/ (1—=s)¢~ (/ a(r)clr+c) ds +
0 0 1-8
! s . BJi (1= (fos a(rydr + 6) ds
0 0 —

In our main results we will make use of the following lemmas.

Lemma 3.1 ([27]).If u € P, then

(1) u(t) > t|lul| forallt € [0, 1];
(2) Y2 > 1O for ¢, s € [0, 1] withs < t.

Define an operator T : P — E by

f : N Bl =997 (Jyam)f@erydr +C) ds
Tu(t) = / (1—s)p7! (/ a(n)f (u(r))dr + C) ds +
0 0

1-8 ’
= _ 8 [y afwr)dr . . . U .
where C = —%————_Then u is a solution of boundary value problem (1.1) if and only if u is a fixed point of operator T.

Obviously, for u € P one has (Tu)(t) > 0 for t € [0, 1]. In addition, (Tu)”(t) < 0fort € [0, 1] and (Tu)’(1) = 0, this implies
TP C P.With standard argument one may show that T : P — P is completely continuous.

Theorem 3.1. Suppose that conditions (H1) and (H,) hold, and there exist positive numbers a, b, c witha < nb < b < Ic, M|b <
mc such that

®) fw = ¢ (i) uelo.5]:

B) f > ¢ (). ue b §]:

Bs) f < ¢ (52) ue0.2].
Then the BVP (1.

1) has at least three positive solutions uy, u, and us € P(y, ¢) satisfying
y(u) <c, i=123,
and

b < a(uy), a(uy) < b, a < Y¥(up), ¥(u3) < a.

Proof. BVP (1.1) has a solution u = u(t) if and only if u solves the operator equation u = Tu. Thus we set out to verify that
the operator T satisfies the fixed point theorem, which then implies the existence of three fixed points of T.

Based on Lemma 3.1, it is clear that foru € P and A € [0, 1], there are «(u) = ¥ (u), ¥y (Au) = Ay (u) and
lull < ju(h) = 1y (). Furthermore, ¥ (0) = 0 < a and therefore 0 ¢ R(¥, a; v, ©).

Foru € P(y,c),wehave0 <u < |u|| < }y(u) < %c. By condition (B;) one derives

! s £.4 1,7 ~
y(Tu) = Tu() = f (1-95)¢" ( / a(r)f<u<r>>ar+6> as+ PR =92 (f;J a<2f<u<r>>dr+6)ds
0 0 —

c I s ~ B fof(l — )¢ ! (fos a(rydr + 6) ds
= /(1—5)¢“ (/ a(r)dr+c> ds +

Mi \ Jo 0 1-8
= C.

Therefore, T : P(y, c) — P(y, c).
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To check condition (S;) of Theorem 2.1, We choose u = ? and k = ? it is easy to see that

b b b
au) =un) = 7% b, 60w =ul)= T y () = 7<¢

which means {u € P(«, b; 0, %; y,C)|a(u) > b} # @.Hence foru € P(«, b; 6, %; y,c),wehaveb < u(t) < ’%fort € [n, 11.
It follows from condition (B,) that

s §1 —1¢ (S C
i = [ =597 ([ o +€) as LU= Lo Ok
0 0 -

i fn(l — )¢~ ! (/S a(r)dr + 6) ds
my Jo 0
b.

i.e,a(Tu) > bforallu € P(a, b; 6, ?; y, ¢), This shows that condition (S;) of Theorem 2.1 is satisfied.
Moreover, ifu € P(«, b; y, ¢) and (Tu) > c, then due to (2) of Lemma 3.1 we have

nc nb
l

o (Tu)

v

> — > b.

a(Tu) = Tu(n) = T(Tu) () = F6(Tw) > = > &

Thus condition (S;) of Theorem 2.1 is satisfied.
Finally, we show that condition (S3) of Theorem 2.1 holds as well. Clearly, 0 &€ R(, a; v, ¢) since ¥ (0) = 0 < a. Suppose
thatu € R(¢, a; y, c) with ¢y (u) = a,then0 < u < |u|| < %u(n) = %w(u) = % By condition (Bs3), we obtain that

By (1= 967" (fs af mdr +€) ds

V(Tu) = Tu(n) = fnm —5)p~! (/ a()f (w())dr + 6) ds +
0 0 1-8
AN L i Bl =) (jos a(r)dr+6) ds
EIVTn f0(1—5)¢ (/0 a(r)dr+C>ds+ 1-8
= d.

Hence, we have ¢/ (Tu) < a. So condition (S3) of Theorem 2.1 is satisfied.

Since all conditions of Theorem 2.1 are satisfied, BVP (1.1) has at least three positive solutions uq, u;, and us € P(y, d)
such that

yu) <d, i=1,2,3; b < a(uy); a < Y¥(uy) witha(uy) < b; ¥(u3) < a.

The proof is complete. O

Theorem 3.2. Suppose that condition (H;) and (H) hold. Let 0 < a < b < ¢, Mb < mc and

(C) fw < o), ue(0,al;
(Cy) there exist an number d > c such that f (u) < ¢>(%), u € [0,d];

(C3) ¢(L) <fw) < p(5).ue b, cl.
Then BVP (1.1) has at least three positive solutions uy, u,, and us such that
b <u(t) <c, luzll <a, and |us| > a.

Proof. We first show that T(P,) € P, C P, if condition (C;) holds. If u € Py, then 0 < u < |lu|| < a, which implies
f) < ¢(57). We have

[ITull = Tu(1)
. ; i BLE(1—s)p! (fos a(n)f (u(r))dr + 6) ds

= / (1—s)¢p7! (/ a(r)f (u(r))dr + c) ds +

0 0 1-8

a (' NI By (1 =97 (fy atrydr + ) ds
< — — 8¢~ - +
=M /0( )¢ (/Oa(r)r )s =5
= d.

This implies that T(P,) € P, C P,.
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Next, condition (C,) indicates that there exists d > ¢ such that T(P;) C P,;. Now we let
A =Py, A1 = [¢p, cl. U; = int(Ay), Ay = Pq, U; = P,

where for a real number b, ¢, : [0, 1] — [0, 00) is continuous, ¢, (t) = b, for t € [0, 1]; int(A,) is the interior of A;. Then
we have T(A) C A, T(A;) C A,. Moreover, T(P;) € P; € P, means T(A;) € U, C A,. Thus T has no fixed pointin (A; \ U;).

To show T(A;) C A; and T has no fixed point in (A; \ U;y). Set u € Ay, following the definition of ¢, we can know
b < u(t) <c,fort € [0, 1]. Condition (C3) then gives rise to qﬁ(%) <f(u) < q&(ﬁ), which in turn produces

(Tw)(t) = (Tu)(0)
B f(f(l —s)p! (fos a(M)f (u(r))dr + 5) ds
1-8
Bly(1—s5¢" (fos a(rydr + 6) ds
1-8

\Y

T3l

and

(Tu)(t) = (Tu)(1)

. ‘ ) BLEA—s5)p (f; a()f (u(r))dr + 6) ds
/ (1—95)p! (f a()f w(r)dr + c) ds + -
0 0 —

c ! s . Bli(1—5)p (fos a(r)dr + E) ds
— f 1—s¢" </ a(r)dr + C) ds +

M 0 0

c.

IA

1-p

Combining the above two inequalities one achieves ¢(t) = b < (Tu)(t) < ¢ = ¢.(t), for t € [0, 1]. That is, Tu € U;. So
T(A;) € U; C Ay and T has no fixed point in (A; \ U;). Therefore, all conditions of Theorem 2.2 are fulfilled and BVP (1.1)
has at least three positive solutions uy, u,, uz such that

b <u(t) <c, [uzll <a, and Jus|| >a. O

4. Examples
In this section, we present two examples to demonstrate our main results.

Example 4.1. Consider the following third order three-point boundary value problem
(p"(®)) +a®)f (u(t)) =0, 0<t<1,

1 1 1 1 (4.1)
u0) =-ul-), u'(1) =0, Vo) =-¢(u'(=])),
() 3 <2> Q)] ¢ (0)) 4¢< <2>>
where¢p(x) =x,a(t) =1,8=1,6 = 1,6 =1,

We choose n = 1, by calculating we know m, = 32, M; = 21, M, = 2. Leta = 100, b = 245, ¢ = 770,1 = , then
a < nb < b < Ic. Obviously, M;b < mc. We define a nonlinearity f as follows:

140, u € [0, 200],
410
140 + — (u — 200), u € [200, 245],
fu) = 45
550, u € [245, 320],

5
550 + %(u —320), u € [320,+00).

Then by the definition of f, we have

(i) f(w) < ¢(5) ~ 557.2, u € [0, 880];
(i) f(u) > ¢(m£n) ~ 534.2, u € [245, 320];
(iii) f(u) < ¢(5) ~ 145.4,u € [0, 200].

By Theorem 3.1, BVP (4.1) has at least three positive solutions.
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Example 4.2. Consider the following third order three point boundary value problem
(p" () +a®)f (u(t)) =0, 0<t<1,

11 o vy L (1 (4.2)
u(0) = 3“(2)’ u (1) =0, o (0)) = 4¢ (u <2>>

where p(x) =x,a(t) =1,=3.8=5.6 =3.n=13.
By calculating we can know m = 21, M = £.leta = 7,b = 12,c = 336,1 = [, thena < b < b < Ic. Obviously,

18 a8
Mb < mc. We define a nonlinearity f as follows:
3, u € [lo, 7],
97 )
3+ —w-—7)7, ue|(7,12],
f = 2
100, u € [12, 336],

100 + 1100( 336), u e [336, +00)
—(u— , u , +00).
1764

Then by the definition of f, we have

(i) f(u) < o(3;) ®4.2,ue0,7];
(ii) and there exists d = 2100 > c such that f (u) < ¢ (%) x> 1214.4,u € [0, 2100];
(iii) ¢>(%) ~52.4 < f(u) < ¢(3;) ~ 194.3,u € [12, 336].

By Theorem 3.2, BVP (4.2) has at least three positive solutions.

Remark 4.1. Consider the following nonlinear three point boundary value problem

(W) +a®)f w®) =0, 0<t<1,
u(0) = pu@), w1 =0 ¢W0)=3pW")),

where

3
u, u<o,
o) = {uz, u>0,

f and a satisfy the condition (H;) and (H,). It is clear that ¢ : R — R is an increasing homeomorphism and homomorphism
and ¢ (0) = 0. Because p-Laplacian operators are odd, they do not apply to our example. Hence we generalize the boundary
value problem with the p-Laplacian operator and the results [16,17] do not apply to the example.
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